Skip to main content

Unlocking Nature: Case Studies

  • Chapter
  • 1748 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 165))

Abstract

Defining the materiome consists of linking material properties and function across multiple scales, from nano to macro. The key to “unlocking” Nature is not the replication of biological materials, but full understanding of the mechanisms and material interactions that result in system-level functionality. Here, we look at two biological materials in detail: silk and bone. Silk—a high-performance polymer-like fiber—can be thought of as two phases synergetically acting together. The H-bonded β-sheet nanocrystals provide strength and toughness, while disordered semi-amorphous domains imbue extensibility.The resulting hyperelastic stiffening behavior is critical to the flaw tolerance and robustness of a spider’s web. Bone, in contrast, is a composite material made of relatively stiff mineral (hydroxyapatite) and compliant protein (tropocollagen) components. Bone achieves strength and toughness through a variety of mechanisms, including nanoconfinement, fibrillar sliding, and crack bridging. The general insights gained from the investigation of such systems can be applied a vast array of technological applications.

As the poet said, ‘Only God can make a tree’, probably because it’s so hard to figure out how to get the bark on.

Woody Allen, American Film director, actor, screenwriter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Seemingly opposed to a “holistic” perspective stressed throughout this book, such a division is employed to separate a presumed composite behavior—similar to the separation of an ideal Kelvin–Voigt material into separate (but coupled) viscous and elastic components.

  2. 2.

    Being said, the maximum stress level, on the order of 1–2 GPa, is in quantitative agreement with results from experimental studies [7].

  3. 3.

    This is similar to the principle of optimal design of engineered composite structures which states that all layers must fail simultaneously; no material strength is left unused.

  4. 4.

    We recognize the absence of plasticity or other energy dissipative processes that could produce toughening in the vicinity of the crack front in this analysis.

References

  1. J.M. Gosline, M.E. Demont, M.W. Denny, The structure and properties of spider silk. Endeavour 10(1), 37–43 (1986)

    Google Scholar 

  2. J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage, The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202(23), 3295–3303 (1999)

    CAS  Google Scholar 

  3. F. Vollrath, D.P. Knight, Liquid crystalline spinning of spider silk. Nature 410(6828), 541–548 (2001)

    CAS  Google Scholar 

  4. N. Becker, E. Oroudjev, S. Mutz, J.P. Cleveland, P.K. Hansma, C.Y. Hayashi, D.E. Makarov, H.G. Hansma, Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2(4), 278–283 (2003)

    CAS  Google Scholar 

  5. F.K. Ko, J. Jovicic, Modeling of mechanical properties and structural design of spider web. Biomacromolecules 5(3), 780–785 (2004)

    CAS  Google Scholar 

  6. Z.Z. Shao, F. Vollrath, Materials: surprising strength of silkworm silk. Nature 418(6899), 741 (2002)

    CAS  Google Scholar 

  7. N. Du, X.Y. Liu, J. Narayanan, L.A. Li, M.L.M. Lim, D.Q. Li, Design of superior spider silk: from nanostructure to mechanical properties. Biophys. J. 91(12), 4528–4535 (2006)

    CAS  Google Scholar 

  8. I. Agnarsson, M. Kuntner, T.A. Blackledge, Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS ONE 5(9) (2010)

    Google Scholar 

  9. F.G. Omenetto, D.L. Kaplan, New opportunities for an ancient material. Science 329(5991), 528–531 (2010)

    CAS  Google Scholar 

  10. F. Vollrath, D. Porter, Spider silk as a model biomaterial. Appl. Phys. A, Mater. Sci. Process. 82(2), 205–212 (2006)

    CAS  Google Scholar 

  11. C. Vepari, D.L. Kaplan, Silk as a biomaterial. Prog. Polym. Sci. 32(8–9), 991–1007 (2007)

    CAS  Google Scholar 

  12. C.M. Mello, S. Arcidiacono, R. Beckwitt, J. Prince, K. Senecal, D.L. Kaplan, Nephila-clavipes dragline silk—approaches to a recombinantly produced silk protein. Biomol. Mater. Des. 330, 37–42 (1994)

    CAS  Google Scholar 

  13. J. Perez-Rigueiro, C. Viney, J. Llorca, M. Elices, Silkworm silk as an engineering material. J. Appl. Polym. Sci. 70(12), 2439–2447 (1998)

    CAS  Google Scholar 

  14. I. Agnarsson, A. Dhinojwala, V. Sahni, T.A. Blackledge, Spider silk as a novel high performance biomimetic muscle driven by humidity. J. Exp. Biol. 212(13), 1989–1993 (2009)

    Google Scholar 

  15. B.O. Swanson, S.P. Anderson, C. DiGiovine, R.N. Ross, J.P. Dorsey, The evolution of complex biomaterial performance: the case of spider silk. Integr. Comp. Biol. 49(1), 21–31 (2009)

