Skip to main content

Introduction

  • Chapter
  • 1756 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 165))

Abstract

Biomateriomics refers to the holistic study of biological material systems. We can predict the performance of engineered materials in engineered systems, but there is an inherent disconnect when investigating Nature’s materials, with little understanding of how functionality arises from both the material and complex structure with properties and interactions across scales. New developments enable a new perspective through the convergence of many scientific disciplines, and advancements in nanotechnology empower us to investigate material systems from the “bottom-up”. If we hope to learn from Nature, we need a new holistic perspective: an “omic” approach. We begin with a definition and introduction of biomateriomics, presenting the emerging field with the associated scope, and thematic paradigms, to the tools required for investigations, to ongoing and future applications.

All sciences are connected; they lend each other material aid as parts of one great whole, each doing its own work, not for itself alone, but for the other parts; as the eye guides the body and the foot sustains it and leads it from place to place.

Roger Bacon, Opus Tertium (1266–1268)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We note that the reductionist approach of science (studying the trees) has continuing success in the explanation of fundamental phenomena in physics, chemistry, and biology, and the current discussion is not intended to be a criticism, but rather a complementary perspective.

  2. 2.

    The third revolution: the convergence of the life sciences, physical sciences, and engineering, http://web.mit.edu/dc/Policy/MIT%20White%20Paper%20on%20Convergence.pdf.

References

  1. N. Du, X.Y. Liu, J. Narayanan, L.A. Li, M.L.M. Lim, D.Q. Li, Design of superior spider silk: from nanostructure to mechanical properties. Biophys. J. 91(12), 4528–4535 (2006)

    Article  CAS  Google Scholar 

  2. J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage, The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202(23), 3295–3303 (1999)

    CAS  Google Scholar 

  3. S. Keten, M.J. Buehler, Atomistic model of the spider silk nanostructure. Appl. Phys. Lett. 96(15), 153701 (2010)

    Article  Google Scholar 

  4. S. Keten, M.J. Buehler, Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7(53), 1709–1721 (2010)

    Article  CAS  Google Scholar 

  5. F.G. Omenetto, D.L. Kaplan, New opportunities for an ancient material. Science 329(5991), 528–531 (2010)

    Article  CAS  Google Scholar 

  6. F. Vollrath, Spider webs and silks. Sci. Am. 266(3), 70–76 (1992)

    Article  CAS  Google Scholar 

  7. F. Vollrath, Spider silk: evolution and 400 million years of spinning, waiting, snagging, and mating. Nature 466(7304), 319 (2010)

    Article  CAS  Google Scholar 

  8. P. Fratzel, Collagen: Structure and Mechanics (Springer, New York, 2008)

    Book  Google Scholar 

  9. S. Weiner, H.D. Wagner, The material bone: structure mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998)

    Article  CAS  Google Scholar 

  10. M.J. Buehler, Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103, 12285–12290 (2006)

    Article  CAS  Google Scholar 

  11. H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54(8), 1059–1100 (2009)

    Article  CAS  Google Scholar 

  12. P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1344 (2007)

    Article  CAS  Google Scholar 

  13. M.J. Buehler, T. Ackbarow, Nanomechanical strength mechanisms of hierarchical biological materials and tissues. Comput. Methods Biomech. Biomed. Eng. 11(6), 595–607 (2008)

    Article  Google Scholar 

  14. M.J. Buehler, S. Keten, Failure of molecules, bones, and the earth itself. Rev. Mod. Phys. 82(2), 1459–1487 (2010)

    Article  Google Scholar 

  15. J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, P. Fratzl, Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309(5732), 275–278 (2005)

    Article  CAS  Google Scholar 

  16. A. Woesz, J.C. Weaver, M. Kazanci, Y. Dauphin, J. Aizenberg, D.E. Morse, P. Fratzl, Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 21, 2068–2078 (2006)

    Article  CAS  Google Scholar 

  17. J. Aizenberg, V.C. Sundar, A.D. Yablon, J.C. Weaver, G. Chen, Biological glass fibers: correlation between optical and structural properties. Proc. Natl. Acad. Sci. USA 101(10), 3358–3363 (2004)

    Article  CAS  Google Scholar 

  18. C. Levi, J.L. Barton, C. Guillemet, E. Bras, P. Lehuede, A remarkably strong natural glassy rod: the anchoring spicule of the monorhaphis sponge. J. Mater. Sci. Lett. 8(3), 337–339 (1989)

    Article  CAS  Google Scholar 

  19. M. Sarikaya, H. Fong, N. Sunderland, B.D. Flinn, G. Mayer, A. Mescher, E. Gaino, Biomimetic model of a sponge-spicular optical fiber—mechanical properties and structure. J. Mater. Res. 16(5), 1420–1428 (2001)

