Skip to main content

Terrestrial full carbon account for Russia: revised uncertainty estimates and their role in a bottom-up/top-down accounting exercise

  • Chapter
Book cover Greenhouse Gas Inventories
  • 1144 Accesses

Abstract

Our research addresses the need to close the gap between bottom-up and top-down accounting of net atmospheric carbon dioxide (CO2) emissions. Russia is sufficiently large to be resolved in a bottom-up/top-down accounting exercise, as well as being a signatory state of the Kyoto Protocol. We resolve Russia’s atmospheric CO2 balance (1988–1992) in terms of four major land-use/cover units and eight bioclimatic zones. On the basis of our results we conclude that the Intergovernmental Panel on Climate Change (IPCC) must revise its carbon balance for northern Asia. We find a less optimistic, although more realistic, bottom-up versus top-down match for northern Asia than the IPCC authors. Nonetheless, in spite of the larger uncertainties involved, our research shows that (1) there is indeed an added value in linking bottom-up and top-down carbon accounting because our dual-constrained regional carbon balance is incomparably more rigorous; and that (2) the need persists for more atmospheric measurements, including atmospheric inversion experiments, over Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bond-Lamberty B, Wang Ch, Gower S (2004) The contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence. Tree Physiol 24(12):1387–1395

    Google Scholar 

  • Ciais P, Rayner P, Chevallier F, Bousquet P, Logan M, Peylin P, Ramonet M (2010) Atmospheric inversions for estimating CO2 fluxes: methods and perspectives. Clim Change (this issue). doi:10.1007/s10584-010-9909-3

    Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore B III, Churkina G, Nemry B, Ruimy A, Schloss AL, the participants of the Potsdam NPP Model Intercomparison (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Chang Biol 5(S1):1–15

    Google Scholar 

  • Denman K, Brasseur G, Chidthaisong A, Ciais P, Cox P, Dickinson R, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias P, Wofsy S, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 499–587. Available at: http://ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  CAS  Google Scholar 

  • French NHF, Goovaerts P, Kasischke ES (2004) Uncertainty in estimating carbon emissions from boreal forest fires. J Geophys Res 109:D14S08. doi:10.1029/2003JD003635

    Article  Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwhiler L, Chen Y-H, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen C-W (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415(6872):626–630

    Article  Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwhiler L, Chen Y-H, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Kowalczyk E, Maki T, Maksyutov S, Peylin P, Prather M, Pak BC, Sarmiento J, Taguchi S, Takahashi T, Yuen C-W (2003) TransCom 3 CO2 inversion intercomaprison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B:555–579

    CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT et al (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • House JI, Prentice IC, Ramankutty N, Houghton RA, Heiman M (2003) Reducing apparent uncertainties in estimates of terrestrial CO2 sources and sinks. Tellus 55B:345–363

    CAS  Google Scholar 

  • Hutchinson GL, Rochette P (2003) Non-flow-through steady-state chambers for measuring soil respiration: numerical evaluation of their performance. Soil Sci Soc Am J 67:166–180

    CAS  Google Scholar 

  • IIASA (2007) Uncertainty in greenhouse gas inventories. IIASA Policy Brief #1, December. International Institute for Applied Systems Analysis, Laxenburg, Austria. Available at http://www.iiasa.ac.at/Admin/PUB/policy-briefs/pb01-web.pdf

  • Jensen LS, Mueller T, Tata KR, Ross DJ, Magid J, Nielsen NE (1996) Soil surface CO2 flux as an index of soil respiration in situ: a comparison of two chamber methods. Soil Biol Biochem 28:1297–1306

    Article  CAS  Google Scholar 

  • Jonas M, Gusti M (2010) Reassessing uncertainty in IIASA’s bottom-up full CO2-C account of Russia’s terrestrial biosphere: toward closing the accounting gap with top-down atmospheric inversion. Interim Report, International Institute for Applied Systems Analysis, Laxenburg, Austria (forthcoming)

