Skip to main content

Plasmonic spectroscopy of 2D densely packed and layered metallic nanostructures

  • Conference paper
  • First Online:
Polarimetric Detection, Characterization and Remote Sensing

Abstract

This chapter is an overview of size and concentration effects on electrodynamic coupling in two-dimensional densely packed arrays of metallic nanospheres in the frequency range of the surface plasmon resonance (SPR). Our theoretical analysis is based on the statistical theory of multiple scattering of waves. We show that concentration effects, such as the enhanced long-wavelength transmission of light and the strong resonance quenching of transmission, are effectively interpreted in terms of constructive and destructive interference of waves incident on and scattered by a monolayer of closely-packed submicrometer plasmonic particles. The concentration SPR red shift observed in the case of dipole metal nanoparticles is highly sensitive to the matrix refractive index and results from lateral near-field couplings. We also demonstrate phenomena caused by a strong plasmonic–photonic confinement in multilayered metal–dielectric nanostructures consisting of densely packed monolayers. For example, we show that employing the size and/or concentration gradient of dipole metallic nanoparticles in a quarter-wavelength multilayered system allows one to achieve an almost total absorbance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogomolov, V. N., S. V. Gaponenko, I. N. Germanenko, et al., 1997: Photonic band gap phenomenon and optical properties of artificial opals. Phys. Rev. E 55, 7619–7625.

    Article  Google Scholar 

  2. Dunich, R. A., and A. N. Ponyavina, 2008: Effect of metallic nanoparticle sizes on the local field near their surface. J. Appl. Spectrosc. 75, 832–838.

    Article  Google Scholar 

  3. Dyachenko, P. N., and Yu. V. Miklyaev, 2007: One-dimensional photonic crystal based on a nanocomposite “metal nanoparticles – dielectric”. Kompyuternaya Optika 31, 31–34 (in Russian).

    Google Scholar 

  4. Ebbesen, T. W., H. J. Lezec, H. F. Graemi, et al., 1998: Extraordinary optical transmission through sub-wavelength hole array. Nature 391, 667–669.

    Article  Google Scholar 

  5. Fan, Sh., P. R. Villeneuve, and J. D. Joannopoulos, 1996: Large omnidirectional band gaps in metallodielectric photonic crystals. Phys.Rev. B 54, 11245–11251.

    Article  Google Scholar 

  6. Gaponenko, S., 2010: Introduction to Nanophotonics (Cambridge University Press, Cambridge, UK).

    Google Scholar 

  7. Gehr, R. J., and R. W. Boyd, 1996: Optical properties of nanostructured optical materials. Chem. Matter 8, 1807–1819.

    Article  Google Scholar 

  8. Hong, K. M., 1980: Multiple scattering of electromagnetic waves by a crowded monolayer of spheres: application to migration imaging films. J. Opt. Soc. Am. 70, 821–826.

    Article  Google Scholar 

  9. Ishimaru, A., 1978: Propagation and Scattering of Waves in Randomly Inhomogeneous Media (Academic Press, New York).

    Google Scholar 

  10. Ivanov, A. P., V. A. Loiko, and V. P. Dik, 1988: Light Propagation in Close-packed Disperse Media (Nauka i Tekhnika, Minsk, in Russian).

    Google Scholar 

  11. Kachan, S. M., and A. N. Ponyavina, 2001: Resonance absorption spectra of composites containing metal coated nanoparticles. J. Mol. Struct. 267, 563–564.

    Google Scholar 

  12. Kachan, S. M., and A. N. Ponyavina, 2002: Spectral characteristics of confined photonic and plasmonic nanostructures. Proc. SPIE 4705, 88–94.

    Article  Google Scholar 

  13. Kachan, S. M., and A. N. Ponyavina, 2002: Spectral properties of close-packed monolayers consisted of metal nanospheres. J. Phys. Condens. Matter 14, 103–111.

    Article  Google Scholar 

  14. Kachan, S. M., and A. N. Ponyavina, 2002: The spatial ordering effect on spectral properties of close-packed metallic nanoparticle monolayers. Surf. Sci. 507–510, 603–608.

    Article  Google Scholar 

  15. Kachan, S. M., and A. N. Ponyavina, 2007: Enhanced optical sensitivity of closepacked arrays of noble-metal nanoparticles at environmental changes. CD International conference on Coherent and Nonlinear Optics (ICONO/LAT–2007) (Minsk, Belarus), I02/V–6.

    Google Scholar 

  16. Kachan, S. M., and A. N. Ponyavina, 2007: Optical diagnostics of 2D self-assembled silver nanoparticles arrays. In V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, Eds., Physics, Chemistry and Application of Nanostructures (World Scientific, Singapore), pp. 165–168.

    Google Scholar 

  17. Kachan, S. M., and A. N. Ponyavina, 2007: Total light absorption in ultrathin sizegradient metal-dielectric nanostructures. Proc. SPIE 6728, 672838.

    Article  Google Scholar 

  18. Kachan, S., O. Stenzel, and A. Ponyavina, 2006: High-absorbing gradient multilayer coatings with silver nanoparticles. Appl. Phys. B 84, 281–287.