    Article  CAS  Google Scholar 

  20. D. Losic, J.G. Mitchell, N.H. Voelcker, Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater. 21, 2947–2958 (2009)

    Article  CAS  Google Scholar 

  21. A. Garcia, M.J. Buehler, Bioinspired silicon nanoporous bulk material provides great toughness at great deformability. Comput. Mater. Sci. 48(2), 303–309 (2010)

    Article  CAS  Google Scholar 

  22. N.G. Pinto, A. Katiyar, S. Yadav, P.G. Smirniotis, Synthesis of ordered large pore sba-15 spherical particles for adsorption of biomolecules. J. Chromatogr. A 1122(1–2), 13–20 (2006)

    Google Scholar 

  23. V.S.Y. Lin, B.G. Trewyn, J.A. Nieweg, Y. Zhao, Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane, penetration. Chem. Eng. J. 137(1), 23–29 (2008)

    Article  Google Scholar 

  24. M.F. Ashby, Materials Selection in Mechanical Design, 4th edn. (Butterworth–Heinemann, Oxford, 2011)

    Google Scholar 

  25. P. Fratzl, Biomimetic materials research: what can we really learn from natures structural materials. J. R. Soc. Interface 4, 637–642 (2007)

    Article  CAS  Google Scholar 

  26. R. Pellenq, A. Kushima, R. Shahsavari, K. Van Vliet, M.J. Buehler, S. Yip, F.-J. Ulm, A realistic molecular model of cement hydrates. Proc. Natl. Acad. Sci. USA 106(38), 16102–16107 (2009)

    Article  CAS  Google Scholar 

  27. M.J. Buehler, Atomistic Modeling of Materials Failure (Springer, Berlin, 2008)

    Book  Google Scholar 

  28. R.P. Feynman, There’s plenty of room at the bottom. Caltech Eng. Sci. 23, 22–36 (1960)

    Google Scholar 

  29. K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation (Wiley, New York, 1992)

    Google Scholar 

  30. H. Gao, B. Ji, I.L. Jger, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100(10), 5597–5600 (2003)

    Article  CAS  Google Scholar 

  31. U.G.K. Wegst, M.F. Ashby, The mechanical efficiency of natural materials. Philos. Mag. 84(21), 2167–2181 (2004)

    Article  CAS  Google Scholar 

  32. M.A. Meyers, P.Y. Chen, A.Y.M. Lin, Y. Seki, Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53(1), 1–206 (2008)

    Article  CAS  Google Scholar 

  33. M.J. Buehler, Y.C. Yung, Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater. 8(3), 175–188 (2009)

    Article  CAS  Google Scholar 

  34. S. Kamat, X. Su, R. Ballarini, A.H. Heuer, Structural basis for the fracture toughness of the shell of the conch strombus gigas. Nature 405(6790), 1036–1040 (2000)

    Article  CAS  Google Scholar 

  35. Z. Tang, N.A. Kotov, S. Magono, B. Ozturk, Nanostructured artificial nacre. Nat. Mater. 2, 413–418 (2003)

    Article  CAS  Google Scholar 

  36. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008)

    Article  CAS  Google Scholar 

  37. J.F.V. Vincent, Stealing ideas from nature, in Deployable Structures, ed. by S. Pellegrino (Springer, Vienna, 2001)

    Chapter  Google Scholar 

  38. R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993)

    Article  Google Scholar 

  39. M.J. Buehler, Y.C. Yung, How protein materials balance strength, robustness and adaptability. HFSP J. 4(1), 26–40 (2010)

    Article  CAS  Google Scholar 

  40. P.A. Sharp, C.L. Cooney, M.A. Kastner, J. Lees, R. Sasisekharan, M.B. Yaffe, S.N. Bhatia, T.E. Jacks, D.A. Lauffenburger, R. Langer, P.T. Hammond, M. Sur, The third revolution: the convergence of the life sciences, physical sciences, and engineering. Massachusetts Institute of Technology (2011)

    Google Scholar 

  41. A.K. Chakraborty, A. Kosmrlj, Statistical mechanical concepts in immunology. Annu. Rev. Phys. Chem. 61, 283–303 (2010)

    Article  CAS  Google Scholar 

  42. A. Andrej Kosmrlj, E.L. Read, Y. Qi, T.M. Allen, M. Altfeld, S.G. Deeks, F. Pereyra, M. Carrington, B.D. Walker, A.K. Chakraborty, Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature 465(7296), 350–354 (2010)

    Article  Google Scholar 

  43. C.K. Ober, S.Z.D. Cheng, P.T. Hammond, M. Muthukumar, E. Reichmanis, K.L. Wooley, T.P. Lodge, Research in macromolecular science: challenges and opportunities for the next decade. Macromolecules 42(2), 465–471 (2009)