    CAS  Google Scholar 

  16. F. Vollrath, D. Porter, Silks as ancient models for modern polymers. Polymer 50(24), 5623–5632 (2009)

    CAS  Google Scholar 

  17. F. Vollrath, D. Porter, C. Holland, There are many more lessons still to be learned from spider silks. Soft Matter 7(20), 9595–9600 (2011)

    CAS  Google Scholar 

  18. S. Cranford, A. Tarakanova, N. Pugno, M.J. Buehler, Nonlinear material behaviour of spider silk yields robust webs. Nature (2012)

    Google Scholar 

  19. J.P. O’Brien, S.R. Fahnestock, Y. Termonia, K.C.H. Gardner, Nylons from nature: synthetic analogs to spider silk. Adv. Mat. 10(15), 1185 (1998)

    Google Scholar 

  20. A. Lazaris, S. Arcidiacono, Y. Huang, J.F. Zhou, F. Duguay, N. Chretien, E.A. Welsh, J.W. Soares, C.N. Karatzas, Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295(5554), 472–476 (2002)

    CAS  Google Scholar 

  21. C.Y. Hayashi, N.H. Shipley, R.V. Lewis, Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24(2-3), 271–275 (1999)

    CAS  Google Scholar 

  22. J.D. van Beek, S. Hess, F. Vollrath, B.H. Meier, The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc. Natl. Acad. Sci. USA 99(16), 10266–10271 (2002)

    Google Scholar 

  23. T. Lefevre, M.E. Rousseau, M. Pezolet, Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 92(8), 2885–2895 (2007)

    CAS  Google Scholar 

  24. S. Keten, M.J. Buehler, Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7(53), 1709–1721 (2010)

    CAS  Google Scholar 

  25. M.E. Rousseau, T. Lefevre, L. Beaulieu, T. Asakura, M. Pezolet, Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. Biomacromolecules 5(6), 2247–2257 (2004)

    CAS  Google Scholar 

  26. M.J. Buehler, Y.C. Yung, Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8(3), 175 (2009)

    CAS  Google Scholar 

  27. S. Keten, Z.P. Xu, B. Ihle, M.J. Buehler, Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 9(4), 359–367 (2010)

    CAS  Google Scholar 

  28. M. Sotomayor, K. Schulten, Single-molecule experiments in vitro and in silico. Science 316(5828), 1144–1148 (2007)

    CAS  Google Scholar 

  29. D. Porter, F. Vollrath, The role of kinetics of water and amide bonding in protein stability. Soft Matter 4(2), 328–336 (2008)

    CAS  Google Scholar 

  30. C.Y. Hayashi, R.V. Lewis, Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol. 275(5), 773–784 (1998)

    CAS  Google Scholar 

  31. A.E. Brooks, H.B. Steinkraus, S.R. Nelson, R.V. Lewis, An investigation of the divergence of major ampullate silk fibers from nephila clavipes and argiope aurantia. Biomacromolecules 6(6), 3095–3099 (2005)

    CAS  Google Scholar 

  32. G.P. Holland, M.S. Creager, J.E. Jenkins, R.V. Lewis, J.L. Yarger, Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state nmr spectroscopy. J. Am. Chem. Soc. 130(30), 9871–9877 (2008)

    CAS  Google Scholar 

  33. B.L. Thiel, K.B. Guess, C. Viney, Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41(7), 703–719 (1997)

    CAS  Google Scholar 

  34. G. Bratzel, M.J. Buehler, Sequence-structure correlations and size effects in silk nanostructure: poly-ala repeat of n. clavipes masp1 is naturally optimized at a critical length scale. J. Mech. Behav. Biomed. Mat. 7(3), 30–40 (2012)

    CAS  Google Scholar 

  35. G. Bratzel, M.J. Buehler, Molecular mechanics of silk nanostructures under varied mechanical loading. Biopolymers 97(6), 408–417 (2012)

    CAS  Google Scholar 

  36. Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314(1–2), 141–151 (1999)

    CAS  Google Scholar 

  37. P. Bradley, K.M.S. Misura, D. Baker, Toward high-resolution de novo structure prediction for small proteins. Science 309(5742), 1868–1871 (2005)

    CAS  Google Scholar 

  38. Y. Zhang, Progress and challenges in protein structure prediction. Curr. Opin. Struct. Biol. 18(3), 342–348 (2008)

    CAS  Google Scholar 

  39. K.Y. Sanbonmatsu, A.E. Garcia, Structure of met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics. Protein. Struct. Funct. Genet. 46(2), 225–234 (2002)

    CAS  Google Scholar 

  40. F. Rao, A. Caflisch, Replica exchange molecular dynamics simulations of reversible folding. J. Chem. Phys. 119(7), 4035–4042 (2003)

    CAS  Google Scholar 

  41. Y.M. Rhee, V.S. Pande, Multiplexed-replica exchange molecular dynamics method for protein folding simulation. Biophys. J. 84(2), 775–786 (2003)

