Skip to main content

Aerosol retrievals under partly cloudy conditions: challenges and perspectives

  • Conference paper
  • First Online:
Polarimetric Detection, Characterization and Remote Sensing

Abstract

There are many interesting and intriguing features of aerosols near clouds – many of which can be quite engaging, as well as being useful and climate- related. Exploring aerosols by means of remote sensing, in situ observations, and numerical modeling has piqued our curiosity and led to improved insights into the nature of aerosol and clouds and their complex relationship. This chapter conveys the outstanding issues of cloudy-sky aerosol retrievals and outlines fruitful connections between the remote sensing of important climate-related aerosol properties and other research areas such as in situ measurements and model simulations. The chapter focuses mostly on treating inverse problems in the context of passive satellite remote sensing and how they can improve our understanding of the cloud-aerosol interactions. The presentation covers basics of the inverse-problem theory, reviews available approaches, and discusses their applications to partly cloudy situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today 56(1), 39–44.

    Article  Google Scholar 

  • Alexandrov, M. D., A. Marshak, B. Cairns, et al., 2004: Scaling properties of aerosol optical thickness retrieved from ground-based measurements. J. Atmos. Sci. 61, 1024–1039.

    Article  Google Scholar 

  • Anderson, T. L., R. L. Charlson, D. M. Winker, et al., 2003: Mesoscale variations of tropospheric aerosols. J. Atmos. Sci. 60, 119–136.

    Article  Google Scholar 

  • Andrews, E., P. J. Sheridan, J. A. Ogren, and R. Ferrare, 2004: In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site. 1. Aerosol optical properties. J. Geophys. Res. 109, D06208.

    Google Scholar 

  • Barker, H. W., C. Pavloski, M. Ovtchinnikov, and E. E. Clothiaux., 2004: Assessing a cloud optical depth retrieval algorithm with model-generated data and the frozen turbulence assumption. J. Atmos. Sci. 61, 2951–2956.

    Article  Google Scholar 

  • Berg, L. K., C. M. Berkowitz, J. A. Ogren, et al., 2009: Overview of the cumulus humilis aerosol processing study (CHAPS). Bull. Amer. Meteorol. Soc. 90, 1653–1667.

    Article  Google Scholar 

  • Berg, L. K., C. M. Berkowitz, J. C. Barnard, et al., 2011: Observations of the first aerosol indirect effect in shallow cumuli. Geophys. Res. Lett. 38, doi:10.1029/2010GL046047, in press.

    Google Scholar 

  • Cairns, B., E. E. Russell, and L. D. Travis, 1999: The Research Scanning Polarimeter: calibration and ground-based measurements. Proc. SPIE 3754, 186–196.

    Article  Google Scholar 

  • Cairns, B., F. Waquet, K. Knobelspiesse, et al., 2009: Polarimetric remote sensing of aerosols over land surfaces. In A. A. Kokhanovsky and G. de Leeuw, Eds., Satellite Aerosol Remote Sensing over Land (Praxis, Chichester, UK), pp. 295–325.

    Google Scholar 

  • Carrico, C. M., M. J. Rood, and J. A. Ogren, 1998: Aerosol light scattering properties at Cape Grim, Tasmania, during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res., 103, 16 565–16 574.

    Google Scholar 

  • Chiu, J. C., C. H. Huang, A. Marshak, et al., 2010: Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations. J. Geophys. Res. 115, D14202.

    Article  Google Scholar 

  • Cornert, C., L. C-Labonnote, and F. Szczap, 2010: Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud. J. Quant. Spectrosc. Radiat. Transfer 111, 174–186.

    Article  Google Scholar 

  • Davis, A. B., and A. Marshak, 2010: Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts. Rep. Prog. Phys. 73, 026801.

