Skip to main content

Semi-empirical BRDF and BPDF models applied to the problem of aerosol retrievals over land: testing on airborne data and implications for modeling of top-of-atmosphere measurements

  • Conference paper
  • First Online:
Polarimetric Detection, Characterization and Remote Sensing

Abstract

For the retrieval of atmospheric aerosol properties from satellite measurements, the atmospheric signal should be correctly separated from the surface signal. This represents one of the most important challenges in the development of algorithms for the retrieval of aerosol properties over land surfaces. Intrinsic reflectance properties of surfaces can be described by the Bidirectional Reflectance and Polarization Distribution Functions (BRDF and BPDF). In this chapter, we investigate the performance of different semi-empirical BRDF and BPDF models as they relate to the requirements for aerosol retrievals over land. First, we test BRDF and BPDF for bare soil and vegetation surfaces using multi-angle, multispectral photopolarimetric airborne measurements of the Research Scanning Polarimeter. Then, we investigate the capability of the different models to represent top-of-atmosphere measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bréon, F.-M., D. Tanré, P. Lecomte, and M. Herman, 1995: Polarized reflectance of bare soil and vegetation: measurements and models. IEEE Trans. Geosci. Remote Sens. 33, 487–499.

    Article  Google Scholar 

  • Cairns, B., E. E. Russell, and L. D. Travis, 1999: The Research Scanning Polarimeter: calibration and ground-based measurements. Proc. SPIE 3754, 186–196.

    Article  Google Scholar 

  • Chowdhary, J., B. Cairns, M. I. Mishchenko, et al., 2005: Retrieval of aerosol scattering and absorption properties from photo-polarimetric observations over the ocean during the clams experiment. J. Atmos. Sci. 62, 1093–1117.

    Article  Google Scholar 

  • Dubovik, O., M. Herman, A. Holdak, et al., 2010: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. Discuss. 3, 4967–5077.

    Article  Google Scholar 

  • Deuze, J. L., F. M. Bréon, C. Devaux, et al., 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. 106, 4913–4926.

    Article  Google Scholar 

  • Diner, D. J., J. V. Martonchik, R. A. Kahn, et al., 2005: Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sens. Environ. 94, 155–171.

    Article  Google Scholar 

  • Flowerdew, R. J., and J. D. Haigh, 1996: Retrieval of aerosol optical thickness over land using the ATSR-2 dual-look satellite radiometer. Geophys. Res. Lett. 23, 351–354.

    Article  Google Scholar 

  • Hansen, J., L. Nazarenko, R. Ruedy, et al., 2005: Earth’s energy imbalance: confirmation and implications. Science 308, 1431–1435.

    Article  Google Scholar 

  • Hapke, B. B, 1981: Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res. 86, 3039–3054.

    Article  Google Scholar 

  • Hasekamp, O. P., and J. Landgraf, 2002. A linearized vector radiative transfer model for atmospheric trace gas retrievals. J. Quant. Spectrosc. Radiat. Transfer 75, 221–238.

    Article  Google Scholar 

  • Hasekamp, O. P., and J. Landgraf, 2005a: Linearization of vector radiative transfer with respect to aerosol properties and its use in satellite remote sensing. J. Geophys. Res. 110, D04203.

    Article  Google Scholar 

  • Hasekamp, O. P., and J. Landgraf, 2005b: Retrieval of aerosol properties over the ocean from multispectral single-viewing angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study. J. Geophys. Res. 110, D20207.

    Article  Google Scholar 

  • Hasekamp, O. P., and J. Landgraf, 2007: Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. Appl. Opt. 46, 3332–3344.

    Article  Google Scholar 

  • Hovenier, J. W., C. van der Mee, and H. Domke, 2004: Transfer of Polarized Light in Planetary Atmospheres (Springer, Berlin).

    Google Scholar 

  • Kaufman, Y. J., and D. Tanre, 1992: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sensing. 30, 261–270.

    Article  Google Scholar 

  • Knobelspiesse, K. D., B. Cairns, C. B. Schaaf, et al., 2008: Surface BDRF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site. J. Geophys. Res. 113, D20105.

    Article  Google Scholar 

  • Kokhanovsky, A. A., and G. de Leeuw (Eds.), 2009: Satellite Remote Sensing Over Land (Springer, Berlin).

    Google Scholar 

  • Li, X., and A. H. Strahler, 1992: Geometrical-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 30, 276–292.

    Article  Google Scholar 

  • Litvinov, P., O. Hasekamp, B. Cairns, and M. Mishchenko, 2010: Reflection models for soil and vegetation surfaces from multiple-viewing angle photopolarimetric measurements. J. Quant. Spectrosc. Radiat. Transfer 111, 529–539.

    Article  Google Scholar 

  • Litvinov, P., O. Hasekamp, and B. Cairns, 2011: Models for surface reflection of radiance and polarized radiance: comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements. Remote Sens. Environ. 115, 781–792.

    Article  Google Scholar 

  • Maignan, F., F. M. Bréon, and R. Lacaze, 2004: Bidirectional reflectance of Earth targets: evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot. Remote Sens. Environ. 90, 210–220.

    Article  Google Scholar 

  • Maignan, F., F.-M. Bréon, E. Fedele, and M. Bouvier, 2009: Polarized refectances of natural surfaces: Spaceborne measurements and analytical modeling. Remote Sens. Environ. 113, 2642–2650.

    Article  Google Scholar 

  • Martonchik, J. V., D. J. Diner, B. Pinty, et al., 1998: Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans Geosci Remote Sens. 36, 1212–1227.

    Article  Google Scholar 

  • Minnaert, M., 1941: The reciprocity principle in lunar photometry. Astrophys. J. 93, 403–410.

