Skip to main content

Solid Particles Transport in Porous Media: Experimentation and Modelling

  • Conference paper
  • First Online:
Water Security in the Mediterranean Region

Abstract

Solid particle detachment, transport and deposition in natural or artificial porous media have been the subject of an intense research effort in the last four decades. Particle-facilitated contaminants transport, accidents due to internal erosion in the hydraulic structures and permeability decreases of the oil wells, drinking water supply or artificial recharge of the aquifers, aroused a growing interest. In this study, results of two laboratory experimental systems for tracer tests in columns are presented. System 1 concerns step-input injection method where two studies were realized. The first study is devoted for studying deposition kinetics (Kdep) of the Suspended Particles (SP) and the second for evaluation the porous medium damage (clogging and release). However, system 2 concerns the pulse injection method whose aim was to study the SP deposition kinetics. The interpretation and analysis of the Break-Through Curves (BTCs) were obtained using the analytical and numerical solution of convection–dispersion equation (1D) including a source term (deposition and release term). Using system 2 results showed a decrease of the deposition kinetics coefficient with flow velocity until a critical velocity where Kdep decreases. For high injected volumes of the SP in system 1, the permeability decreases occurs throughout of the entrance of the porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahfir N-D, Wang HQ, Benamar A, Alem A, Massei N, Dupont J-P (2007) Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol J 15:659–668

    Article  Google Scholar 

  2. Ahfir N-D, Benamar A, Alem A, Wang HQ (2009) Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transp Porous Med 76:289–307

    Article  CAS  Google Scholar 

  3. Beaudoin A, Huberson S, Rivoalen E (2003) Simulation of anisotropic diffusion by means of a diffusion velocity method. J Comput Phys 186:122–135

    Article  Google Scholar 

  4. Benamar A, Wang HQ, Ahfir N-D, Alem A, Massei N, Dupont JP (2005) Inertial effects on the transport and the rate deposition of fine particles in a soil. C R Geosci 337:497–504

    Article  Google Scholar 

  5. Bhattacharjee S, Ko C-H, Elimelech M (1998) DLVO interaction between rough surfaces. Langmuir 14:3365–3375

    CAS  Google Scholar 

  6. Bonelli S, Brivois O, Borghi R, Benahmed N (2006) On the modelling of piping erosion. C R Mecanique 334:555–559

    Google Scholar 

  7. Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121–142

    Article  CAS  Google Scholar 

  8. Brovelli A, Malaguerra F, Barry DA (2009) Bioclogging in porous media: model development and sensitivity to initial conditions. Environ Modell Softw 24:611–626

    Article  Google Scholar 

  9. Compere F, Porel G, Delay F (2001) Transport and retention of clay particles in saturated porous media: influence of ionic strength and pore velocity. J Contam Hydrol 49:1–21

    Article  CAS  Google Scholar 

  10. Corapcioglu MY, Jiang S (1993) Colloid facilitated groundwater contaminant transport. Water Resour Res 29(7):2215–2226

    Article  CAS  Google Scholar 

  11. Detay M (1993) Le Forage d’Eau: Réalisation, Entretien, Réhabilitation. Masson ed., Paris, 379 p

    Google Scholar 

  12. Dupin HJ, McCarty PL (1999) Mesoscale and microscale observations of biological growth in a silicon pore imaging element. Environ Sci Technol 33(8):1230–1236

    Article  CAS  Google Scholar 

  13. Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling, and simulation. Butterworth-Heinemann, Oxford

    Google Scholar 

  14. Grolimund D, Elimelich M, Borcovec M, Barmettler K, Kretzschmar R, Sticher H (1998) Transport of in situ mobilized colloidal particles in packed soil columns. Environ Sci Technol 32:3562–3569

    Article  CAS  Google Scholar 

  15. Grolimund D, Borkovec M, Barmettler K, Sticher H (1996) Colloid facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study. Environ Sci Technol 30:3118–3123