    Article  Google Scholar 

  • Davis, A. B., P. von Allmen, A. Marshak, and G. Bal, 2010: Toward a new polarizationbased approach to the characterization of aerosols very near broken or isolated cumulus- type clouds. Presentation at the NATO Advanced Study Institute on “Special Detection Technique (Polarimetry) and Remote Sensing”, Sept. 12–25, Kyiv.

    Google Scholar 

  • Doicu, A., T. Trautmann, and F. Schreier, 2010: Numerical Regularization for Atmospheric Inverse Problems (Springer, Berlin).

    Google Scholar 

  • Doicu, A., T. Trautmann, and F. Schreier, 2011: Regularization of inverse problems in atmospheric remote sensing. In M. I. Mishchenko, Ya. S. Yatskiv, V. K. Rosenbush, and G. Videen, Eds., Polarimetric Detection, Characterization, and Remote Sensing (Springer, Berlin) (this volume).

    Google Scholar 

  • Dubovik, O., 2004: Optimization of numerical inversion in photopolarimetric remote sensing. In G. Videen, Ya. Yatskiv, and M. Mishchenko, Eds., 2004: Photopolarimetry in Remote Sensing (Kluwer, Dordrecht), pp. 65–105.

    Google Scholar 

  • Dubovik, O., B. N. Holben, T. F. Eck, et al., 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590–608.

    Article  Google Scholar 

  • Dubovik, O., M. Herman, A. Holdak, et al., 2010: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. Discuss. 3, 4967–5077.

    Article  Google Scholar 

  • Engelen, R. J., and G. L. Stephens, 2004: Information content of infrared satellite sounding measurements with respect to CO2. J. Appl. Meteorol. 43, 373–378.

    Article  Google Scholar 

  • Fan J., M. Ovtchinnikov, J. Comstock, et al., 2009: Ice formation in arctic mixed-phase clouds: insights from a 3D cloud-resolving model with size-resolved aerosol and cloud microphysics. J. Geophys. Res. 114, D04205.

    Article  Google Scholar 

  • Goering, C. D., T. S. L’Ecuyer, G. L. Stephens, et al., 2005: Simultaneous retrievals of column ozone and aerosol optical properties from direct and diffuse solar irradiance measurements. J. Geophys. Res. 110, D05204.

    Article  Google Scholar 

  • Gouesbet, G., 2009: Generalized Lorenz–Mie theories, the third decade: a perspective. J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238.

    Article  Google Scholar 

  • Gouesbet, G., and G. Grehan, 2000: Generalized Lorenz–Mie theories, from past to future. Atomization Sprays 10, 277–333.

    Google Scholar 

  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev. 16, 527–610.

    Article  Google Scholar 

  • Hegg, D. A., J. Livingston, P. V. Hobbs, et al., 1997: Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States. J. Geophys. Res. 102, 25293–25303.

    Article  Google Scholar 

  • Hey, J. D., 1983: From Leonardo to the Graser: light scattering in historical perspective. S. African J. Sci. 79, 11–27, 310–324.

    Google Scholar 

  • Hey, J. D., 1985: From Leonardo to the Graser: light scattering in historical perspective. S. African J. Sci. 81, 77–91, 601–613.

    Google Scholar 

  • Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay, 2007: Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site. J. Geophys. Res. 112, D10202.

    Article  Google Scholar 

  • Kahn, R. A., B. J. Gaitley, J. V. Martonchik, et al., 2005: Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res. 110, D10S04.

    Google Scholar 

  • Kassianov, E., and M. Ovtchinnikov, 2008: On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds. Geophys. Res. Lett. 35, L06807.

    Article  Google Scholar 

  • Kassianov, E., M. Ovchinnikov, L. K. Berg, et al., 2009: Retrieval of aerosol optical depth in vicinity of broken clouds from reflectance ratios: sensitivity study. J. Quant. Spectrosc. Radiat. Transfer 110, 1677–1689.

