Skip to main content

Light scattering resonances in small particles with electric and magnetic optical properties

  • Conference paper
  • First Online:
Polarimetric Detection, Characterization and Remote Sensing

Abstract

With the recent progress of metamaterials and nanoscience providing encouragement, new avenues of light-scattering research is focusing on particles having unconventional optical properties. Light scattered by such particles can have interesting features, visible in their resonances or directional scattering, for instance. In this chapter we focus on the simple Lorenz-Mie resonances that appear in light scattering of small particles. By considering a large range of values of the electric permittivity and the magnetic permeability, either positive or negative, unexpected resonant behavior may be observed. Special attention has been paid to the double-negative or left-handed materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acimovic, S., M. P. Kreuzer, M. U. González, and R. Quidant, 2009: Plasmon near-field coupling in metal dimers as a step towards single-molecule sensing. ACS Nano 3, 1231–1237.

    Article  Google Scholar 

  • Almeida, V. R., C. A. Barrios, and R.R. Panepucci, 2004: All-optical control of light on a silicon chip. Nature 431, 1081–1084.

    Article  Google Scholar 

  • Alù, A., and N. Engheta, 2009: The quest for magnetic plasmons at optical frequencies. Opt. Express 17, 5723–5730.

    Article  Google Scholar 

  • Anker, J. N., W. P. Hall, O. Lyandres, et al., 2008: Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453.

    Article  Google Scholar 

  • Barber, P., and R. K. Chang, 1988: Optical Effects Associated with Small Particles (World Scientific, Singapore).

    Google Scholar 

  • Bohren, C., and D. Huffman, 1983: Absorption and Scattering of Light by Small Particles (Wiley, New York).

    Google Scholar 

  • Boltasseva, A., and V. M. Shalaev, 2008: Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials 2, 1–17.

    Article  Google Scholar 

  • Chen, H., C. T. Chan, and P. Sheng, 2010: Transformation optics and metamaterials. Nature Mater. 9, 387–396.

    Article  Google Scholar 

  • Engheta, N., 2007: Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702.

    Article  Google Scholar 

  • García-Cámara, B., F. Moreno, F. González, et al., 2008a: Light scattering resonances in small particles with electric and magnetic properties. J. Opt. Soc. Am. A 25, 327–334.

    Article  Google Scholar 

  • García-Cámara, B., F. González, F. Moreno, and J. M. Saiz, 2008b: Exception for the zeroforward- scattering theory. J. Opt. Soc. Am. A 25, 2875–2878.

    Article  Google Scholar 

  • García-Cámara, B., J. M. Saiz, F. González, and F. Moreno, 2010a: Distance limit of the directionality conditions for the scattering of nanoparticles. Metamaterials 4, 15–23.

    Article  Google Scholar 

  • García-Cámara, B., J. M. Saiz, F. González, and F. Moreno, 2010b: Nanoparticles with unconventional scattering properties: size effects. Opt. Commun. 283, 490–496.

    Article  Google Scholar 

  • Gaylord, T. K., J. L. Stay, and J. D. Meindl, 2008: Optical interconnect devices and structures based on metamaterials. US patent No. 2008/0212921.

    Google Scholar 

  • Hess, O., 2008: Farewell to flatland. Nature 455, 299–300.

    Article  Google Scholar 

  • Krasheninnikov, A. V., and F. Banhart, 2007: Engineering of nanostructures carbon materials with electron or ion beams. Nature Mater. 6, 723–733.

    Article  Google Scholar 

  • Kerker, M., D. S. Wang, and C. L. Giles, 1983: Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767.

    Article  Google Scholar 

  • Ladd, J., A. D. Taylor, M. Piliarik, et al., 2009: Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal. Bional. Chem. 393, 1157–1163.

    Article  Google Scholar 

  • Lin, T. -J., and M. -F. Chung, 2009: Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance. Biosens. Biolectron. 24, 1213–1218.

