Skip to main content

Airborne Lidar

  • Chapter
  • First Online:
Geo-information

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 5))

Abstract

The year 1997 marked the start of creating a highly detailed nationwide Digital Elevation Model (DEM) of the Netherlands, up to one height point per 16 m2, making use of airborne Lidar technology. The accuracy specifications of the so-called AHN were: 15 cm root mean square error (RMSE) and 5 cm systematic error. At that time, commercial Lidar was still in its infancy and many operational hurdles had to be overcome. The AHN project was completed in 2003. Figure 8.1 shows a part of a raw airborne Lidar data set used to create AHN. ‘The Netherlands is flat as a coin. Why you need such a detailed DEM?’ some foreigners laughed, especially those living in mountainous areas. The answer is quite simple: when 40% of a country’s territory is situated below sea level, every decimetre counts in the struggle to keep feet dry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann F (1999) Airborne laser scanning present status and future expectations. ISPRS J Photogramm Remote Sens 54:64–67

    Article  Google Scholar 

  • Awrangjeb M, Ravanbakhsh M, Fraser CS (2010) Automatic detection of residential buildings using LIDAR data and multispectral imagery. ISPRS J Photogramm Remote Sens 65(5): 457–467

    Article  Google Scholar 

  • Baltsavias EP (1999a) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54(2–3):199–214

    Article  Google Scholar 

  • Baltsavias EP (1999b) A comparison between photogrammetry and laser scanning. ISPRS J Photogramm Remote Sens 54(2–3):83–94

    Article  Google Scholar 

  • Brovelli MA, Cannata M, Longoni UM (2004) Lidar data filtering and DTM interpolation within GRASS. Trans GIS 8(2):155–174

    Article  Google Scholar 

  • Chasmer L, Hopkinson Ch, Treitz P (2006) Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial Lidar. Can J Remote Sens 32(2):116–125

    Article  Google Scholar 

  • Filin S, Pfeifer N (2006) Segmentation of airborne laser scanning data using a slope adaptive neighbourhood. ISPRS J Photogramm Remote Sens 60(2):71–80

    Article  Google Scholar 

  • Fisher PF, Tate NJ (2006) Causes and consequences of error in digital elevation models. Prog Phys Geogr 30(4):467–489

    Article  Google Scholar 

  • Heinzel J, Koch B (2011) Exploring full-waveform Lidar parameters for tree species classification. Int J Appl Earth Obs Geoinf 13(1):152–160

    Article  Google Scholar 

  • Hug C, Ullrich A, Grimm A (2004) LiteMapper-5600: a waveform digitizing Lidar terrain and vegetation mapping system. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI(Part 8/W2):24–29. Freiburg, Germany

    Google Scholar 

  • Jones TG, Coops NC, Sharma T (2010) Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest. Can Remote Sens Environ 114(12):2841–2852

    Article  Google Scholar 

  • Jwa Y, Sohn G, Kim HB (2009) Automatic 3D powerline reconstruction using airborne Lidar data. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII(Part 3/W8):105–110. Paris, France

    Google Scholar 

  • Kim S, McGaughey RJ, Andersen H-E, Schreuder G (2009) Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens Environ 113(8):1575–1586

    Article  Google Scholar 

  • Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm Remote Sens 53:193–203

    Article  Google Scholar 

  • Kraus K, Pfeifer N (2001) Advanced DTM generation from Lidar data. Int Arch Photogramm Remote Sens XXXIV(3/W4):23–30. Annapolis, MD

    Google Scholar 

  • Lang MW, McCarty GW (2009) Lidar intensity for improved detection of inundation below the forest canopy. Wetlands 29(4):1166–1178

    Article  Google Scholar 

  • Lemmens MJPM (1997) Accurate height information from airborne laser-altimetry. Proceedings of IGARSS’97, remote sensing: a scientific vision for sustainable development, Singapore, pp 423–426. ISBN 0-7803-3839-1

    Google Scholar 

  • Lemmens MJPM (1999a) Uncertainty in automatically sampled Digital Elevation Models, chapter 47. In: Lowell K, Jaton A (eds) Spatial accuracy assessment: land information uncertainty in natural resourses. Ann Harbor Press, Chelsea, MI, pp 399–407. 1 ISBN 1-57504-119-7

    Google Scholar 

  • Lemmens MJPM (1999b) Quality description problems of blindly sampled DEMs. In: Shi W, Goodchild MF, Fischer PF (eds) Proceedings of the international symposium on spatial data quality’99, Hongkong, pp 210–218

    Google Scholar 

  • Lemmens MJPM, 2001, Height Information from laser-altimetry for urban areas. GIS Development, The Asian GIS Portal, Map India, 2001, pp 1–5

    Google Scholar 

  • Lemmens M (2007a) Airborne Lidar sensors. GIM Int 21(2):24–27

    Google Scholar 

  • Lemmens M (2007b) Airborne Lidar processing software. GIM Int 21(2):52–55

    Google Scholar 

  • Lemmens M (2009a) Airborne Lidar sensors. GIM Int 23(2):16–19

    Google Scholar 

  • Lemmens M (2009b) Multiple-pulses in air. GIM Int 23(2):57

    Google Scholar 

  • Lemmens M (2010a) Airborne Lidar processing software. GIM Int 24(2):14–15

    Google Scholar 

  • Lemmens M (2010b) ALPS. GIM Int 24(2):57

    Google Scholar 

  • Lemmens M (2011a) Airborne Lidar sensors: status and development. GIM Int 25(2):33–39