    Article  Google Scholar 

  • Kassianov, E., M. Ovchinnikov, L. K. Berg, et al., 2010: Retrieval of aerosol optical depth in vicinity of broken clouds from reflectance ratios: case study. Atmos. Meas. Tech. 3, 1333–1349.

    Article  Google Scholar 

  • Kaufman, Y., L. A. Remer, D. Tanré, et al., 2005: A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean. IEEE Trans. Geosci. Remote Sens. 43, 2886–2897.

    Article  Google Scholar 

  • Khain, A. P., 2009: Notes on state-of-art investigations of aerosol effects on precipitation: a critical review. Environ. Res. Lett. 4, 015004.

    Article  Google Scholar 

  • Khain, A., A. Pokrovsky, M. Pinsky, et al., 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixedphase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci. 61, 2963–2982.

    Google Scholar 

  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci. 60, 607–625.

    Article  Google Scholar 

  • Khlebtsov, B. N., V. A. Khanadeev, and N. G. Khlebtsov, 2008: Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra. Langmuir 24, 8964–8970.

    Article  Google Scholar 

  • Kobayashi, T., K. Masuda, M. Sasaki, and J. Mueller, 2000: Monte Carlo simulations of enhanced visible radiance in clear-air satellite fields of view near clouds. J. Geophys. Res. 105, 26 569–26 576.

    Google Scholar 

  • Kokhanovsky, A. A. and de G. Leeuw, Eds., 2009: Satellite Aerosol Remote Sensing over Land (Praxis, Chichester, UK).

    Google Scholar 

  • Kokhanovsky, A. A., and P. Chylek, 2011: Remote Sensing of the Atmosphere from Space (Praxis, Chichester, UK).

    Google Scholar 

  • Kokhanovsky, J. L. Deuzé, D. J. Diner, et al., 2010: The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos. Meas. Tech. 3, 909–932.

    Article  Google Scholar 

  • Kolokolova, L., B. Buratti, and V. Tishkovets, 2010: Impact of coherent backscattering on the spectra of icy satellites of Saturn and the implications of its effects for remote sensing. Astropys. J. 711, L71–L75.

    Article  Google Scholar 

  • Koren, I., L. A. Remer, Y. J. Kaufman, et al., 2007: On the twilight zone between clouds and aerosols. Geophys. Res. Lett. 34, L08805.

    Article  Google Scholar 

  • Koren, I., G. Feingold, and L. A. Remer, 2010: The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys. 10, 8855–8872.

    Article  Google Scholar 

  • Leaitch, W. R., U. Lohmann, L. M. Russell, et al., 2010: Cloud albedo increase from carbonaceous aerosol. Atmos. Chem. Phys. 10, 7669–7684.

    Article  Google Scholar 

  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today 63(7), 36–41.

    Article  Google Scholar 

  • Lee, K. H., Z. Li, Y. J. Kim, and A. A Kokhanovsky, 2009: Atmospheric aerosol monitoring from satellite observations: A history of three decades. In Y. J. Kim et al., Eds., Atmospheric and Biological Environmental Monitoring (Springer, Berlin), pp. 13–38.

    Google Scholar 

  • Levy, R., L. Remer, S. Mattoo, et al., 2007: Second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance. J. Geophys. Res. 112, D13211.

    Article  Google Scholar 

  • Li, Z., X. Zhao, R. Kahn, et al., 2009: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann. Geophys. 27, 2755–2770.

    Article  Google Scholar 

  • Lilienfeld, P., 2004: A blue sky history. Opt. Photon. News 15(6), 32–39.

    Google Scholar 

  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737.

    Article  Google Scholar 

  • Marks, C., and C. Rodgers, 1993: A retrieval method for atmospheric composition from limb emission measurements. J. Geophys. Res. 98, 14 939–14 953.

    Google Scholar 

  • Marshak, A. and A. B. Davis, Eds., 2005: 3D Radiative Transfer in Cloudy Atmospheres (Springer, Berlin).