    CAS  Google Scholar 

  42. N. Miyashita, J.E. Straub, D. Thirumalai, Y. Sugita, Transmembrane structures of amyloid precursor protein dimer predicted by replica-exchange molecular dynamics simulations. J. Am. Chem. Soc. 131(10), 3438 (2009)

    CAS  Google Scholar 

  43. S. Rammensee, U. Slotta, T. Scheibel, A.R. Bausch, Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA 105(18), 6590–6595 (2008)

    CAS  Google Scholar 

  44. J. Gosline, M. Lillie, E. Carrington, P. Guerette, C. Ortlepp, K. Savage, Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 357(1418), 121–132 (2002)

    CAS  Google Scholar 

  45. K.N. Savage, J.M. Gosline, The role of proline in the elastic mechanism of hydrated spider silks. J. Exp. Biol. 211(12), 1948–1957 (2008)

    Google Scholar 

  46. D. Porter, F. Vollrath, Z. Shao, Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E 16(2), 199–206 (2005)

    CAS  Google Scholar 

  47. C. Riekel, F. Vollrath, Spider silk fibre extrusion: combined wide- and small-angle x-ray microdiffraction experiments. Int. J. Biol. Macromol. 29(3), 203–210 (2001)

    CAS  Google Scholar 

  48. J.E. Trancik, J.T. Czernuszka, F.I. Bell, C. Viney, Nanostructural features of a spider dragline silk as revealed by electron and x-ray diffraction studies. Polymer 47(15), 5633–5642 (2006)

    CAS  Google Scholar 

  49. A.H. Simmons, C.A. Michal, L.W. Jelinski, Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271(5245), 84–87 (1996)

    CAS  Google Scholar 

  50. J.D. van Beek, J. Kummerlen, F. Vollrath, B.H. Meier, Supercontracted spider dragline silk: a solid-state nmr study of the local structure. Int. J. Biol. Macromol. 24(2-3), 173–178 (1999)

    Google Scholar 

  51. J.E. Jenkins, M.S. Creager, R.V. Lewis, G.P. Holland, J.L. Yarger, Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11(1), 192–200 (2010)

    CAS  Google Scholar 

  52. M.E. Rousseau, T. Lefevre, M. Pezolet, Conformation and orientation of proteins in various types of silk fibers produced by nephila clavipes spiders. Biomacromolecules 10(10), 2945–2953 (2009)

    CAS  Google Scholar 

  53. M. Cetinkaya, S.B. Xiao, B. Markert, W. Stacklies, F. Grater, Silk fiber mechanics from multiscale force distribution analysis. Biophys. J. 100(5), 1298–1305 (2011)

    CAS  Google Scholar 

  54. D. Porter, F. Vollrath, Nanoscale toughness of spider silk. Nano Today 2(3), 6 (2007)

    Google Scholar 

  55. D. Porter, F. Vollrath, Silk as a biomimetic ideal for structural polymers. Adv. Mat. 21(4), 487–492 (2009)

    CAS  Google Scholar 

  56. F. Vollrath, D. Porter, Spider silk as archetypal protein elastomer. Soft Matter 2(5), 377–385 (2006)

    CAS  Google Scholar 

  57. A. Nova, S. Keten, N.M. Pugno, A. Redaelli, M.J. Buehler, Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 10(7), 2626–2634 (2010)

    CAS  Google Scholar 

  58. S. Shen, A. Henry, J. Tong, R.T. Zheng, G. Chen, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5(4), 251–255 (2010)

    CAS  Google Scholar 

  59. T. Giesa, M. Arslan, N.M. Pugno, M.J. Buehler, Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett. 11(11), 5038–5046 (2011)

    CAS  Google Scholar 

  60. S. Frische, A.B. Maunsbach, F. Vollrath, Elongate cavities and skin-core structure in nephila spider silk observed by electron microscopy. J. Microsc. Oxford 189, 64–70 (1998)

    CAS  Google Scholar 

  61. Z. Shao, X.W. Hu, S. Frische, F. Vollrath, Heterogeneous morphology of nephila edulis spider silk and its significance for mechanical properties. Polymer 40(16), 4709–4711 (1999)

    CAS  Google Scholar 

  62. P. Poza, J. Perez-Rigueiro, M. Elices, J. Llorca, Fractographic analysis of silkworm and spider silk. Eng. Fract. Mech. 69(9), 1035–1048 (2002)

    Google Scholar 

  63. F. Vollrath, T. Holtet, H.C. Thogersen, S. Frische, Structural organization of spider silk. Proc. R. Soc. Lond. B, Biol. Sci. 263(1367), 147–151 (1996)

    Google Scholar 

  64. N. Du, Z. Yang, X.Y. Liu, Y. Li, H.Y. Xu, Structural origin of the strain-hardening of spider silk. Adv. Funct. Mater. 21(4), 772–778 (2011)

