Skip to main content

Abstract

The first chapter provides an introduction to the basic principles of optoelectronics, which are useful for the design and operational understanding of the optoelectronic device and material combinations presented in this work. It starts with a description of the general properties of organic semiconductors. Focus is on the principle of conjugation and transport in disordered organic semiconductors is briefly discussed. Attention is also given to the different radiative and nonradiative transitions possible in organic compounds. Organic light-emitting diodes and organic light-emitting transistors are the subject of the second section. The working principle of both devices is discussed and contrasted. The third section focuses on another optoelectronic device, the organic semiconductor laser. First, general aspects of laser activity and the motivation for plastic lasers are considered. Next, lasing in organic semiconductors and the difficulties in achieving electrical pumping are discussed. As a conclusion to this introduction, an outline of the subsequent chapters of this work is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Poly(phenylene vinylene).

  2. 2.

    1,4-Bis(4-methylstyryl)benzene.

  3. 3.

    Poly(2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene).

  4. 4.

    Ladder-type poly(para-phenylene).

  5. 5.

    Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene).

  6. 6.

    Methyl-substituted ladder-type poly(para-phenylene).

  7. 7.

    2,7-bis[4-(N-carbazole)phenylvinyl]-9,9’-spirobifluorene.

  8. 8.

    Tris-(8-hydroxyquinoline) aluminum.

  9. 9.

    4-(dicyanomethylene)-2-methyl-6-(julolindin-4-yl-vinyl)-4H-pyran.

  10. 10.

    4-(dicyanomethylene)-2-methyl-6-[(4-dimethylaninostyryl)-4H-pyran.

  11. 11.

    4,4’-bis[(N-carbazole)styryl]biphenyl.

References

  1. H. Mette, H. Pick, Z. Phys. 134, 566 (1953)

    Article  ADS  Google Scholar 

  2. M. Pope, H.P. Kallmann, P. Magnante, Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042 (1963)

    Article  ADS  Google Scholar 

  3. R.G. Kepler, Charge carrier production and mobility in anthracene crystals. Phys. Rev. 119(4), 1226–1229 (1960)

    Article  ADS  Google Scholar 

  4. C.K. Chiang, C.R. Fincher, J.Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39(17), 1098–1101 (1977)

    Article  ADS  Google Scholar 

  5. J.C. Kotz, P. Treichel, Chemistry and Chemical Reactivity (Saunders College Publishing, Philadelphia, 1999)

    Google Scholar 

  6. C. Kittel, Introduction to Solid State Physics, 6th edn. (Wiley, New York, 1986), p. 185

    Google Scholar 

  7. S. Verlaak, Small-molecule organic thin-film transistors: growth, charge transport and some applications. PhD thesis, K. U. Leuven (2004)

    Google Scholar 

  8. V.I. Arkhipov, V.A. Kolesnikov, A.I. Rudenko, Dispersive transport of charge-carriers in polycrystalline pentacene layers. J. Phys. D 17(6), 1241–1254 (1984)

    Article  ADS  Google Scholar 

  9. M. Pope, C.S. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999)

    Google Scholar 

  10. V. Arkhipov, I. Fishchuk, A. Kadashchuck, H. Bässler, Photophysics of Molecular Materials: From Single Molecules to Single Crystals (Wiley, New York, 2006). Chap. 6: Charge transport in disordered organic semiconductors

    Google Scholar 

  11. W. Warta, N. Karl, Hot holes in naphthalene: high, electric-field-dependent mobilities. Phys. Rev. B 32(2), 1172–1182 (1985)

    Article  ADS  Google Scholar 

  12. N. Karl, J. Marktanner, Electron and hole mobilities in high purity anthracene single crystals. Mol. Cryst. Liq. Cryst. 355, 149–173 (2001)

    Article  Google Scholar 

  13. V. Podzorov, E. Menard, J.A. Rogers, M.E. Gershenson, Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 26601 (2005)

    Article  Google Scholar 

  14. O. Ostroverkhova, D.G. Cooke, F.A. Hegmann, J.E. Anthony, V. Podzorov, M.E. Gershenson, O.D. Jurchescu, T.T.M. Palstra, Ultrafast carrier dynamics in pentacene, functionalized pentacene, tetracene, and rubrene single crystals. Appl. Phys. Lett. 88, 162101 (2006)

    Article  ADS  Google Scholar 

  15. P.G.L. Comber, W.E. Spear, Electronic transport in amorphous silicon films. Phys. Rev. Lett. 25(8), 509–511 (1970)

    Article  ADS  Google Scholar 

  16. G. Horowitz, R. Hajlaoui, P. Delannoy, Temperature-dependence of the field-effect mobility of sexithiophene—determination of the density of traps. J. Phys. 5(4), 355–371 (1995)