    Google Scholar 

  • Marshak, A., G. Wen, J. Coakley, et al., 2008: A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J. Geophys. Res. 113, D14S17.

    Google Scholar 

  • Mayer, B., 2009: Radiative transfer in the cloudy atmosphere. Eur. Phys. J. Conf. 1, 75–99.

    Article  Google Scholar 

  • McComiskey, A., G. Feingold, F. A. Shelby, et al. 2009: An assessment of aerosol‐cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res. 114, D09203.

    Article  Google Scholar 

  • Mensbrugghe, V., 1892: On the formation of fog and of clouds. Simon’s Mon. Meteorol. Mag. 27, 40–41.

    Google Scholar 

  • Michalsky, J., F. Denn, C. Flynn, et al., 2010: Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008. J. Geophys. Res. 115, D07203.

    Article  Google Scholar 

  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 25, 377–445.

    Article  Google Scholar 

  • Mishchenko, M. I., 2008: Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach. Rev. Geophys. 46, RG2003.

    Google Scholar 

  • Mishchenko, M. I., 2009: Gustav Mie and the fundamental concept of electromagnetic scattering by particles: a perspective. J. Quant. Spectrosc. Radiat. Transfer 110, 1210–1222.

    Article  Google Scholar 

  • Mishchenko, M. I., 2010: The Poynting–Stokes tensor and radiative transfer in discrete random media: the microphysical paradigm. Opt. Express 18, 19 770–19 791.

    Google Scholar 

  • Mishchenko, M. I., and L. D. Travis, 2008: Gustav Mie and the evolving discipline of electromagnetic scattering by particles. Bull. Amer. Meteorol. Soc. 89, 1853–1861.

    Article  Google Scholar 

  • Mishchenko, M. I., B. Cairns, G. Kopp, et al., 2007 a: Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory mission. Bull. Amer. Meteorol. Soc. 88, 677–691.

    Article  Google Scholar 

  • Mishchenko, M. I., I. V. Geogdzhayev, B. Cairns, et al., 2007b: Past, present, and future of global aerosol climatologies derived from satellite observations: a perspective. J. Quant. Spectrosc. Radiat. Transfer 106, 325–347.

    Article  Google Scholar 

  • Mishchenko, M. I., I. V. Geogdzhayev, L. Liu, et al., 2009: Toward unified satellite climatology of aerosol properties: what do fully compatible MODIS and MISR aerosol pixels tell us? J. Quant. Spectrosc. Radiat. Transfer 110, 402–408.

    Article  Google Scholar 

  • Mishchenko, M. I., V. K. Rosenbush, N. N. Kiselev, et al., 2010: Polarimetric Remote Sensing of Solar System Objects (Akademperiodyka, Kyiv) (arXiv:1010.1171).

    Google Scholar 

  • Molina, L. T., S. Madronich, J. S. Gaffney, et al., 2010: An overview of the MILAGRO 2006 campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 10, 8697–8760.

    Article  Google Scholar 

  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott, 2009: Aerosol light absorption and its measurement: a review. J. Quant. Spectrosc. Radiat. Transfer 110, 844–878.

    Article  Google Scholar 

  • Nakajima, T., A. Higurashi, K. Kawamoto, and J. Penner, 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett. 28, 1171–1174.

    Article  Google Scholar 

  • Noone, K. B., K. J. Noone, and J. A. Ogren, 1993: In situ observations of cloud microphysical properties using the counterflow virtual impactor. J. Atmos. Oceanic Technol. 10, 294–303.

    Article  Google Scholar 

  • Ovtchinnikov, M., and R. T. Marchand, 2007: Cloud model evaluation using radiometric measurements from the airborne multiangle imaging spectroradiometer (AirMISR), Remote Sens. Environ. 107, 185–193.

    Google Scholar 

  • Perry, K. D., and P. V. Hobbs, 1996: Influences of isolated cumulus clouds on the humidity of their surroundings. J. Atmos. Sci. 53, 159–174.