    CAS  Google Scholar 

  65. A. Tarakanova, M.J. Buehler, A materiomics approach to spider silk. JOM (2012)

    Google Scholar 

  66. F. Vollrath, P. Selden, The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38, 819–846 (2007)

    Google Scholar 

  67. T. Kohler, F. Vollrath, Thread biomechanics in the 2 orb-weaving spiders araneus-diadematus (araneae, araneidae) and uloborus-walckenaerius (araneae, uloboridae). J. Exp. Zool. 271(1), 1–17 (1995)

    Google Scholar 

  68. L.H. Lin, W. Sobek, Structural hierarchy in spider webs and spiderweb-type system. Struct. Eng. 76(4), 59–64 (1998)

    Google Scholar 

  69. B.D. Opell, J.E. Bond, Changes in the mechanical properties of capture threads and the evolution of modern orb-weaving spiders. Evol. Ecol. Res. 3(5), 567–581 (2001)

    Google Scholar 

  70. B.O. Swanson, T.A. Blackledge, J. Beltran, C.Y. Hayashi, Variation in the material properties of spider dragline silk across species. Appl. Phys. A, Mater. Sci. Process. 82(2), 213–218 (2006)

    CAS  Google Scholar 

  71. M.S. Alam, M.A. Wahab, C.H. Jenkins, Mechanics in naturally compliant structures. Mech. Mater. 39(2), 145–160 (2007)

    Google Scholar 

  72. Y. Aoyanagi, K. Okumura, Simple model for the mechanics of spider webs. Phys. Rev. Lett. 104(3) (2010)

    Google Scholar 

  73. J.R. Rice, G.F. Rosengren, Plane strain deformation near a crack tip in a power-law hardening material. J. Mech. Phys. Solids 16(1), 1 (1968)

    Google Scholar 

  74. A. Carpinteri, N. Pugno, Fracture instability and limit strength condition in structures with re-entrant corners. Eng. Fract. Mech. 72(8), 1254–1267 (2005)

    Google Scholar 

  75. N. Pugno, A. Carpinteri, M. Ippolito, A. Mattoni, L. Colombo, Atomistic fracture: qfm vs. md. Eng. Fract. Mech. 75(7), 1794–1803 (2008)

    Google Scholar 

  76. C. Dicko, F. Vollrath, J.M. Kenney, Spider silk protein refolding is controlled by changing ph. Biomacromolecules 5(3), 704–710 (2004)

    CAS  Google Scholar 

  77. X. Wu, X.Y. Liu, N. Du, G.Q. Xu, B.W. Li, Unraveled mechanism in silk engineering: fast reeling induced silk toughening. Appl. Phys. Lett. 95(9) (2009)

    Google Scholar 

  78. C.W.P. Foo, S.V. Patwardhan, D.J. Belton, B. Kitchel, D. Anastasiades, J. Huang, R.R. Naik, C.C. Perry, D.L. Kaplan, Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc. Natl. Acad. Sci. USA 103(25), 9428–9433 (2006)

    CAS  Google Scholar 

  79. H.A. Currie, O. Deschaume, R.R. Naik, C.C. Perry, D.L. Kaplan, Genetically engineered chimeric silk-silver binding proteins. Adv. Funct. Mater. 21(15), 2889–2895 (2011)

    CAS  Google Scholar 

  80. S. Gomes, K. Numata, I.B. Leonor, J.F. Mano, R.L. Reis, D.L. Kapan, Afm study of morphology and mechanical properties of a chimeric spider silk and bone sialoprotein protein for bone regeneration. Biomacromolecules 12(5), 1675–1685 (2011)

    CAS  Google Scholar 

  81. X.X. Xia, Z.G. Qian, C.S. Ki, Y.H. Park, D.L. Kaplan, S.Y. Lee, Native-sized recombinant spider silk protein produced in metabolically engineered escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. USA 107(32), 14059 (2010)

    CAS  Google Scholar 

  82. N.A. Ayoub, J.E. Garb, R.M. Tinghitella, M.A. Collin, C.Y. Hayashi, Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2(6) (2007)

    Google Scholar 

  83. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials. Biomaterials 24(3), 401–416 (2003)

    CAS  Google Scholar 

  84. B. Blossman-Myer, W.W. Burggren, The silk cocoon of the silkworm, bombyx mori: macro structure and its influence on transmural diffusion of oxygen and water vapor. Comp. Biochem. Physiol., Part a Mol. Integr. Physiol. 155(2), 259–263 (2010)

    Google Scholar 

  85. C. Ortiz, M.C. Boyce, Materials science—bioinspired structural materials. Science 319(5866), 1053–1054 (2008)

    CAS  Google Scholar 

  86. J.P.R.O. Orgel, T.C. Irving, A. Miller, T.J. Wess, Microfibrillar structure of type i collagen in situ. Proc. Natl. Acad. Sci. USA 103(24), 9001–9005 (1995)

    Google Scholar 

  87. D.J.S. Hulmes, T.J. Wess, D.J. Prockop, P. Fratzl, Radial packing, order, and disorder in collagen fibrils. Biophys. J. 68(5), 1661–1670 (1995)

