Skip to main content

Electromagnetic Methods and Sensors for Water Monitoring

  • Conference paper
  • First Online:
  • 1065 Accesses

Abstract

This paper deals with a brief presentation of non or minimally invasive techniques of interest for water security and monitoring applications, based on electromagnetic sensing. The techniques are presented according to the frequency range and to the degrees of novelty for the specific applicative context. For each technique, we briefly sketch the basic theory and the general and specific interest for the water monitoring. Besides well assessed techniques such as Electrical Resistivity, Electromagnetic Induction, Ground Penetrating Radar and Time Domain Reflectometry, Self Potential and Magnetometry, we give a short presentation of techniques of recent interest, some of them still in course of development, such as: Hyperspectral and TeraHertz Imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdu H, Robison DA, Jones SB (2007) Comparing bulk soil electrical conductivity determination using the DUALEM-1S and EM38-DD electromagnetic induction instruments. SSSAJ 71:189–196

    CAS  Google Scholar 

  2. Al Hagrey SA (2007) Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J Exp Bot 58:839–854

    Article  Google Scholar 

  3. Bernabe´ Y (1998) Streaming potential in heterogeneous networks. JGR 103:20827–20841

    Article  Google Scholar 

  4. Binley A, Winship P, Middleton R, Pokar M, West J (2001) High-resolution characterization of vadose zone dynamics using cross-borehole radar. Water Resour Res 37:2639–2652

    Article  Google Scholar 

  5. Binley A, Winship P, West LJ, Pokar M, Middleton R (2002) Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. J Hydrol 267:160–172

    Article  Google Scholar 

  6. Bogoslovsky VA, Ogilvy AA (1977) Geophysical methods in the investigation of landslides. Geophysics 42:562–571

    Article  Google Scholar 

  7. Brodsky EE, Roeloffs E, Woodcock D, Gall I, Manga M (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. JGR 108(B8):2390

    Article  Google Scholar 

  8. Burger HR (1992) Exploration geophysics of the shallow subsurface. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  9. Corwin DL, Hendrickx JMH (2002) Solute content and concentration – indirect measurement of solute concentration–electrical resistivity: Wenner array. In: Dane JH, Topp GC (eds) Methods of soil analysis, Part 4 – Physical methods. Soil Science Society of America Book Series 5. Soil Science Society of America, Madison, pp 1282–1287

    Google Scholar 

  10. Corwin RF, Hoover DB (1979) The self-potential method in geothermal exploration. Geophysics 44:226–245

    Article  Google Scholar 

  11. Corwin DL, Lesch SM (2005) Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric 46:11–43

    Article  Google Scholar 

  12. Daniels D (2004) Ground penetrating Radar, 2nd edn. IEE Press, London

    Google Scholar 

  13. Daniels JJ, Roberts R, Vendl M (1995) Ground penetrating radar for the detection of liquid contaminants. J Appl Geophys 33:195–207

    Google Scholar 

  14. Doria A, Gallerano GP, Germini M, Giovenale E, Lai A, Messina G, Spassovsky I, d’Aquino L (2006) Imaging in the frequency range between 100 GHz and 1 THz using compact free electron lasers. In: Infrared millimeter waves and 14th international conference on teraherz electronics, 2006. IRMMW-THz 2006. Joint 31st international conference on, Shanghai, pp 161–162

    Google Scholar 

  15. Friedman SP (2005) Soil properties influencing apparent electrical conductivity: a review. Comput Electron Agric 46:45–70

    Article  Google Scholar 

  16. Galagedara LW, Parkin GW, Redman JD (2003) An analysis of the ground-penetrating radar direct ground wave method for soil water content measurement. Hydrological Process 17:3615–3628

    Article  Google Scholar 

  17. Gallerano GP, Doria A, Germini M, Giovenale E, Messina G, Spassovsky IP (2009) Phase-Sensitive reflective imaging device in the mm-wave and Terahertz regions. J Infrared Milli Terahz Waves 30:1351–1361

    Google Scholar 

  18. Hadjiloucas S, Karatzas LS, Bowen JW (1999) Measurements of leaf water content using terahertz radiation. IEEE Trans Microwave Theory Tech 47:142–149

    Article  CAS  Google Scholar 

  19. Hellicar A, Li L, Greene K (2007) Design and implementation of a THz imaging system. In: Proceedings of the 10th Australian symposium on antennas, Sydney

    Google Scholar 

  20. Hendrickx JMH, Kachanoski RG (2002) Nonintrusive electromagnetic induction. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4. Physical methods. SSSA Book Series 5. SSSA, Madison, pp 1297–1306

    Google Scholar 

  21. Herkelrath WN, Hamburg SP, Murphy F (1991) Automatic, real time monitoring of soil moisture in a remote field area with time domain reflectometry. Water Resour Res 22:857–864

    Article  Google Scholar 

  22. Hubbard S, Grote K, Rubin Y (2002) Mapping the volumetric soil water content of a California vineyard using high-frequency GPR ground wave data. The Leading Edge, pp 552–559

    Google Scholar 

  23. Huisman J, Hubbard S, Redman J, Annan A (2003) Measuring soil water content with ground penetrating radar: a review. Available at www.vadosezonejournal.org. Vadose Zone J 2:476–491

  24. Jardani A, Revil A, Boleve A, Dupont JP (2008) Three-dimensional inversion of self-potential data used to constrain the pattern of groundwater flow in geothermal fields. JGR 113:B09204

    Article  Google Scholar 

  25. Jayawickreme DH, Hyndman DW (2007) Evaluating the influence of land cover on seasonal water budgets using Next Generation Radar (NEXRAD) rainfall and streamflow data. Water Resour Res 43:W02408