    Google Scholar 

  • Lemmens M (2011b) Airborne Lidar Sensors. http://www.gim-international.com/productsurvey/

  • Lemmens M, Deijkers H, Looman P (1997) Building detection by fusing airborne laser-alimter DEMS and 2D digital maps. Int Arch Photogramm Remote Sens 32(Part 3–4/W2): 42–49

    Google Scholar 

  • Lemmens M, Lohani B (2001) Geo-Information from Lidar: how India may benefit from airborne laser-altimetry. GIM Int 15(7):30–33

    Google Scholar 

  • Liu X (2008) Airborne Lidar for DEM generation: some critical issues. Prog Phys Geogr 32(1): 31–49

    Article  Google Scholar 

  • Lloyd CD, Atkinson PM (2006) Deriving ground surface digital elevation models from Lidar data with geostatics. Int J Geogr Inf Sci 20:535–563

    Article  Google Scholar 

  • Mallet C, Bretar F (2009) Full-waveform topographic lidar: state-of-the-art. ISPRS J Photogramm Remote Sens 64(1):1–16

    Article  Google Scholar 

  • McLaughlin RA (2006) Extracting transmission lines from airborne Lidara data. IEEE Geosci Remote Sens Lett 3(2):222–226

    Article  Google Scholar 

  • Meng X, Currit N, Zhao K (2010) Ground filtering algorithms for airborne Lidar data: a review of critical issues. Remote Sens 2(3):833–860

    Article  Google Scholar 

  • Meng X, Wang L, Silván-Cárdenas JL, Currit N (2009) A multi-directional ground filtering algorithm for airborne Lidar. ISPRS J Photogramm Remote Sens 64(1):117–124

    Article  Google Scholar 

  • Noernberg MA, Fournier J, Dubois S, Populus J (2010) Using airborne laser altimetry to estimate Sabellaria alveolata (Polychaeta: Sabellariidae) reefs volume in tidal flat environments. Estuar Coast Shelf Sci 90(2):93–102

    Article  Google Scholar 

  • Petersen YM, Burman Rost H (2011) Swedish Lidar project: new nationwide elevation model. GIM Int 25(2):20–23

    Google Scholar 

  • Raber GT, Jensen JR, Schill SR, Schuckman K (2002) Creation of digital terrain models using an adaptive Lidar vegetation point removal process. Photogramm Eng Remote Sens 68:1307–1316

    Google Scholar 

  • Romano ME (2004) Innovation in Lidar processing technology. Photogramm Eng Remote Sens 70:1202–1206

    Google Scholar 

  • Roth RB, Thompson J (2008) Practical application of multiple pulse in air (MPiA) Lidar in large area surveys. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVII(Part B1):183–188. Beijing

    Google Scholar 

  • Shan J, Toth ChK (eds) (2008) Topographic laser ranging and scanning: principles and processing. Taylor Francis, Boca Raton, London, New York, 608 p. ISBN-13 9781420051421

    Google Scholar 

  • Silván-Cárdenas JL, Wang L (2006) A multi-resolution approach for filtering LiDAR altimetry data. ISPRS J Photogramm Remote Sens 61(1):11–22

    Article  Google Scholar 

  • Skaloud J, Schaer Ph, Stebler Y, Tomé P (2010) Real-time registration of airborne laser data with sub-decimeter accuracy. ISPRS J Photogramm Remote Sens 65(2):208–217

    Article  Google Scholar 

  • Sohn G, Dowman I (2007) Data fusion of high-resolution satellite imagery and Lidar data for automatic building extraction. ISPRS J Photogramm Remote Sens 62(1):43–63

    Article  Google Scholar 

  • Vosselman G (2000) Slope based filtering of Laser altimetry data. Int Arch Photogramm Remote Sens Spat Inf Sci XXXIII:935–942

    Google Scholar 

  • Wehr A, Lohr U (1999) Airborne laser scanning: an introduction and overview. ISPRS J Photogramm Remote Sens 54(2–3):68–82

    Article  Google Scholar 

  • Zhang K, Chen S-C, Whitman D, Shyu M-L, Yan J, Zhang C (2003) A progressive morphological filter for removing measurements from airborne Lidar data. IEEE Trans Geosci Remote Sens 41(4):872–882

    Article  Google Scholar 

  • Zhao K, Popescu S (2009) Lidar-based mapping of leaf area index and its comparison with satellite Globcarbon Lai products in a temperate forest of the southern USA. Remote Sens Environ 113(8):1628–1645

    Article  Google Scholar 

  • Zheng S, Shi W, Liu J, Zhu G (2007) Facet-based airborne light detection and ranging data filtering method. Opt Eng 46(6):066202-1–066202-15. doi:10.1117/1.2747232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Lemmens .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lemmens, M. (2011). Airborne Lidar. In: Geo-information. Geotechnologies and the Environment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1667-4_8

Download citation

Publish with us

Policies and ethics