Skip to main content

From the age of prokaryotes to the emergence of eukaryotes

  • Chapter
  • First Online:
The Science of Astrobiology

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 20))

  • 1419 Accesses

Abstract

Our subsequent discussion is based on the idea that evolution has taken place on Earth. Darwin’s major thesis was that evolutionary change is due to the production of variation in a population and the survival and reproductive success of some of these variants. In this chapter we shall concentrate on the first stages of the story of life on Earth guided by Darwin’s ideas. We pick up the story once the earliest and simplest living cell has already formed. As we saw in Chapter 4, it is sometimes called the progenote or, alternatively, the “cenancestor”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary Reading

  • Attenborough, D. (1981) Life on Earth. Fontana, London. Coyne, J. A. (2009) Why evolution is true. Oxford, Oxford University Press, London.

    Google Scholar 

  • Margulis, L. and Fester, R. (eds.), (1991) Symbiosis as a Source of Evolutionary Innovation. The MIT Press, Cambridge, Mass.

    Google Scholar 

  • Margulis, L. and Sagan, D. (1987) Microcosm- Allen & Unwin, London.

    Google Scholar 

References

  • Allen, M.B. (1959) “Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte,” Arch. Mikrobiol. (Berlin, Heidelberg) 32, 270–277.

    Google Scholar 

  • Arahal, D. R., Marquex, M. C., Volcani, B. E., Schleifer K. H. and Ventosa, A. (1999) Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea,” Int. J. Syst. Evol. Microbiol. 49,521-530.

    Google Scholar 

  • Amabile-Cuevas, C. F. and Chicurel, M. E. (1993) Horizontal Gene Transfer, American Scientist 81, 332-341.

    ADS  Google Scholar 

  • Ballard, J. W O., Olsen, G. J., Faith, D. P., Odgers, W. A., Rowell, D. M., and Atkinson, P. W. (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods, Science 258, 1345-1348.

    Article  ADS  Google Scholar 

  • Bekker, A., Holland, H. D., Wang, P.-L., Rumble, III, D., Stein, H. J., Hannah, J. L., Coetzee, L. L. and Beukes, N. J. (2004) Dating the rise of atmospheric oxygen. Nature 427, 117–120.

    Article  ADS  Google Scholar 

  • Bertolani, R., Guidetti, R., Jönsson, K.I., Altiero, T., Boschini, D., and Rebecchi, L. (2004) Experiences with dormancy in tardigrades, Journal of Limnology 63 (Suppl 1),16-25.

    Google Scholar 

  • Bonen, L and Doolittle, W. F. (1976) Partial sequences of 16S rRNA and the phylogeny of bluegreen algae and chloroplasts, Nature 261, 669-673.

    Article  ADS  Google Scholar 

  • Brenner, S. (1994) The ancient molecule, Nature 367, 228-229.

    Article  ADS  Google Scholar 

  • Cavalier-Smith, T. (1987) Eukaryotes with no mitochondria. Nature 326, 332-333.

    Article  ADS  Google Scholar 

  • Chela-Flores, J. (1995) Molecular relics from chemical evolution and the origin of life in J.

    Google Scholar 

  • Chela-Flores, M. Chadha, A. Negron-Mendoza, and T. Oshima (eds.), Chemical Evolution: Self-Organization of the Macromolecules of Life (A Cyril Ponnamperuma Festschrift), A. Deepak Publishing, Hampton, Virginia, pp. 185-200.

    Google Scholar 

  • Conway-Morris, S. (1993) The fossil record and the early evolution of the Metazoa, Nature 361, 219-225.

    Article  ADS  Google Scholar 

  • Cortial, F., Gauthier-Lafaye, F., Lacrampe-Couloume, G., Oberlin, A. and Weber, F. (1990) Characterization of organic matter associated with uranium deposits in the Francevillian formation of Gabon (lower proterozoic). Org. Geochem. 15, 73–85.

    Article  Google Scholar 

  • De Duve, C. (1995) Vital Dust. Life as a Cosmic Imperative, Basic Books, New York, pp. 294- 296.

    Google Scholar 

  • Desmond, A. and Moore, J. (1991) Darwin. Michael Joseph, London, pp. 412-413.

    Google Scholar 

  • Douglas, S. E., Murphy, C. A., Spenser, D. F., and Gray, M. W. (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes, Nature 350, 148-151.

    Article  ADS  Google Scholar 

  • Dutkiewicz, A., George, S. C., Mossman, D. J., Ridley, J. & Volk, H. (2007) Oil and its biomarkers associated with the Palaeoproterozoic Oklo natural fission reactors, Gabon. Chem. Geol. 244, 130–154.

    Article  Google Scholar 

  • Goldstein B. and Blaxter, M. (2002) Quick Guide: Tardigrades. Current Biology 12, R475. El Albani, A., Bengtson, S., Canfield, D. E., Bekker, A., Macchiarelli, R., Mazurier, A. E., Hammarlund, U., Boulvais, P., Dupuy, J.-J., Fontaine, C., Fürsich, F. T., Gauthier-Lafaye, F., Janvier, P, Javaux, E., Ossa Ossa, F., Pierson-Wickmann, A.-C., Riboulleau, A., Sardini, P., Vachard, D, Whitehouse, M. and Meunier, A. (2010) Signs of evolution in the Archean rock formations. Nature 466, 100-104.

    Google Scholar 

  • Hall, D. T., Strobel, D. F., Feldman, P. D., McGrath, M. A. and Weaver, H. A. (1995) Detection of an oxygen atmosphere on Jupiter’s moon Europa, Nature 373, 677-679.

    Article  ADS  Google Scholar 

  • Halliday, A.N. (2001) In the beginning…, Nature 409, 144-145.