    CAS  Google Scholar 

  88. N. Sasaki, S. Odajima, Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 29(9), 1131–1136 (1996)

    CAS  Google Scholar 

  89. S. Weiner, H.D. Wagner, The material bone: structure mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998)

    CAS  Google Scholar 

  90. R.K. Nalla, J.H. Kinney, R.O. Ritchie, Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2(3), 164–168 (2003)

    CAS  Google Scholar 

  91. P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007)

    CAS  Google Scholar 

  92. R.K. Nalla, J.J. Kruzic, J.H. Kinney, M. Balooch, J.W. Ager, R.O. Ritchie, Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Mater. Sci. Eng. C 26(8), 1251–1260 (2006)

    CAS  Google Scholar 

  93. J.D. Currey, Bones (Princeton University Press, Princeton, 2002)

    Google Scholar 

  94. M.A. Meyers, P.Y. Chen, A.Y.M. Lin, Y. Seki, Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53(1), 1–206 (2008)

    CAS  Google Scholar 

  95. J.D. Currey, The design of mineralised hard tissues for their mechanical functions. J. Exp. Biol. 202(23), 3285–3294 (1999)

    CAS  Google Scholar 

  96. M.E. Launey, M.J. Buehler, R.O. Ritchie, On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Sci. 40, 25–53 (2010)

    CAS  Google Scholar 

  97. S. Weiner, W. Traub, H.D. Wagner, Lamellar bone: structure-function relations. J. Struct. Biol. 126(3), 241–255 (1999)

    CAS  Google Scholar 

  98. M.M. Giraud-Guille, Twisted plywood architecture of collagen fibrils in human compact-bone osteons. Calcif. Tissue Int. 42(3), 167–180 (1988)

    CAS  Google Scholar 

  99. J.Y. Rho, P. Zioupos, J.D. Currey, G.M. Pharr, Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25(3), 295–300 (1999)

    CAS  Google Scholar 

  100. W. Wagermaier, H.S. Gupta, A. Gourrier, M. Burghammer, P. Roschger, P. Fratzl, Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1(1), 1–5 (2006)

    CAS  Google Scholar 

  101. W. Wagermaier, H.S. Gupta, A. Gourrier, O. Paris, P. Roschger, M. Burghammer, C. Riekel, P. Fratzl, Scanning texture analysis of lamellar bone using microbeam synchrotron x-ray radiation. J. Appl. Crystallogr. 40, 115–120 (2007)

    CAS  Google Scholar 

  102. W.J. Landis, K.J. Hodgens, J. Arena, M.J. Song, B.F. McEwen, Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Tech. 33(2), 192–202 (1996)

    CAS  Google Scholar 

  103. W.J. Landis, K.J. Hodgens, M.J. Song, J. Arena, S. Kiyonaga, M. Marko, C. Owen, B.F. McEwen, Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 117(1), 24–35 (1996)

    CAS  Google Scholar 

  104. M.D. Grynpas, L.C. Bonar, M.J. Glimcher, X-ray diffraction radial distribution function studies on bone mineral and synthetic calcium phosphates. J. Mater. Sci. 19(3), 723–736 (1984)

    CAS  Google Scholar 

  105. P. Fratzl, N. Fratzlzelman, K. Klaushofer, G. Vogl, K. Koller, Nucleation and growth of mineral crystals in bone studied by small angle x-ray scattering. Calcif. Tissue Int. 48(6), 407–413 (1991)

    CAS  Google Scholar 

  106. P. Fratzl, H.S. Gupta, E.P. Paschalis, P. Roschger, Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14(14), 2115–2123 (2004)

    CAS  Google Scholar 

  107. G.N. Ramachandran, G. Kartha, Structure of collagen. Nature 176(4482), 593–595 (1955)

    CAS  Google Scholar 

  108. K.E. Kadler, D.F. Holmes, J.A. Trotter, J.A. Chapman, Collagen fibril formation. Biochem. J. 316, 1–11 (1996)

    CAS  Google Scholar 

  109. D.J. Prockop, K.I. Kivirikko, Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995)

    CAS  Google Scholar 

  110. H. Gao, B. Ji, I.L. Jäger, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100(10), 5597–5600 (2003)

    CAS  Google Scholar 

  111. S.L. Hui, C.W. Slemenda, C.C. Johnston, Age and bone mass as predictors of fracture in a prospective study. J. Clin. Invest. 81(6), 1804–1809 (1988)

    CAS  Google Scholar 

  112. G.M. Kiebzak, Age-related bone changes. Exp. Gerontol. 26(2–3), 171–187 (1991)

    CAS  Google Scholar 

  113. R.P. Heaney, Is the paradigm shifting? Bone 33(4), 457–465 (2003)

    Google Scholar 

  114. E.A. Zimmermann, E. Schaible, H. Bale, H.D. Barth, S.Y. Tang, P. Reichert, B. Busse, T. Alliston, J.W. Ager, R.O. Ritchie, Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc. Natl. Acad. Sci. USA 108(35), 14416–14421 (2011)