    Google Scholar 

  • Jonas M, Nilsson S (2002) Austrian carbon database (ACDb). International Institute for Applied Systems Analysis, Laxenburg. A brief project report covering that subject already exists: Jonas et al (2008) Assessing Uncertainty in Bottom-up Full Carbon Accounting for Russia. Brief Project Report (revised and expanded after acceptance by the Austrian Science Fund), International Institute for Applied Systems Analysis, Laxenburg, Austria, p 8. Available on the Internet: http://www.iiasa.ac.at/Research/FOR/acdb.html

  • Jonas M, Nilsson S (2007) Prior to economic treatment of emissions and their uncertainties under the Kyoto Protocol: scientific uncertainties that must be kept in mind. Water Air Soil Pollut Focus 7:795–511

    Article  Google Scholar 

  • Kurganova I (2002) Carbon dioxide emission from soils of Russian terrestrial ecosystems. Interim Report IR-02-070, International Institute for Applied Systems Analysis, Laxenburg, Austria, p 64. Available at http://www.iiasa.ac.at/Publications/Documents/IR-02-070.pdf

  • Kurganova I, Lopes de Gerenyu V, Rozanova L, Myakshina T, Kudeyarov V (2003) Effect of hydrothermal conditions on CO2 emissions from soils of forest zone: analysis of long-term field observations. Abstracts of the second international conference “Emissions and Sink of Greenhouse Gases on the Territory of Northern Eurasia Territory”, pp 70–71

    Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Lopes de Gerenyu VO, Kurganova IN, Rozanova LN, Kudeyarov VN (2005) Effect of soil temperature and moisture on ÑO2 evolution rate of cultivated Phaeozem: analysis of a long-term field experiment. Plant Soil Environ 51(5):213–219

    Google Scholar 

  • Nilsson S, Shvidenko A, Stolbovoi V, Gluck M, Jonas M, Obersteiner M (2000) Full carbon account for Russia. Interim Report IR-00-021, International Institute for Applied Systems Analysis, Laxenburg, Austria, p 180. Available at http://www.iiasa.ac.at/Publications/Documents/IR-00-021.pdf

  • Nilsson S, Jonas M, Stolbovoi V, Shvidenko A, Obersteiner M, McCallum I (2003a) The missing “missing sink”. For Chron 79(6):1071–1074. Available at http://www.iiasa.ac.at/~jonas/CV%20IIASA/CV.pdf

    Google Scholar 

  • Nilsson S, Jonas M, Shvidenko A, Stolbovoi V, McCallum I (2003b) Monitoring, verification and permanence of carbon sinks. In: CarboEurope conference “The continental carbon cycle”. 3rd CarboEurope Conference, 19–21 March, Abstracts, Lisbon, Portugal. Available at http://www.bgc.mpg.de/public/carboeur/workshop/speaker/nilsson.htm

  • Nilsson S, Vaganov EA, Shvidenko AZ, Stolbovoi V, Rozhkov VA, McCallum I, Jonas M (2003c) Carbon budget of vegetation ecosystems of Russia. Dokl Earth Sci 393A(9):1281–1283. Translated from Dokl Akad Nauk USSR 393(4):541–543

    CAS  Google Scholar 

  • Peylin P, Bousquet P, Le Quéré C, Sitch S, Friedlingstein P, McKinley G, Gruber N, Rayner P, Ciais P (2005) Multiple constraints on regional CO2 flux variations over land and oceans. Glob Biogeochem Cycles 19:GB1011. doi:10.1029/2003GB002214

    Article  Google Scholar 

  • Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinisto S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grunzweig JM, Reth S, Subke JA, Savage K, Kutsch W, Oestreng G, Ziegler W, Anthoni P, Lindroth P, Hari P (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–176

    Article  Google Scholar 

  • Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90

    Article  CAS  Google Scholar 

  • Rayner PJ, Enting IG, Francey RJ, Langenfelds R (1999) Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations. Tellus 51B:213–232

    Article  Google Scholar 

  • Rayner PJ, Law RM, Allison CE, Francey RJ, Pickett-Heaps C (2007) The interannual variability of the global carbon cycle (1992–2005) inferred by inversion of atmospheric CO2 and δ 13CO2 measurements. Glob Biogeochem Cycles 22:GB3008