    Article  Google Scholar 

  • Mishchenko, M. I., and L. D. Travis, 1997: Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J. Geophys. Res. 102, 16989–17013.

    Article  Google Scholar 

  • Mishchenko, M. I., B. Cairns, J. E. Hansen, et al., 2004: Monitoring of aerosol forcing of climate from space: analysis of measurement requirements. J. Quant. Spectrosc. Radiat. Transfer 88, 149–161.

    Article  Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2006: Multiple Scattering of Light by Particles (Cambridge University Press, Cambridge, UK).

    Google Scholar 

  • Mishchenko, M. I., I. V. Geogdzhayev, B. Cairns, et al., 2007a: Past, present, and future of global aerosol climatologies derived from satellite observations: a perspective. J. Quant. Spectrosc. Radiat. Transfer 106, 325–347.

    Article  Google Scholar 

  • Mishchenko, M. I., B. Cairns, G. Kopp, et al., 2007b: Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory mission. Bull. Amer. Meteorol. Soc. 88, 677–691.

    Article  Google Scholar 

  • Mishchenko, M. I., V. P. Tishkovets, L. D. Travis, et al., 2011: Electromagnetic scattering by a morphologically complex object: fundamental concepts and common misconceptions. J. Quant. Spectrosc. Radiat. Transfer 112, 671–692.

    Article  Google Scholar 

  • Muñoz, O., H. Volten, J. W. Hovenier, et al., 2007: Scattering matrix of large Saharan dust particles: experiments and computations. J. Geophys. Res. 112, D13215.

    Article  Google Scholar 

  • Nadal, F., and F.-M. Bréon, 1999: Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements. IEEE Trans. Geosci. Remote Sens. 37, 1709–1718.

    Article  Google Scholar 

  • Rahman, H., B. Pinty, and M. M. Verstraete, 1993: Coupled Surface-Atmosphere Reflectance (CSAR) model 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer Data. J. Geophys. Res. 98, 20791–20801.

    Google Scholar 

  • Remer, L. A., Y. J. Kaufman, D. Tanré, et al., 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 62, 947–973.

    Article  Google Scholar 

  • Rondeaux, G., and M. Herman, 1991: Polarization of light reflected by crop canopies. Remote Sens. Environ. 38, 63–75.

    Article  Google Scholar 

  • Ross, J. K., 1981: The Radiation Regime and Architecture of Plant Stands (Dr. W. Junk Publishers, The Hague, The Netherlands).

    Google Scholar 

  • Savenkov, S. N., R. S., Muttiah, and Y. A. Oberemok, 2003: Transmitted and reflected scattering matrices from an English oak leaf. Appl. Opt. 42, 4955–4962.

    Article  Google Scholar 

  • Roujean, J.-L., M. Leroy, and P.-Y. Deschamps, 1992: A bidiractional reflectance model of the Eart's surface for the correction of remote sensing data. J. Geophys. Res. 97, 20455–20468.

    Google Scholar 

  • Schaepman-Strub, G., M. E. Schaepman, T. H. Painter, et al., 2006: Reflectance quantities in optical remote sensing―definitions and case studies. Remote Sens. Environ. 103, 27–42.

    Article  Google Scholar 

  • Spurr, R. J. D., 2004: A new approach to the retrieval of surface properties from earthshine measurements. J. Quant. Spectrosc. Radiat. Transfer 83, 15–46.

    Article  Google Scholar 

  • Stier, P., J. Feichter, S. Kinne, et al., 2005: The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 5, 1125–1156.

    Article  Google Scholar 

  • Strahler, A. H., J.-P. Muller, and MODIS Science Team, 1999: MODIS BRDF/albedo product: algorithm theoretical basis document version 5. MODIS product ID: MOD43 Version 5.0, http://modis.gsfc.nasa.gov/data/atbd/land_atbd.php (accessed 15 November 2010).

  • Tanré, D., Y. J. Kaufman, M. Herman, and S. Mattoo, 1997: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. 102, 971–988.

    Article  Google Scholar 

  • Tsang, L., J. A. Kong, and R. T. Shin, 1985: Theory of Microwave Remote Sensing (Wiley, New York).

    Google Scholar 

  • Tishkovets, V. P., E. V. Petrova, and K. Jockers, 2004: Optical properties of aggregate particles comparable in size to the wavelength. J. Quant. Spectrosc. Radiat. Transfer 86, 241–265.

    Article  Google Scholar 

  • Veefkind, J. P., G. de Leeuw, P. Durkee, 1998: Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX. Geophys. Res. Let. 25, 3135–3138.

    Article  Google Scholar 

  • Wanner, W., X. Li, and A. H. Strahler, 1995: On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. 100, 21077–21089.

    Article  Google Scholar 

  • Waquet, F., B. Cairns, K. Knobelspiesse, et al., 2009a: Polarimetric remote sensing of aerosols over land. J. Geophys. Res. 114, D01206.

    Article  Google Scholar 

  • Waquet, F., J.-F. Leon, B. Cairns, et al., 2009b: Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land. Appl. Opt. 48, 1228–1236.

    Article  Google Scholar 

  • Woolley, J. T., 1971: Reflectance and transmittance of light by leaves. Plant Physiol. 47, 656–662.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Litvinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Litvinov, P., Hasekamp, O., Cairns, B., Mishchenko, M. (2011). Semi-empirical BRDF and BPDF models applied to the problem of aerosol retrievals over land: testing on airborne data and implications for modeling of top-of-atmosphere measurements. In: Mishchenko, M., Yatskiv, Y., Rosenbush, V., Videen, G. (eds) Polarimetric Detection, Characterization and Remote Sensing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1636-0_13

Download citation

Publish with us

Policies and ethics