    CAS  Google Scholar 

  115. R.K. Nalla, J.J. Kruzic, R.O. Ritchie, On the origin of the toughness of mineralized tissue: microcracking or crack bridging? Bone 34(5), 790–798 (2004)

    CAS  Google Scholar 

  116. A.J. Bailey, Molecular mechanisms of ageing in connective tissues. Mech. Ageing Dev. 122(7), 735–755 (2001)

    CAS  Google Scholar 

  117. D.R. Eyre, I.R. Dickson, K. Vanness, Collagen cross-linking in human-bone and articular-cartilage—age-related-changes in the content of mature hydroxypyridinium residues. Biochem. J. 252(2), 495–500 (1988)

    CAS  Google Scholar 

  118. D.R. Sell, V.M. Monnier, Structure elucidation of a senescence cross-link from human extracellular-matrix—implication of pentoses in the aging process. J. Biol. Chem. 264(36), 21597–21602 (1989)

    CAS  Google Scholar 

  119. P. Odetti, S. Rossi, F. Monacelli, A. Poggi, M. Cirnigliaro, M. Federici, A. Federici, Advanced glycation end products and bone loss during aging, Maillard Reaction: Chemistry at the Interface of Nutrition, Aging, and Disease. Ann. N.Y. Acad. Sci. 1043, 710–717 (2005)

    CAS  Google Scholar 

  120. D. Vashishth, G.J. Gibson, J.I. Khoury, M.B. Schaffler, J. Kimura, D.P. Fyhrie, Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28(2), 195–201 (2001)

    CAS  Google Scholar 

  121. X. Wang, X. Shen, X. Li, C.M. Agrawal, Age-related changes in the collagen network and toughness of bone. Bone 31(1), 1–7 (2002)

    Google Scholar 

  122. J.W. Ager, G. Balooch, R.O. Ritchie, Fracture, aging, and disease in bone. J. Mater. Res. 21(8), 1878–1892 (2006)

    CAS  Google Scholar 

  123. M.J. Buehler, Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 1(1), 59–67 (2008)

    Google Scholar 

  124. Y. Tang, R. Ballarini, M.J. Buehler, S.J. Eppell, Deformation micromechanisms of collagen fibrils under uniaxial tension. J. R. Soc. Interface 7(46), 839–850 (2010)

    Google Scholar 

  125. M.J. Buehler, Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly. J. Mater. Res. 21(8), 1947–1961 (2006)

    CAS  Google Scholar 

  126. M.J. Buehler, Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103(33), 12285–12290 (2006)

    CAS  Google Scholar 

  127. S.G.M. Uzel, M.J. Buehler, Molecular structure, mechanical behavior and failure mechanism of the c-terminal cross-link domain in type i collagen. J. Mech. Behav. Biomed. Mater. 4(2), 153–161 (2011)

    CAS  Google Scholar 

  128. T. Siegmund, M.R. Allen, D.B. Burr, Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking. J. Biomech. 41(7), 1427–1435 (2008)

    Google Scholar 

  129. M.J. Buehler, Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology 18(29) (2007)

    Google Scholar 

  130. H.S. Gupta, W. Wagermaier, G.A. Zickler, D.R.B. Aroush, S.S. Funari, P. Roschger, H.D. Wagner, P. Fratzl, Nanoscale deformation mechanisms in bone. Nano Lett. 5(10), 2108–2111 (2005)

    CAS  Google Scholar 

  131. H.S. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, P. Boesecke, P. Fratzl, Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl. Acad. Sci. USA 103(47), 17741–17746 (2006)

    CAS  Google Scholar 

  132. Y.L. Sun, Z.P. Luo, A. Fertala, K.N. An, Stretching type ii collagen with optical tweezers. J. Biomech. 37(11), 1665–1669 (2004)

    Google Scholar 

  133. A. Gautieri, M.J. Buehler, A. Redaelli, Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. J. Mech. Behav. Biomed. Mater. 2(2), 130–137 (2009)

    Google Scholar 

  134. A.S. Craig, M.J. Birtles, J.F. Conway, D.A.D. Parry, An estimate of the mean length of collagen fibrils in rat tail tenson as a function of age. Connect. Tissue Res. 19(1), 51–62 (1989)

    CAS  Google Scholar 

  135. G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade, G.D. Stucky, D.E. Morse, P.K. Hansma, Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4(8), 612–616 (2005)

    CAS  Google Scholar 

  136. B.L. Smith, T.E. Schaffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, P.K. Hansma, Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399(6738), 761–763 (1999)