    Article  Google Scholar 

  • Prigarin, S. M., and A. Marshak, 2009: A simple stochastic model for generating broken cloud optical depth and cloud-top height fields. J. Atmos. Sci. 66, 92–104.

    Article  Google Scholar 

  • Quaas, J., O. Boucher, N. Bellouin, and S. Kinne, 2008: Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res. 113, D05204.

    Article  Google Scholar 

  • Quinn, P. K., T. L. Miller, T. S. Bates, et al., 2002: A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J. Geophys. Res. 107, 4130.

    Article  Google Scholar 

  • Redemann, J., R. P. Turco, K. N. Liou, et al., 2000: Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX. J. Geophys. Res. 105, 9949–9970.

    Article  Google Scholar 

  • Redemann, J., B. Schmid, J. A. Eilers, et al., 2005: Suborbital measurements of spectral aerosol optical depth and its variability at sub-satellite grid scales in support of CLAMS 2001. J. Atmos. Sci. 62, 993–1007.

    Article  Google Scholar 

  • Redemann, J., Q. Zhang, P. B. Russell, et al., 2009: Case studies of aerosol remote sensing in the vicinity of clouds. J. Geophys. Res. 114, D06209.

    Article  Google Scholar 

  • Remer, L. A., R. G. Kleidman, R. C. Levy, et al., 2008: Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. 113, D14S07.

    Google Scholar 

  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, Singapore).

    Google Scholar 

  • Rossow, W. B., and E. N. Duenas, 2004: The International Satellite Cloud Climatology Project (ISCCP) web site: an online resource for research. Bull. Am. Meteorol. Soc. 85, 167–172.

    Article  Google Scholar 

  • Schmidt, K. S., G. Feingold, P. Pilewskie, et al., 2009: Irradiance in polluted cumulus fields: measured and modeled cloud-aerosol effects. Geophys. Res. Lett. 36, L07804.

    Article  Google Scholar 

  • Schuster, G. L., B. Lin, and O. Dubovik, 2009: Remote sensing of aerosol water uptake. Geophys. Res. Lett. 36, L03814.

    Article  Google Scholar 

  • Sheridan, P. J., D. J. Delene, and J. A. Ogren, 2001: Four years of continuous surface aerosol measurements form the Department of Energy’s Atmospheric Radiation Measurment Program Southern Great Plains Cloud and Radiation Testbed site. J. Geophys. Res. 106, 20 735–20 747.

    Google Scholar 

  • Small, J. D., P. Y. Chuang, G. Feingold, and H. Jiang, 2009: Can aerosol decrease cloud lifetime? Geophys. Res. Lett. 36, L16806.

    Article  Google Scholar 

  • Smirnov, A., B. N. Holben, I. Slutsker, et al., 2009: Maritime Aerosol Network as a component of Aerosol Robotic Network. J. Geophys. Res. 114, D06204.

    Article  Google Scholar 

  • Stephens, G. L., 1994: Remote Sensing of the Lower Atmosphere: An Introduction (Oxford University Press, New York).

    Google Scholar 

  • Stephens, G. L., 2003: The useful pursuit of shadows. Amer. Sci. 91, 442–449.

    Google Scholar 

  • Stephens, G. L., and C. Kummerow, 2007: The remote sensing of clouds and precipitation from space: a review. J. Atmos. Sci. 64, 3742–3765.

    Article  Google Scholar 

  • Stephens, G. L., D. G. Vane, R. J. Boain, et al., 2002: The CloudSat mission and the Atrain: a new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 83, 1771– 1790.

    Article  Google Scholar 

  • Stevens, B., and Feingold, G., 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607–613.

    Article  Google Scholar 

  • Su, W., G. L. Schuster, N. G. Loeb, et al., 2008: Aerosol and cloud interaction observed from high spectral resolution lidar data. J. Geophys. Res. 113, D24202.