    Article  CAS  Google Scholar 

  44. M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010)

    Article  Google Scholar 

  45. M.J. Doktycz, M.L. Simpson, Nano-enabled synthetic biology. Mol. Syst. Biol. 3(125) (2007)

    Google Scholar 

  46. G. Bao, S. Suresh, Cell and molecular mechanics of biological materials. Nat. Mater. 2(11), 715–725 (2003)

    Article  CAS  Google Scholar 

  47. K.N. Dahl, P. Scaffidi, M.F. Islam, A.G. Yodh, K.L. Wilson, T. Misteli, Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 103(27), 10271–10276 (2006)

    Article  CAS  Google Scholar 

  48. S.E. Cross, Y.-S. Jin, J. Rao, J.K. Gimzewski, Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783 (2007)

    Article  CAS  Google Scholar 

  49. N. Kepper, D. Foethke, R. Stehr, G. Wedemann, K. Rippe, Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys. J. 95, 3692–3705 (2008)

    Article  CAS  Google Scholar 

  50. M. Dao, C.T. Lim, S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 53(2), 493–494 (2005)

    Article  Google Scholar 

  51. M.J. Buehler, S. Keten, T. Ackbarow, Theoretical and computational hierarchical nanomechanics of protein materials: deformation and fracture. Prog. Mater. Sci. 53, 1101–1241 (2008)

    Article  CAS  Google Scholar 

  52. T. Akita, A. Ueda, Y. Yamada, S. Ichikawa, K. Tanaka, M. Kohyama, T. Kobayashi, Analytical tem observations of combinatorial catalyst libraries for hydrogen production—as a part of “materiomics”. Mater. Res. Soc. Proc. 804, 211–216 (2004)

    CAS  Google Scholar 

  53. M.J. Buehler, S. Keten, Elasticity, strength and resilience: a comparative study on mechanical signatures of alpha-helix, beta-sheet and tropocollagen domains. Nano Res. 1(1), 63–71 (2008)

    Article  CAS  Google Scholar 

  54. M.J. Buehler, Computational and theoretical materiomics: properties of biological and de novo bioinspired materials. J. Comput. Theor. Nanosci. 7(7), 1203–1209 (2010)

    Article  CAS  Google Scholar 

  55. S. Cranford, M.J. Buehler, Materiomics: biological protein materials, from nano to macro. Nanotechnology Sci. Appl. 3, 127–148 (2010)

    CAS  Google Scholar 

  56. C.A. van Blitterswijk, D. Stamatialis, H. Unandhar, B. Papenburg, J. Rouwkema, R. Truckenmuller, A. van Apeldoorn, M. Wessling, J. de Boer, Materiomics: dealing with complexity in tissue engineering. Tissue Eng. A 14(5), 796 (2008)

    Google Scholar 

  57. J. de Boer, H. Fernandes, L. Moroni, C. van Blitterswijk, Extracellular matrix and tissue engineering applications. J. Mater. Chem. 19(31), 5474–5484 (2009)

    Article  Google Scholar 

  58. D. Stamatialis, B.J. Papenburg, J. Liu, G.A. Higuera, A.M.C. Barradas, J. de Boer, C.A. van Blitterswijk, M. Wessling, Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials 30(31), 6228–6239 (2009)

    Article  Google Scholar 

  59. H.V. Unadkat, M. Hulsman, K. Cornelissen, B.J. Papenburg, R.K. Truckenmuller, G.F. Post, M. Uetz, M.J.T. Reinders, D. Stamatialis, C.A. van Blitterswijk, J. de Boer, An algorithm-based topographical biomaterials library to instruct cell fate. Proc. Natl. Acad. Sci. USA 108(40), 16565–16570 (2011)

    Article  CAS  Google Scholar 

  60. J. Hafner, C. Wolverton, G. Ceder, Toward computational materials design: the impact of density functional theory on materials research. Mater. Res. Soc. Bull. 31(9), 659–668 (2006)

    Article  Google Scholar 

  61. G. Ceder, B. Kang, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009)

    Article  Google Scholar 

  62. F.J. Ulm, Y. Abousleiman, The nanogranular nature of shale. Acta Geotech. 1(2), 77–88 (2006)

    Article  Google Scholar 

  63. F.J. Ulm, The nanogranular nature of hydrated porous materials: concrete, shale and bone. Poro-Mechanics IV, 57–68 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cranford, S.W., Buehler, M.J. (2012). Introduction. In: Biomateriomics. Springer Series in Materials Science, vol 165. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1611-7_1

Download citation

Publish with us

Policies and ethics