    CAS  Google Scholar 

  137. K. Tai, F.J. Ulm, C. Ortiz, Nanogranular origins of the strength of bone. Nano Lett. 6(11), 2520–2525 (2006)

    CAS  Google Scholar 

  138. P. Zioupos, J.D. Currey, The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29(4), 978–986 (1994)

    Google Scholar 

  139. D. Vashishth, J.C. Behiri, W. Bonfield, Crack growth resistance in cortical bone: concept of microcrack toughening. J. Biomech. 30(8), 763–769 (1997)

    CAS  Google Scholar 

  140. D. Vashishth, K.E. Tanner, W. Bonfield, Contribution, development and morphology of microcracking in cortical bone during crack propagation. J. Biomech. 33(9), 1169–1174 (2000)

    CAS  Google Scholar 

  141. D. Vashishth, K.E. Tanner, W. Bonfield, Experimental validation of a microcracking-based toughening mechanism for cortical bone. J. Biomech. 36(1), 121–124 (2003)

    CAS  Google Scholar 

  142. Y.N. Yeni, T.L. Norman, Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J. Biomed. Mater. Res. 51(3), 504–509 (2000)

    CAS  Google Scholar 

  143. Y.N. Yeni, D.P. Fyhrie, A rate-dependent microcrack-bridging model that can explain the strain rate dependency of cortical bone apparent yield strength. J. Biomech. 36(9), 1343–1353 (2003)

    Google Scholar 

  144. K.J. Koester, J.W. Ager, R.O. Ritchie, The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 7(8), 672–677 (2008)

    CAS  Google Scholar 

  145. R.K. Nalla, J.S. Stolken, J.H. Kinney, R.O. Ritchie, Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J. Biomech. 38(7), 1517–1525 (2005)

    CAS  Google Scholar 

  146. E.A. Zimmermann, M.E. Launey, H.B. Barth, R.O. Ritchie, Mixed-mode fracture of human cortical bone. Biomaterials 30(29), 5877–5884 (2009)

    CAS  Google Scholar 

  147. R.O. Ritchie, R.M. Cannon, B.J. Dalgleish, R.H. Dauskardt, J.M. McNaney, Mechanics and mechanisms of crack-growth at or near ceramic-metal interfaces: interface engineering strategies for promoting toughness. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 166(1–2), 221–235 (1993)

    Google Scholar 

  148. R.B. Martin, D.B. Burr, Structure, Function, and Adaptation of Compact Bone (Raven Press, New York, 1989)

    Google Scholar 

  149. D. Taylor, J.G. Hazenberg, T.C. Lee, Living with cracks: damage and repair in human bone. Nat. Mater. 6(4), 263–268 (2007)

    CAS  Google Scholar 

  150. J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, P. Fratzl, Skeleton of euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309(5732), 275–278 (2005)

    CAS  Google Scholar 

  151. H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54(8), 1059–1100 (2009)

    CAS  Google Scholar 

  152. G. Mayer, Rigid biological systems as models for synthetic composites. Science 310(5751), 1144–1147 (2005)

    CAS  Google Scholar 

  153. J. Aizenberg, P. Fratzl, Biological and biomimetic materials. Adv. Mat. 21(4), 387–388 (2009)

    CAS  Google Scholar 

  154. I. Jager, P. Fratzl, Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79(4), 1737–1746 (2000)

    CAS  Google Scholar 

  155. Z.Q. Zhang, Y.W. Zhang, H.J. Gao, On optimal hierarchy of load-bearing biological materials. Proc. R. Soc. Lond. B, Biol. Sci. 278(1705), 519–525 (2011)

    Google Scholar 

  156. Z.Q. Zhang, B. Liu, Y. Huang, K.C. Hwang, H. Gao, Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution. J. Mech. Phys. Solids 58(10), 1646–1660 (2010)

    CAS  Google Scholar 

  157. S. Kamat, X. Su, R. Ballarini, A.H. Heuer, Structural basis for the fracture toughness of the shell of the conch strombus gigas. Nature 405(6790), 1036–1040 (2000)

    CAS  Google Scholar 

  158. S. Kamat, H. Kessler, R. Ballarini, M. Nassirou, A.H. Heuer, Fracture mechanisms of the Strombus gigas conch shell: II—micromechanics analyses of multiple cracking and large-scale crack bridging. Acta Mater. 52(8), 2395–2406 (2004)

    CAS  Google Scholar 

  159. R. Ballarini, R. Kayacan, F.J. Ulm, T. Belytschko, A.H. Heuer, Biological structures mitigate catastrophic fracture through various strategies. Int. J. Fract. 135(1-4), 187–197 (2005)

    Google Scholar 

  160. L.J. Bonderer, A.R. Studart, L.J. Gauckler, Bioinspired design and assembly of platelet reinforced polymer films. Science 319(5866), 1069–1073 (2008)

    CAS  Google Scholar 

  161. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Tough, bio-inspired hybrid materials. Science 322(5907), 1516–1520 (2008)

    CAS  Google Scholar 

  162. N.C. Broedling, A. Hartmaier, M.J. Buehler, H.J. Gao, The strength limit in a bio-inspired metallic nanocomposite. J. Mech. Phys. Solids 56(3), 1086–1104 (2008)

