Skip to main content

Plasmonic optical properties and the polarization modulation technique

  • Conference paper
  • First Online:
Polarimetric Detection, Characterization and Remote Sensing

Abstract

Surface-plasmon resonance features in nanosized gold films are studied in the Kretschmann geometry using the polarization modulation technique. The reflection coefficients R s 2 and R p 2 for the s- and p-polarized light, respectively, as well as their polarization difference Δρ = R s 2R p 2 are measured as functions of the angle of incidence of electromagnetic radiation, wavelength, and film thickness. Manifestations of classical and topological size effects and a qualitative model of the transition between them in nanosized gold films are discussed. It is found that the magnitude and the sign of curvature of the angular dependence of the polarization difference Δρ(θ) are related to the excitation of surface plasmons by either p-polarized light or both s- and p-polarized light in the case of homogeneous or cluster-structured metal films, respectively. It is demonstrated that nanocomposite films with gold nanoparticles embedded in a dielectric matrix can exhibit anisotropy of dielectric properties not only in the case of oblique incidence of light but also because of their macroscopically heterogeneous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maier, S. A., and H. A. Atwater, 2005: J. Appl. Phys. 98, 011101.

    Article  Google Scholar 

  2. Raether, H., 1986: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin).

    Google Scholar 

  3. Otto, A., 1968: Z. Phys. 216, 398.

    Article  Google Scholar 

  4. Kretschmann, E., 1971: Z. Phys. 241, 313.

    Article  Google Scholar 

  5. Agranovich, V. M., and D. L. Mills, Eds., 1985: Surface Polaritons. Electromagnetic Waves at Surfaces and Interfaces (North-Holland, Amsterdam) (also Nauka, Moscow,1985).

    Google Scholar 

  6. Dmitruk, N. L., V. G. Litovchenko, and V. L. Strizhevsky, 1989: Surface Polaritons in Semiconductors and Dielectrics (Naukova Dumka, Kyiv) (in Russian).

    Google Scholar 

  7. Aoki, K., H. Saito, C. Itzstein, et al., 2006: J. Clin. Invest. 116, 1525.

    Article  Google Scholar 

  8. Chau, L.-K., Y.-F. Lin, S.-F. Cheng, and T. Lin, 2006: Sens. Actuators B 113, 100.

    Article  Google Scholar 

  9. Mar’enko, V. V., and S. N. Savenkov, 1995: Opt. Spektrosk. 78, 614 (in Russian).

    Google Scholar 

  10. Born, M., and E. Wolf, 1999: Principles of Optics (Cambridge University Press, Cambridge).

    Google Scholar 

  11. Cardona, M., 1972: Modulation Spectroscopy (Mir, Moscow) (in Russian).

    Google Scholar 

  12. Jasperson, S. N., and S. E. Schnatterly, 1969: Rev. Sci. Instr. 40, 761.

    Article  Google Scholar 

  13. Venger, E. F., I. E. Matyash, and B. K. Serdega, 2003: Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 1188 (in Russian); Semiconductors 37, 1160.

    Google Scholar 

  14. Matyash, I. E., and B. K. Serdega, 2004: Fiz. Tekh. Poluprovodn. (St. Petersburg) 38,684 (in Russian); Semiconductors 38, 657.

    Google Scholar 

  15. Zykov, V. G., and B. K. Serdega, 1991: Fiz. Tekh. Poluprovodn. (Leningrad) 25, 2173 (in Russian); Sov. Phys. Semicond. 25, 1308.

    Google Scholar 

  16. Berezhinsky, L. J., E. F. Venger, I. E. Matyash, et al., 2005: Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 1164 (in Russian); Semiconductors 39, 1122.

    Google Scholar 

  17. Azzam, R. M. A., and N. M. I. Bashara, 1989: Ellipsometry and Polarized Light (North Holland, New York).

    Google Scholar 

  18. Gerrard, A., and J. M. Burch, 1975: Introduction to Matrix Methods in Optics (Wiley,London).

    Google Scholar 

  19. Berezhinsky, L. J., I. E. Matyash, V. P. Maslov, et al., 2007: UA Patent No. 26 551,Byull. Izobret., No. 15 (September 25).