    Google Scholar 

  17. M. Mottaghi, G. Horowitz, Field-induced mobility degradation in pentacene thin-film transistors. Org. Electron. 7, 528–536 (2006)

    Article  Google Scholar 

  18. H. Bässler, Charge transport in disordered organic photoconductors: a Monte-Carlo simulation study. Phys. Status Solidi B 175(1), 15–56 (1993)

    Article  ADS  Google Scholar 

  19. M.C.J.M. Vissenberg, M. Matters, Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 57(20), 12964–12967 (1998)

    Article  ADS  Google Scholar 

  20. J.A. Barltrop, J.D. Coyle, Excited States in Organic Chemistry (Wiley-VCH, New York, 1975)

    Google Scholar 

  21. M.V. der Auweraer, Photophysics and photochemistry of molecular materials, B-KUL-G0I12A

    Google Scholar 

  22. Y. Shi, J. Liu, K. Han, Investigation of the internal conversion time of the chlorophyll a from S3, S2 to S1. Chem. Phys. Lett. 410(4–6), 260–263 (2005)

    Article  ADS  Google Scholar 

  23. C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987)

    Article  ADS  Google Scholar 

  24. L.S. Hung, C.H. Chen, Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. R. 39, 143–222 (2002)

    Article  Google Scholar 

  25. A. Bernanose, M. Comte, P. Vouaux, A new method of light emission by certain organic compounds. J. Chim. Phys. 50, 64 (1953)

    Google Scholar 

  26. A. Bernanose, P. Vouaux, Organic electroluminescence type of emission. J. Chim. Phys. 50, 261 (1953)

    Google Scholar 

  27. J.H. Burroughes, D.D. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burnst, A.B. Holmes, Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990)

    Article  ADS  Google Scholar 

  28. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A.D. Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck, Electroluminescence in conjugated polymers. Nature 397, 121 (1999)

    Article  ADS  Google Scholar 

  29. F. So, J. Kido, P. Burrows, Organic light-emitting devices for solid-state lighting. Mater. Res. Soc. Bull. 33, 663–669 (2008)

    Article  Google Scholar 

  30. S.A. VanSlyke, C.W. Tang, Organic electroluminescent devices having improved power conversion efficiencies. US patent 4,539,507

    Google Scholar 

  31. P.W.M. Blom, M.J.M. de Jong, Electrical characterization of polymer light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 4(1), 105–112 (1998)

    Google Scholar 

  32. C. Hosokawa, H. Tokailin, H. Higashi, T. Kusumoto, Transient behavior of organic thin film electroluminescence. Appl. Phys. Lett. 60(10), 1220–1222 (1992)

    Article  ADS  Google Scholar 

  33. J. Kido, Y. Lizumi, Fabrication of highly efficient organic electroluminiscent devices. Appl. Phys. Lett. 73(19), 2721–2723 (1998)

    Article  ADS  Google Scholar 

  34. C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J. Appl. Phys. 90(10), 5048–5051 (2001)

    Article  ADS  Google Scholar 

  35. N.K. Patel, S. Cina, J.H. Burroughes, High-efficiency organic light-emitting diodes. IEEE J. Quantum Electron. 8(2), 346–361 (2002)

    Google Scholar 

  36. M.A. Baldo, D.F. O’Brien, M.E. Thompson, S.R. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60(20), 14422–14428 (1999)

    Article  ADS  Google Scholar 

  37. M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998)

    Article  ADS  Google Scholar 

  38. D. Tanaka, H. Sasabe, Y. Li, S. Su, T. Takeda, J. Kido, Ultra high efficiency green organic light-emitting devices. Jpn. J. Appl. Phys. 46(1), L10–L12 (2007)

    Article  ADS  Google Scholar 

  39. D. Tanaka, Y. Agata, T. Takeda, S. Watanabe, J. Kido, High luminous efficiency blue organic light-emitting devices using high triplet excited energy materials. Jpn. J. Appl. Phys. 46(5), L117–L119 (2007)

    Article  ADS  Google Scholar 

  40. O. Inganäs, T. Granlund, M. Theander, M. Berggren, M.R. Andersson, A. Ruseckas, V. Sundström, Optical emission from confined poly(thiophene) chains. Opt. Mater. 9, 104–108 (1998)

    Article  Google Scholar 

  41. C.W. Tang, S.A. VanSlyke, C.H. Chen, Electroluminescence of doped organic thin films. J. Appl. Phys. 65(9), 3610–3616 (1989)