    CAS  Google Scholar 

  163. D.C. Jang, J.R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9(3), 215–219 (2010)

    CAS  Google Scholar 

  164. J.-Y. Kim, D. Jang, J.R. Greer, Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses. Adv. Funct. Mater. 21(23), 4550–4554 (2011)

    CAS  Google Scholar 

  165. A.Y.M. Lin, P.Y. Chen, M.A. Meyers, The growth of nacre in the abalone shell. Acta Biomater. 4(1), 131–138 (2008)

    Google Scholar 

  166. J.D. Currey, J.D. Taylor, Mechanical behavior of some molluscan hard tissues. J. Zool. 173(Jul), 395–406 (1974)

    Google Scholar 

  167. R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, I.A. Aksay, Deformation mechanisms in nacre. J. Mater. Res. 16(9), 2485–2493 (2001)

    CAS  Google Scholar 

  168. M. Sarikaya, I.A. Aksay, Biomimetics: Design and Processing of Materials. AIP Series in Polymers and Complex Materials (AIP Press, Woodbury, 1995)

    Google Scholar 

  169. X.W. Su, A.M. Belcher, C.M. Zaremba, D.E. Morse, G.D. Stucky, A.H. Heuer, Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone “flat pearls”. Chem. Mater. 14(7), 3106–3117 (2002)

    CAS  Google Scholar 

  170. R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio, Quasi-static and dynamic mechanical response of haliotis rufescens (abalone) shells. Acta Mater. 48(9), 2383–2398 (2000)

    CAS  Google Scholar 

  171. M. Rousseau, E. Lopez, P. Stempfle, M. Brendle, L. Franke, A. Guette, R. Naslain, X. Bourrat, Multiscale structure of sheet nacre. Biomaterials 26(31), 6254–6262 (2005)

    CAS  Google Scholar 

  172. F. Barthelat, Biomimetics for next generation materials. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 365(1861), 2907–2919 (2007)

    CAS  Google Scholar 

  173. A. Lin, M.A. Meyers, Growth and structure in abalone shell. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 390(1-2), 27–41 (2005)

    Google Scholar 

  174. H. Tang, F. Barthelat, H.D. Espinosa, An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre. J. Mech. Phys. Solids 55(7), 1410–1438 (2007)

    CAS  Google Scholar 

  175. F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, H.D. Espinosa, On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55(2), 306–337 (2007)

    CAS  Google Scholar 

  176. S.P. Kotha, Y. Li, N. Guzelsu, Micromechanical model of nacre tested in tension. J. Mater. Sci. 36(8), 2001–2007 (2001)

    CAS  Google Scholar 

  177. A.G. Evans, Z. Suo, R.Z. Wang, I.A. Aksay, M.Y. He, J.W. Hutchinson, Model for the robust mechanical behavior of nacre. J. Mater. Res. 16(9), 2475–2484 (2001)

    CAS  Google Scholar 

  178. F. Barthelat, C.M. Li, C. Comi, H.D. Espinosa, Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21(8), 1977–1986 (2006)

    CAS  Google Scholar 

  179. X.D. Li, W.C. Chang, Y.J. Chao, R.Z. Wang, M. Chang, Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4(4), 613–617 (2004)

    CAS  Google Scholar 

  180. B.J.F. Bruet, H.J. Qi, M.C. Boyce, R. Panas, K. Tai, L. Frick, C. Ortiz, Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc trochus niloticus. J. Mater. Res. 20(9), 2400–2419 (2005)

    CAS  Google Scholar 

  181. F. Song, Y.L. Bai, Effects of nanostructures on the fracture strength of the interfaces in nacre. J. Mater. Res. 18(8), 1741–1744 (2003)

    CAS  Google Scholar 

  182. A.P. Jackson, J.F.V. Vincent, R.M. Turner, The mechanical design of nacre. Proc. R. Soc. Lond. B, Biol. Sci. 234(1277), 415 (1988)

    Google Scholar 

  183. J.D. Currey, Mechanical-properties of mother of pearl in tension. Proc. R. Soc. Lond. B, Biol. Sci. 196(1125), 443 (1977)

    Google Scholar 

  184. X.D. Li, Z.H. Xu, R.Z. Wang, In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 6(10), 2301–2304 (2006)

    CAS  Google Scholar 

  185. B.H. Ji, H.J. Gao, Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52(9), 1963–1990 (2004)

    Google Scholar 

  186. H.M. Yao, M. Dao, T. Imholt, J.M. Huang, K. Wheeler, A. Bonilla, S. Suresh, C. Ortiz, Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc. Natl. Acad. Sci. USA 107(3), 987–992 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cranford, S.W., Buehler, M.J. (2012). Unlocking Nature: Case Studies. In: Biomateriomics. Springer Series in Materials Science, vol 165. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1611-7_8

Download citation

Publish with us

Policies and ethics