    Google Scholar 

  20. Berezhinsky, L. J., E. F. Venger, V. P. Maslov, et al., 2007: UA Patent No. 80876,Byull. Izobret., No. 18 (November 12).

    Google Scholar 

  21. Berezhinsky, L. J., I. E. Matyash, S. P. Rudenko, and B. K. Serdega, 2008: Optoelektron. Poluprovodn. Tekh. 43, 83 (in Russian).

    Google Scholar 

  22. Berezhinsky, L. J., L. S. Maksimenko, I. E. Matyash, et al., 2008: Opt. Spektrosk. 105,281 (in Russian); Opt. Spectrosc. 105, 257.

    Google Scholar 

  23. Rengevych, O. V., Yu. M. Shirshov, Yu. V. Ushenin, and A. G. Beketov, 1999: Semicond. Phys. Quant. Electron. Optoelectron. 2, 28.

    Google Scholar 

  24. Palik, E. D., Ed., 1998: Handbook of Optical Constants of Solids (Academic Press,New York).

    Google Scholar 

  25. Berezhinsky, L. J., I. E. Matyash, S. P. Rudenko, and B. K. Serdega, 2008: Semicond. Phys. Quantum Electron. Optoelectron. 11, 63.

    Google Scholar 

  26. Shklyarevsky, I. N., A. I. Usoskin, V. P. Lebedev, and E. N. Alekseev, 1974: Opt. Spektrosk. 36, 785 (in Russian).

    Google Scholar 

  27. Kreibig, U., and M. Vollmer, 1995: Optical Properties of Metal Clusters (Springer-Verlag, Berlin).

    Google Scholar 

  28. Wood, D. M., and N. W. Ashcroft, 1982: Phys. Rev. B 25, 6255.

    Article  Google Scholar 

  29. Dmitruk, N. L., O. S. Kondratenko, S. A. Kovalenko, and I. B. Mamontova, 2006: Fiz. Khim. Tverd Tila 7, 39 (in Ukrainian).

    Google Scholar 

  30. Dryzek, J., and A. Czapla, 1987: Phys. Rev. Lett. 58, 721.

    Article  Google Scholar 

  31. Chau, L.-K., Y.-F. Lin, S.-F. Cheng, and T. Lin, 2006: Sens. Actuators B 113, 100.

    Article  Google Scholar 

  32. Khlebtsov, B. N., A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, 2007: Opt. Spektrosk. 102, 269 (in Russian); Opt. Spectrosc. 102, 233.

    Google Scholar 

  33. Berezhinsky, L. J., O. S. Litvin, L. S. Maksimenko, et al., 2009: Opt. Spektrosk. 107,281 (in Russian); Opt. Spectrosc. 107, 264.

    Google Scholar 

  34. Bruggeman, D. A. G., 1935: P. I. Ann. Phys. (Leipzig) 24, 636.

    Google Scholar 

  35. Hiraia, M., and A. Kumar, 2006: J. Appl. Phys. 100, 014309.

    Article  Google Scholar 

  36. Maksimenko, L. S., I. E. Matyash, S. P. Rudenko, and B. K. Serdega, 2009: Semicond. Phys. Quantum Electron. Optoelectron. 12, 129.

    Google Scholar 

  37. Kaganovich, E. B., I. M. Kizyak, E. G. Manoilov, et al., 2009: Ukr. J. Phys. 54, 621.

    Google Scholar 

  38. Bozhenko, V. V., L. G. Grechko, M. L. Dmitruk, and O. Yu. Semchuk, 2003: Fiz. Khim. Tverd. Tila. 4, 118 (in Ukrainian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Rudenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Serdega, B.K., Rudenko, S.P., Maksimenko, L.S., Matyash, I.E. (2011). Plasmonic optical properties and the polarization modulation technique. In: Mishchenko, M., Yatskiv, Y., Rosenbush, V., Videen, G. (eds) Polarimetric Detection, Characterization and Remote Sensing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1636-0_18

Download citation

Publish with us

Policies and ethics