    Article  ADS  Google Scholar 

  42. Y. Lin, W. Chou, S. Lin, Enhanced efficiency in polymer light-emitting diodes due to the improvement of charge-injection balance. Appl. Phys. Lett. 88, 071108 (2006)

    Article  ADS  Google Scholar 

  43. T. Yamasaki, K. Sumioka, T. Tsutsui, Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium. Appl. Phys. Lett. 76(10), 1243–1245 (2000)

    Article  ADS  Google Scholar 

  44. G. Parthasarathy, P.E. Burrows, V. Khalfin, V.G. Kozlov, S.R. Forrest, A metal-free cathode for organic semiconductor devices. Appl. Phys. Lett. 72(17), 2138–2140 (1998)

    Article  ADS  Google Scholar 

  45. F. Dinelli, M. Mugia, P. Levy, M. Cavallini, F. Biscarini, Spatially correlated charge transport in organic thin film transistors. Phys. Rev. Lett. 92(11), 116802 (2004)

    Article  ADS  Google Scholar 

  46. C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw, Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003)

    Article  ADS  Google Scholar 

  47. A. Dodabalapur, H.E. Katz, L. Torsi, Molecular orbital energy level engineering in organic transistors. Adv. Mater. 8(10), 853–855 (1996)

    Article  Google Scholar 

  48. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern, Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91(15), 157406 (2003)

    Article  ADS  Google Scholar 

  49. M. Muccini, A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006)

    Article  ADS  Google Scholar 

  50. S. Verlaak, D. Cheyns, M. Debucquoy, V. Arkhipov, P. Heremans, Numerical simulation of tetracene light-emitting transistors: a detailed balance of exciton processes. Appl. Phys. Lett. 85(12), 2405–2407 (2004)

    Article  ADS  Google Scholar 

  51. J. Reynaert, D. Cheyns, D. Janssen, R. Müller, V.I. Arkhipov, J. Genoe, G. Borghs, P. Heremans, Ambipolar injection in a submicron-channel light-emitting tetracene transistor with distinct source and drain contacts. J. Appl. Phys. 97, 114501 (2005)

    Article  ADS  Google Scholar 

  52. C. Santato, R. Capelli, M.A. Loi, M. Murgia, F. Cicoira, V.A.L. Roy, P. Stallinga, R. Zamboni, C. Rost, S.F. Karg, M. Muccini, Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism. Synth. Met. 146, 329–334 (2004)

    Article  Google Scholar 

  53. T. Sakanoue, E. Fujiwara, R. Yamada, H. Tada, Visible light emission from polymer-based field-effect transistors. Appl. Phys. Lett. 84(16), 3037–3039 (2004)

    Article  ADS  Google Scholar 

  54. M. Ahles, A. Hepp, R. Schmechel, H. von Seggern, Light emission from a polymer transistor. Appl. Phys. Lett. 84(3), 428–430 (2004)

    Article  ADS  Google Scholar 

  55. J. Swensen, D. Moses, A.J. Heeger, Light emission in the channel region of a polymer thin-film transistor fabricated with gold and aluminum for the source and drain electrodes. Synth. Met. 153, 53–56 (2005)

    Article  Google Scholar 

  56. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, C. Adachi, Extremely low-threshold amplified spontaneous emission of 9,9’-spirobifluorene derivates and electroluminescence from field-effect transistor structure. Adv. Funct. Mater. 17, 2328–2335 (2007)

    Article  Google Scholar 

  57. T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, C. Adachi, Lateral organic light-emitting diode with field-effect transistor characteristics. J. Appl. Phys. 98, 074506 (2005)

    Article  ADS  Google Scholar 

  58. C. Rost, S. Karg, W. Riess, M.A. Loi, M. Murgia, M. Muccini, Ambipolar light-emitting organic field-effect transistor. Appl. Phys. Lett. 85(9), 1613–1615 (2004)

    Article  ADS  Google Scholar 

  59. M.A. Loi, C. Rost, M. Murgia, S. Karg, W. Riess, M. Muccini, Tuning optoelectronic properties of ambipolar organic light-emitting transistor using a bulk-heterojunction approach. Adv. Funct. Mater. 16, 41–47 (2006)

    Article  Google Scholar 

  60. C. Rost, S. Karg, W. Riess, M.A. Loi, M. Murgia, M. Muccini, Light-emitting ambipolar organic heterostructure field-effect transistor. Synth. Met. 146, 237–241 (2004)

    Article  Google Scholar 

  61. R. Capelli, F. Dinelli, M.A. Loi, M. Murgia, R. Zamboni, M. Muccini, Ambipolar organic light-emitting transistors employing heterojunctions of n-type and p-type materials as the active layer. J. Phys., Condens. Matter 18, S2127–S2138 (2006)