    Article  Google Scholar 

  • Tackett, J. L., and L. Di Girolamo, 2009: Enhanced aerosol backscatter adjacent to tropical trade wind clouds revealed by satellite-based lidar. Geophys. Res. Lett. 36, L14804.

    Article  Google Scholar 

  • Turner, D. D., 2008: Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel. J. Geophys. Res. 113, D00E03.

    Google Scholar 

  • Twohy, C. H., J. A. Coakley Jr., and W. R. Tahnk, 2009: Effect of changes in relative humidity on aerosol scattering near clouds. J. Geophys. Res. 114, D05205.

    Article  Google Scholar 

  • van Donkelaar, A., R. V. Martin, M. Brauer, et al., 2010: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ. Health Persp. 118, 847–855.

    Article  Google Scholar 

  • Varnai, T., and A. Marshak, 2009: MODIS observations of enhanced clear sky reflectance near clouds. Geophys. Res. Lett. 36, L06807.

    Article  Google Scholar 

  • Venema, V., S. G. Garcia, and C. Simmer, 2010: A new algorithm for the downscaling of cloud fields. Quart. J. R. Meteorol. Soc. 136, 91–106.

    Article  Google Scholar 

  • Videen, G., Ya. Yatskiv, and M. Mishchenko, Eds., 2004: Photopolarimetry in Remote Sensing (Kluwer, Dordrecht).

    Google Scholar 

  • Wang, J., and S. T. Martin, 2007: Satellite characterization of urban aerosols: importance of including hygroscopicity and mixing state in the retrieval algorithms. J. Geophys. Res. 112, D17203.

    Article  Google Scholar 

  • Waquet, F., B. Cairns, K. Knobelspiesse, et al., 2009: Polarimetric remote sensing of aerosols over land. J. Geophys. Res. 114, D01206.

    Article  Google Scholar 

  • Warneke, C., K. D. Froyd, J. Brioude, et al., 2010: An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophys. Res. Lett. 37, L01801.

    Article  Google Scholar 

  • Wax, A., and V. Backman, 2010: Biomedical Applications of Light Scattering (McGraw Hill, New York).

    Google Scholar 

  • Wen, G., A. Marshak, and R. Cahalan, 2006: Impact of 3-D clouds on clear sky reflectance and aerosol retrieval in a biomass burning region of Brazil. IEEE Geosci. Remote Sens. Lett. 3, 169–172.

    Article  Google Scholar 

  • Wen, G., A. Marshak, R. F. Cahalan, et al., 2007: 3D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J. Geophys. Res. 112, D13204.

    Article  Google Scholar 

  • Wild, M., B. Trüssel, A. Ohmura, et al., 2009: Global dimming and brightening: an update beyond 2000. J. Geophys. Res. 114, D00D13.

    Google Scholar 

  • Yang, Y., and L. Di Girolamo, 2008: Impacts of 3-D radiative effects on satellite cloud detection and their consequences on cloud fraction and aerosol optical depth retrievals. J. Geophys. Res. 113, D04213.

    Article  Google Scholar 

  • Yu, H., M. Chin, D. M. Winker, et al., 2010: Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: regional and seasonal variations. J. Geophys. Res. 115, D00H30.

    Google Scholar 

  • Zhao, G., L. Di Girolamo, S. Dey, et al., 2009: Examination of direct cumulus contamination on MISR-retrieved aerosol optical depth and Ångström coefficient over ocean. Geophys. Res. Lett. 36, L13811.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgueni Kassianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kassianov, E., Ovchinnikov, M., Berg, L.K., Flynn, C. (2011). Aerosol retrievals under partly cloudy conditions: challenges and perspectives. In: Mishchenko, M., Yatskiv, Y., Rosenbush, V., Videen, G. (eds) Polarimetric Detection, Characterization and Remote Sensing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1636-0_8

Download citation

Publish with us

Policies and ethics