    Google Scholar 

  • Rodin AZ, Krylatov AK (eds) (1998) Dynamic of humus balance on cropland of the Russian Federation. Goskomzem, Moscow, Russia, p 60 (in Russian)

    Google Scholar 

  • Rödenbeck C, Houweling S, Gloor M, Heimann M (2003a) Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport. Tellus 55B:488–497

    Article  Google Scholar 

  • Rödenbeck C, Houweling S, Gloor M, Heimann M (2003b) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys 3:1919–1964

    Article  Google Scholar 

  • Schmullius C, Santoro M (eds), Balzter H, Bartsch A, Beer C, Cramer W, Delbart N, George C, Gerard F, Gerlach R, Grippa M, Handoh I, Hese S, Kidd R, Lehmann E, Le Toan T, Lucht W, Luckman A, McCallum I, Mognard N, Nilsson S, Pathe C, Petrocchi A, Quegan S, Robertson N, Rowland C, Shvidenko A, Skinner L, Thomson A, Voigt S, Wagner W, Wegmüller U, Wiesmann A (2005) SIBERIA-II Final Report, Contract Number EVG1-CT-2001-00048, EC Deliverable: EC17, Reporting Period 1.1.2002–30.09.2005, October, 69 pp

    Google Scholar 

  • Shvidenko AZ, Nilsson S (2000a) Extent, distribution, and ecological role of fire in Russian forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest. Springer, New York, pp 132–150

    Google Scholar 

  • Shvidenko A, Nilsson S (2000b) Fire and the carbon budget of Russian forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest. Springer, New York, pp 289–311

    Google Scholar 

  • Shvidenko A, Nilsson S (2003) A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus 55B:391–415

    CAS  Google Scholar 

  • Shvidenko AZ, Schepaschenko DG, Nilsson S, Vaganov EA (2006) Dynamics of net primary production of Russian forests in a changing world: a new estimate. International Conference: Climate Changes and Their Impact on Boreal and Temperate Forests, 5–7 June, Abstracts, Ural State Forest Engineering University, Ekaterinburg, Russia, 90

    Google Scholar 

  • Shvidenko A, Schepschenko D, Nilsson S, Bouloui Y (2007) Semi-empirical models for assessing biological productivity of Northern Eurasian forests. Ecol Model 204:163–179

    Article  Google Scholar 

  • Shvidenko AZ, Schepaschenko DG, Vaganov EA, Nilsson S (2008) Net primary production of forest ecosystems of Russia: a new estimate. Dokl Akad Nauk USSR 421(6):822–825

    Google Scholar 

  • Shvidenko A, Schepaschenko D, McCallum I, Nilsson S (2010) Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers? Clim Change (this issue). doi:10.1007/s10584-010-9918-2

    Google Scholar 

  • Steffen W, Noble I, Canadell J, Apps M, Schulze E-D, Jarvis P (1998) CLIMATE: the terrestrial carbon cycle: implications for the Kyoto protocol. Science 280(5368):1393–1394. doi:10.1126/science.280.5368.1393

    Google Scholar 

  • Stolbovoi V (2003) Soil respiration and its role in Russia’s terrestrial C flux balance for the Kyoto baseline year. Tellus 55B:258–269

    Google Scholar 

  • Stolbovoi V, McCallum I (2002) CD-ROM “Land resources of Russia”. International Institute for Applied Systems Analysis and the Russian Academy of Science, Laxenburg, Austria. Available at http://www.iiasa.ac.at/Research/FOR/russia_cd/index.htm?sb=17

  • Yim MH, Joo SJ, Nakane K (2000) Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods. For Ecol Manag 170:189–197

    Google Scholar 

  • Zavarzin GA (ed) (2007) Carbon pools and fluxes in terrestrial ecosystems of Russia. Nauka, Moscow, p 315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gusti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Gusti, M., Jonas, M. (2010). Terrestrial full carbon account for Russia: revised uncertainty estimates and their role in a bottom-up/top-down accounting exercise. In: Jonas, M., Nahorski, Z., Nilsson, S., Whiter, T. (eds) Greenhouse Gas Inventories. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1670-4_10

Download citation

Publish with us

Policies and ethics