    Article  Google Scholar 

  19. Khlebtsov, B. N., V. A. Khanadeyev, J. Ye, et al., 2008: Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells. Phys. Rev. B 77, 035440.

    Article  Google Scholar 

  20. Kim, B., S. L. Tripp, and A. Wei, 2001: Self-organization of large gold nanoparticle arrays. J. Am. Chem. Soc. 123, 7955–7956.

    Article  Google Scholar 

  21. Kreibig, U., and M. Volmer, 1995: Optical Properties of Metal Clusters (Springer, Berlin).

    Google Scholar 

  22. Lax, M., 1952: The effective field in dense systems. Phys. Rev. 58, 621–629.

    Article  Google Scholar 

  23. Lerme, J., 2000: Introduction of quantum finite-size effects in the Mie’s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrixembedded noble metal clusters. Eur. Phys. J. D 10, 265–277.

    Article  Google Scholar 

  24. Li, J., G. Sun, and C. T. Chan, 2006: Optical properties of photonic crystals composed of metal-coated spheres. Phys. Rev. B 73, 075117.

    Article  Google Scholar 

  25. Liao, H., W. Lu, S. Yu, et al., 2005: Optical characteristics of gold nanoparticle-doped multilayer thin film. J. Opt. Soc. Am. B 22, 1923–1926.

    Article  Google Scholar 

  26. Mackowski, D. W., and M. I. Mishchenko, 1996: Calculation of the T matrix and the scattering matrix for the ensembles of spheres. J. Opt. Soc. Am. A 13, 2266–2278.

    Article  Google Scholar 

  27. Malynych, S., and G. Chumanov, 2003: Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J. Am. Chem. Soc. 125, 2896–2898.

    Article  Google Scholar 

  28. Messinger, B. J., K. U. von Raben, R. K. Chang, and P. W. Barber, 1981: Local fields at the surface of noble-metal microspheres. Phys. Rev. B 24, 649–657.

    Article  Google Scholar 

  29. Nalwa, H. S., Ed., 2001: Nanostructured Materials and Nanotechnology (Academic Press, New York).

    Google Scholar 

  30. Oraevsky, A. N., and I. E. Protsenko, 2001: Optical properties of heterogeneous media. Quantum Electron. 31, 252–256.

    Article  Google Scholar 

  31. Pendry, J. B., 1994: Photonic Band Structures. J. Mod. Opt. 41, 209–229.

    Article  Google Scholar 

  32. Penttila, A., E. Zubko, K. Lumme, et al., 2007: Comparison between discrete dipole implementations and exact techniques. J. Quant. Spectrosc. Radiat. Transfer. 106, 417–436.

    Article  Google Scholar 

  33. Pileni, M. P., 2001: Self-assemblies of nanocrystals: fabrication and collective properties. Appl. Surf. Sci. 171, 1–14.

    Article  Google Scholar 

  34. Ponyavina, A. N., and N. I. Sil’vanovich, 1994: Interference effects and spectral characteristics of multilayer scattering media. Opt. Spektrosk. 76, 648–655 (in Russian).

    Google Scholar 

  35. Ponyavina, A. N., S. M. Kachan, and N. I. Silvanovich, 2004: Statistical theory of multiple scattering of waves applied to 3D photonic crystals. J. Opt. Soc. Am. B 21, 1866–1875.

    Article  Google Scholar 

  36. Shalaev, V. M., and S. Kawata, Eds., 2007: Nanophotonics with Surface Plasmons (Elsevier, Amsterdam).

    Google Scholar 

  37. Shipway, A. N., E. Katz, and I. Willner, 2000: Nanoparticle arrays on surfaces for electronic, optical and sensoric applications. Chem. Phys. Chem. 1, 18–52.

    Google Scholar 

  38. Stefanou, N., G. Gantzounis, and C. Tserkezis, 2009: Multiple-scattering calculations for plasmonic nanostructures. Int. J. Nanotechnol. 6, 137–163.

    Article  Google Scholar 

  39. Wang, Z., C. T. Chan, W. Zhang, et al., 2001: Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency. Phys. Rev. B 64, 113108.

    Article  Google Scholar 

  40. Zamkovets, A. D., S. M. Kachan, A. N. Ponyavina, and N. I. Silvanovich, 2003: Optical spectra of metal-dielectric nanocomposites with a layered subwave structure. J. Appl. Spectrosc. 70, 593–598.

    Article  Google Scholar 

  41. Zamkovets, A. D., S. M. Kachan, and A. N. Ponyavina, 2008: Concentration-related enhancement of the sensitivity of surface plasmon resonance of metallic nanoparticles to the characteristics of a dielectric environment. J. Appl. Spectrosc. 75, 588–592.

    Article  Google Scholar 

  42. Ziman, J., 1979: Models of Disorder (Cambridge University Press, Cambridge, UK).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ponyavina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Ponyavina, A.N., Kachan, S.M. (2011). Plasmonic spectroscopy of 2D densely packed and layered metallic nanostructures. In: Mishchenko, M., Yatskiv, Y., Rosenbush, V., Videen, G. (eds) Polarimetric Detection, Characterization and Remote Sensing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1636-0_15

Download citation

Publish with us

Policies and ethics