    Article  Google Scholar 

  26. Jayawickreme DH, Van Dam RL, Hyndman DW (2008) Subsurface imaging of vegetation, climate, and root-zone moisture interactions. GRL 35:L18404

    Article  Google Scholar 

  27. Knight R, Irving J, Tercier P, Freeman G, Murray C, Rockhold M (2007) A comparison of the use of radar images and neutron probe data to determine the horizontal correlation length of water content. In: Hyndman DW, Day-Lewis FD, Singha K (eds) Subsurface hydrology: data integration for properties and processes, AGU Geophysical Monograph Series vol 171. doi:10.1029/170GM01

    Google Scholar 

  28. Lambot S, Rhebergen J, Van den Bosch I, Slob EC, Vanclooster M (2004) Measuring the soil water content profile of a sandy soil with an Off-Ground monostatic ground penetrating radar. Vadose Zone J 3:1063–1071

    CAS  Google Scholar 

  29. Lapenna V, Macchiato M, Patella D, Satriano C, Serio C, Tramutoli V (1994) Statistical analysis of non-stationary voltage recordings in geoelectrical prospecting. Geophys Prospect 42(N.8):917–952

    Article  Google Scholar 

  30. Leone G, Soldovieri F (2003) Analysis of the distorted Born approximation for subsurface reconstruction: truncation and uncertainties effects. IEEE Trans Geosci Remote Sens 41:66–74

    Article  Google Scholar 

  31. Linde A, Sacks I, Johnston M, Hill D, Bilham R (1994) Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity. Nature 371:408–410

    Article  Google Scholar 

  32. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  33. Mattei E, De Santis A, Di Matteo A, Pettinelli E, Vannaroni G (2005) Time domain reflectometry of glass beads/magnetite mixtures: A time and frequency domain study, Appl Phys Lett 86:224102, 1–3. doi:10.1063/1.1935029

    Google Scholar 

  34. Mattei E, Di Matteo A, De Santis A, Pettinelli E, Vannaroni G (2006) Role of dispersive effects in determining probe and electromagnetic parameters by time domain reflectometry. Water Resour Res 42:W08408. doi:10.1029/2005WR004728

    Article  Google Scholar 

  35. McNeill JD (1980) Electromagnetic terrain conductivity measurement at low induction numbers. Tech. Note TN-6. Geonics Ltd, Mississauga

    Google Scholar 

  36. Nakashima Y, Zhou H, Sato M (2001) Estimation of groundwater level by GPR in an area with multiple ambiguous reflections. J Appl Geophys 47:241–249

    Article  Google Scholar 

  37. Naudet V, Revil A, Rizzo E, Bottero JY, Begassat P (2004) Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrol Hearth Syst Sci 8(1):8–22

    Article  CAS  Google Scholar 

  38. Patella D (1997) Introduction to ground surface self-potential tomography. Geophys Prospect 45:653–681

    Article  Google Scholar 

  39. Persico R, Bernini R, Soldovieri F (2005) The role of the measurement configuration in inverse scattering from buried objects under the Born approximation. IEEE Trans Antennas Propag 53:1875–1887

    Article  Google Scholar 

  40. Pettinelli E, Cereti A, Galli A, Bella F (2002) Time domain reflectrometry: Calibration techniques for accurate measurement of the dielectric properties of various materials. Rev Sci Instrum 73:3553–3562

    Article  CAS  Google Scholar 

  41. Pettinelli E et al (2006) Electromagnetic propagation features of ground penetrating radars for the exploration of Martian subsurface. Near Surf Geophysics 4:5–11

    Google Scholar 

  42. Revil A, Pezard PA, Glover PWJ (1999) Streaming potential in porous media. 1. Theory of the zeta potential. J Geophys Res 104:20021–20031

    Article  CAS  Google Scholar 

  43. Revil A, Hermitte D, Voltz M, Moussa R, Lacas JG, Bourrié G, Trolard F (2002) Self-Potential signals associated with variations of the hydraulic head during an infiltration experiment. Geophys Res Lett 29(7):1106. doi:1029/2001 GL014294

    Article  Google Scholar 

  44. Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5):1114

    Article  Google Scholar 

  45. Rizzo E, Suski B, Revil A, Straface S, Troisi S (2004) Self-potential signals associated with pumping tests experiments. JGR 109:B10203. doi:10.1029/2004JB003049

    Article  Google Scholar 

  46. Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003) A review of advances in dielectric and electrical conductivity measurements in soils using time domain reflectometry. Vadose Zone J 2:444–475

    CAS  Google Scholar 

  47. Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect 54:453–463

    Article  Google Scholar 

  48. Sharma PS (1997) Environmental and engineering geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  49. Steeples DW (2001) Engineering and environmental geophysics at the millenium. Geophysics 66(1):31–35

    Article  Google Scholar 

  50. Telford WM, Gledart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  51. Tillard S, Dubois JC (1995) Analysis of GPR data: wave propagation velocity determination. J Appl Geophys 33:77–91

    Google Scholar 

  52. Topp G, Davis J, Annan AP (1980) Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour Res 16:574–582

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. G.P. Gallerano (ENEA- Advanced Physics Technologies) for providing them Fig. 6.11 of this Chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Soldovieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Soldovieri, F., Lapenna, V., Bavusi, M. (2011). Electromagnetic Methods and Sensors for Water Monitoring. In: Scozzari, A., El Mansouri, B. (eds) Water Security in the Mediterranean Region. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1623-0_6

Download citation

Publish with us

Policies and ethics