    Article  CAS  Google Scholar 

  16. Guin JA (1972) Clogging of nonuniform filter media. Ind Eng Chem Fundam 11(3):335–349

    Article  Google Scholar 

  17. Hand VL, Lloyd JR, Vaughan DJ, Wilkins MJ, Boult S (2008) Experimental studies of the influence of grain size, oxygen availability and organic carbon availability on bioclogging in porous media. Environ Sci Technol 42(5):1485–1491

    Article  CAS  Google Scholar 

  18. Herzig JP, Leclerc DM, Le Goff P (1970) Flow of suspension through porous media: application to deep bed filtration. Ind Eng Chem 62:8–35

    Article  CAS  Google Scholar 

  19. Kanti Sen T, Khilar KC (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interface Sci 119:71–96

    Article  CAS  Google Scholar 

  20. Kehat E, Lin A, Kaplan A (1967) Clogging of filter media. Ind Eng Chem Process Des Dev 6(1):48–55

    Article  CAS  Google Scholar 

  21. Kretzschmar R, Barmettler K, Grolimund D, Yan YD, Borkovec M, Sticher H (1997) Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour Res 33:1129–1137

    Article  CAS  Google Scholar 

  22. Kretzschmar R, Borkovec M, Grolimund D, Elimelech M (1999) Mobile subsurface colloids and their role in contaminant transport. Adv Agron 66:121–194

    Article  CAS  Google Scholar 

  23. Massei N, Lacroix M, Wang HQ, Dupont JP (2002) Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J Contam Hydrol 57:21–39

    Article  CAS  Google Scholar 

  24. Mays DC, Hunt JR (2007) Hydrodynamic and chemical factors in clogging by montmorillonite in porous media. Environ Sci Technol 41(16):5666–5671

    Article  CAS  Google Scholar 

  25. McDowell-Boyer LM, Hunt JR, Sitar N (1986) Particle transport through porous media. Water Resour Res 22(13):1901–1921

    Article  Google Scholar 

  26. McGechan MB, Lewis DR (2002) Transport of particulate and colloid-sorbed contaminants through soil, part 1: general principles. Biosyst Eng 83:255–273

    Article  Google Scholar 

  27. Moghadasi J, Müller-Steinhagen H, Jamialahmadi M, Sharif A (2004) Theoretical and experimental study of particle movement and deposition in porous media during water injection. J Petrol Sci Eng 43:163–181

    Article  CAS  Google Scholar 

  28. Reddi LN, Xiao M, Hajra MG, Lee IM (2005) Physical clogging of soil filters under constant flow rate versus constant head. Can Geotech J 42:804–811

    Article  Google Scholar 

  29. Shellenberger K, Logan BE (2002) Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ Sci Technol 36:184–189

    Article  CAS  Google Scholar 

  30. Skolasinska K (2006) Clogging microstructures in the vadose zone – laboratory and field studies. Hydrogeol J 14:1005–1017

    Article  Google Scholar 

  31. Tong M, Johnson WP (2006) Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ Sci Technol 40:7725–7731

    Article  CAS  Google Scholar 

  32. Vigneswaran S, Jeyaseelan S, DasGupta A (1985) Apilot-scale investigation of particle retention during artificial recharge. Water Air Soil Pollut 25:1–13

    Article  Google Scholar 

  33. Vigneswaran S, Suazo Ronillo B (1987) A detailed investigation of physical and biological clogging during artificial recharge. Water Air Soil Pollut 35:119–140

    Article  CAS  Google Scholar 

  34. Wang HQ, Lacroix M, Massei N, Dupont JP (2000) Particle transport in porous medium: determination of hydrodispersive characteristics and deposition rates. C R Acad Sci Paris Sci Terre Planèt 331:97–104

    CAS  Google Scholar 

  35. Weronski P, Walz JY, Elimelech M (2003) Effect of depletion interactions on transport of colloidal particles in porous media. J Colloid Interface Sci 262:372–383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Qing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Wang, HQ. et al. (2011). Solid Particles Transport in Porous Media: Experimentation and Modelling. In: Scozzari, A., El Mansouri, B. (eds) Water Security in the Mediterranean Region. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1623-0_8

Download citation

Publish with us

Policies and ethics