    Article  Google Scholar 

  • Lorenz, L., 1890: Lysbevægelsen i og uden for en af plane Lysbølger belyst Kugle. K. Dan. Vidensk. Selsk. Skr. 6, 1–62.

    Google Scholar 

  • Lorenz, L., 1898: Sur la lumière réfléchie et réfractée par une sphère (surface) transparente. In Oeuvres scientifiques de L. Lorenz, Tome Premier (Libraire Lehmann &; Stage, Copenhague), 403–529.

    Google Scholar 

  • Meier, M., and A.Wokaum, 1983: Enhanced fields on large metal particles: dynamic depolarization. Opt. Lett. 8, 581–583.

    Article  Google Scholar 

  • Merchiers, O., F. Moreno, F. González, et al., 2007: Electromagnetic wave scattering from two interacting small spherical particles. Influence of their optical constants, ε and μ. Opt. Commun. 269, 1–7.

    Article  Google Scholar 

  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 330, 377–445.

    Article  Google Scholar 

  • Miller, D. A. B., 2010: Are the optical transistors the logical step? Nature Photon. 4, 3–5.

    Article  Google Scholar 

  • Mirin, N. A., and N. J. Halas, 2009: Light-bending nanoparticles. Nano Lett. 9, 1255–1259.

    Article  Google Scholar 

  • Pendry, J. B., D. Schuring, and D. R. Smith, 2006: Controlling electromagnetic fields. Science 312, 1780–1782.

    Article  Google Scholar 

  • Prasad, P. N., 2004: Nanophotonics (Wiley, New York).

    Google Scholar 

  • Shalaev, V., 2007: Optical negative-index metamaterials. Nature Photon. 1, 41–48.

    Article  Google Scholar 

  • Silveirinha, M. G., A. Alù, J. Li, and N. Engheta, 2008: Nanoinsulators and nanoconnectors for optical nanocircuits. J. Appl. Phys. 103, 064305.

    Article  Google Scholar 

  • Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, 2002: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104.

    Article  Google Scholar 

  • Smith, D. R., J. B. Pendry, and M. C. Wiltshire, 2004: Metamaterials and negative refractive index. Science 305, 788–792.

    Article  Google Scholar 

  • Soukoulis, C. M., S. Linden, and M. Wegener, 2007: Negative refractive index at optical wavelength. Science 315, 47–49.

    Article  Google Scholar 

  • Sun, Y., and Y. Xia, 2002: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179.

    Article  Google Scholar 

  • Ueno, K., S. Takabatake, Y. Nishijima, et al., 2010: Nanogap-assisted surface Plasmon nanolithography. J. Phys. Chem. Lett. 1, 657–662.

    Article  Google Scholar 

  • Valentine, J., S. Zhang, T. Zentgraf, et al., 2009: An optical cloak made of dielectrics. Nature Mater. 8, 568–571.

    Article  Google Scholar 

  • Veselago, V. G., 1968: The electrodynamics of substrates with simultaneously negative values of ε and μ. Phys. Usp. 10, 509–514.

    Article  Google Scholar 

  • Videen, G., and W. S. Bickel, 1990: Light scattering resonances in small spheres. Phys. Rev. A 45, 6008–6012.

    Article  Google Scholar 

  • Wang, H., D. W. Brandi, P. Norlander, and N. J. Halas, 2007: Plasmonic nanostructures: artificial molecules. Acc. Chem. Res. 40, 53–62.

    Article  Google Scholar 

  • Yan, W., X. Feng, X. Chen, et al., 2008: A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material. Biosens. Bioelectron. 23, 925–931.

    Article  Google Scholar 

  • Zheludev, N. I., 2010: The road ahead for metamaterials. Science 328, 582–583.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Braulio García-Cámara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

García-Cámara, B., González, F., Moreno, F., Videen, G. (2011). Light scattering resonances in small particles with electric and magnetic optical properties. In: Mishchenko, M., Yatskiv, Y., Rosenbush, V., Videen, G. (eds) Polarimetric Detection, Characterization and Remote Sensing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1636-0_5

Download citation

Publish with us

Policies and ethics