    Article  ADS  Google Scholar 

  • Han, T.-M. and Runnegar, B. (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation, Michigan, Science 257, 232-235.

    Article  ADS  Google Scholar 

  • Holland, H. D. (2006) The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915.

    Article  Google Scholar 

  • Horikawa, D. D. (2008) The Tradigrade Ramazzottium varieornatus as a model animal for astrobiological studies, Biol. Sci. in Space 22(3), 93-98.

    Article  Google Scholar 

  • John, P. and Whatley, F. R. (1975) Paracoccus denitrificans and the evolutionary origin of the mitochondrion, Nature 254, 495-498.

    Article  ADS  Google Scholar 

  • Jönsson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl. M. and Rettberg, P. (2008) Tardigrades survive exposure to space in low Earth orbit, Current Biology: R729-R731.

    Google Scholar 

  • Knoll, A. H. (1994) Proterozoic and Early Cambrian protists: Evidence for accelerating evolutionary tempo, Proc. Natl. Acad. Sci. USA 91, 6743-6750.

    Article  ADS  Google Scholar 

  • Margulis, L. (1993) Symbiosis in Cell Evolution, W.H. Freeman & Co., San Francisco.

    Google Scholar 

  • Margulis, L. and Guerrero, R. (1991) Kingdoms in turmoil, New Scientist 23 March, 46-50.

    Google Scholar 

  • Maynard Smith, J. (1993) The theory of evolution, Canto Edition, Cambridge University Press, London, p. 122.

    Google Scholar 

  • Maynard Smith, J. and Szathmary, E. (1993) The origin of chromosomes I. Selection for linkage, J. Theor. Biol. 164, 437-446.

    Article  Google Scholar 

  • McKay, C.P. (1996) Oxygen and the rapid evolution of life on Mars, in Chela-Flores, J. and Raulin, F. (eds.), (1996) Chemical Evolution: Physics of the Origin and Evolution of Life, Kluwer Academic Publishers, Dordrecht, pp. 177-184.

    Google Scholar 

  • Mojzsis, S. J., Harrison, T.M. and Pidgeon, R.T. (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,3000 Myr ago, Nature 409, 178-181

    Article  ADS  Google Scholar 

  • Mossman, D. J., Gauthier-Lafaye, F. and Jackson, S. (2001) Carbonaceous substances associated with the Paleoproterozoic natural nuclear fission reactors of Oklo, Gabon: paragenesis, thermal maturation and carbon isotopic and trace element composition. Precambr. Res. 106, 135–148.

    Article  Google Scholar 

  • Noll, K. S., Johnson, R. E., Lane, A. L., Domingue, D. and Weaver, H. A. (1996) Detection of ozone on Ganymede, Science 273, 341-343.

    Article  ADS  Google Scholar 

  • Noll, K. S., Roush, T. L., Cruikshank, D. P., Johnson, R. E. and Pendleton, Y. J. (1997) Detection of ozone on Saturn’s satellites Rhea and Dione, Nature 388, 45-47.

    Article  ADS  Google Scholar 

  • Olsen, G. J. and Woese, C. R. (1993) Ribosomal RNA: a key to phylogeny, The FASEB Journal 7, 113-123.

    Google Scholar 

  • Oren, A. (1988) The microbial ecology of the Dead Sea, in: K. C. Marshall (ed.) Advances in microbial ecology (Plenum Publishing Company, New York, 10, 193-229.

    Google Scholar 

  • Prieur, D. Ercuso, G. and Jeanthon, C. (1995) Hyperthermophilic life at deep-sea hydrothermal vents, Planet. Space Sci. 43, 115-122.

    Article  ADS  Google Scholar 

  • Rizzotti, M. (2000) Early Evolution, Birkhauser Verlag, Basel, Chapter 3, pp. 24-52.

    Google Scholar 

  • Romero, A. B. and Thiemens, M. (2002) Mass-independent sulfur isotopic compositions in sulfate aerosols and surface sulfates derived from atmospheric deposition: Possible sources of the MI anomaly and implications for atmospheric chemistry. Eos 83 (Fall Meet. Suppl.), B71A−0731.

    Google Scholar 

  • Runnegar, B. (1992) Origin and Diversification of the Metazoa, in Schopf, J. W. and Klein, C. (1992) The Proterozoic Biosphere, Cambridge University Press, New York, p. 485.

    Google Scholar 

  • Schopf, J. W. (1993) Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life, Science 260, 640-646.

    Article  ADS  Google Scholar 

  • Seckbach, J. (1972) On the fine structure of the acidophilic hot-spring alga Cyanidium caldarium: a taxonomic approach, Microbios 5, 133-142.

    Google Scholar 

  • Seckbach, J. and Chela-Flores, J. (2011) Astrobiology: From extremophiles in the Solar System to extraterrestrial Civilizations. In: Tymieniecka, A.-T., Grandpierre, A. (eds.) Astronomy and Civilization in the New Enlightenment. Series: Analecta Husserliana, Vol. 107; 1st Edition, 2011, Springer Science and Business Media, pp. 237-246.

    Google Scholar 

  • Woese, C. R. (1983) The primary lines of descent, in D. S. Bendall (ed.), Evolution form molecules to man, CUP, London, pp. 209-233.

    Google Scholar 

  • Woese, C. R. (1998) The universal ancestor, Proc. Natl. Acad. Sci. USA 95, 6854-6859.

    Article  ADS  Google Scholar 

  • Zukerkandl, E. and Pauling, L. (1965) Molecules as documents of evolutionary history, J. Theor. Biol. 8, 357-366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Chela-Flores .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chela-Flores, J. (2011). From the age of prokaryotes to the emergence of eukaryotes. In: The Science of Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1627-8_5

Download citation

Publish with us

Policies and ethics