    Article  ADS  Google Scholar 

  62. F. Dinelli, R. Capelli, M.A. Loi, M. Murgia, M. Muccini, A. Facchetti, T.J. Marks, High-mobility ambipolar transport in organic light-emitting transistors. Adv. Mater. 18, 1416–1420 (2006)

    Article  Google Scholar 

  63. E.B. Namdas, P. Ledochowitsch, J.D. Yuen, D. Moses, A.J. Heeger, High performance light emitting transistors. Appl. Phys. Lett. 92, 183304 (2008)

    Article  ADS  Google Scholar 

  64. S.D. Vusser, S. Steudel, S. Schols, S. Verlaak, J. Genoe, W.D. Oosterbaan, L. Lutsen, D. Vandezande, P. Heremans, A light-emitting organic field-effect transistor using an organic heterostructure inside the transistor channel. Appl. Phys. Lett. 89, 223504 (2006)

    Article  ADS  Google Scholar 

  65. J. Zaumseil, R. Friend, H. Sirringhaus, Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 5(1), 69–74 (2006)

    Article  ADS  Google Scholar 

  66. J.S. Swensen, C. Soci, A.J. Heeger, Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005)

    Article  ADS  Google Scholar 

  67. J. Zaumseil, C.L. Donley, J. Kim, R.H. Friend, H. Sirringhaus, Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 18, 2708–2712 (2006)

    Article  Google Scholar 

  68. J.S. Swensen, J. Yuen, D. Gargas, S.K. Buratto, A.J. Heeger, Light emission from an ambipolar semiconducting polymer field effect transistor: Analysis of the device physics. J. Appl. Phys. 102, 013103 (2007)

    Article  ADS  Google Scholar 

  69. R.C.G. Naber, M. Bird, H. Sirringhaus, A gate dielectric that enables high ambipolar mobilities in polymer light-emitting field-effect transistors. Appl. Phys. Lett. 93, 023301 (2008)

    Article  ADS  Google Scholar 

  70. T. Sakanoue, M. Yahiro, C. Adachi, H. Uchiuzou, T. Takahashi, A. Toshimitsu, Ambipolar light-emitting organic field-effect transistors using a wide-band-gab blue-emitting small molecule. Appl. Phys. Lett. 90, 171118 (2007)

    Article  ADS  Google Scholar 

  71. E.C.P. Smits, S. Setayesh, T.D. Anthopoulos, M. Buechel, W. Nijssen, R. Coehoorn, P.W.M. Blom, B. de Boer, D.M. de Leeuw, Near-infrared light-emitting ambipolar organic field-effect transistors. Adv. Mater. 19, 734–738 (2007)

    Article  Google Scholar 

  72. D.L. Smith, P.P. Ruden, Analytic device model for light-emitting ambipolar organic semiconductor field-effect transistors. Appl. Phys. Lett. 89, 233519 (2006)

    Article  ADS  Google Scholar 

  73. M. Kemerink, D.S.H. Charrier, E.C.P. Smits, S.G.J. Mathijssen, D.M. de Leeuw, R.A.J. Janssen, On the width of the recombination zone in ambipolar organic field effect transistors. Appl. Phys. Lett. 93, 033312 (2008)

    Article  ADS  Google Scholar 

  74. T. Takahashi, T. Takenobu, J. Takeya, Y. Iwasa, Ambipolar light-emitting transistors of a tetracene single crystal. Adv. Funct. Mater. 17, 1623–1628 (2007)

    Article  Google Scholar 

  75. T. Takenobu, S.Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, Y. Iwasa, High current density in light-emitting transistors of organic single crystals. Phys. Rev. Lett. 100, 066601 (2008)

    Article  ADS  Google Scholar 

  76. H. Nakanotani, R. Kabe, M. Yahiro, T. Takenobu, Y. Iwasa, C. Adachi, Blue-light-emitting ambipolar field-effect transistors using an organic single crystal of 1,4-bis(4-methylstyryl)benzene. Appl. Phys. Express 1, 091801 (2008)

    Article  ADS  Google Scholar 

  77. J. Zaumseil, H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1323 (2007)

    Article  Google Scholar 

  78. F. Cicoira, C. Santato, Organic light emitting field effect transistors: advances and perspectives. Adv. Funct. Mater. 17, 3421–3434 (2007)

    Article  Google Scholar 

  79. T.P.I. Saragi, R. Pudzich, T. Fuhrmann, J. Salbecka, Organic phototransistor based on intramolecular charge transfer in a bifunctional spiro compound. Appl. Phys. Lett. 84(13), 2334–2336 (2004)

    Article  ADS  Google Scholar 

  80. M. Debucquoy, S. Verlaak, S. Steudel, K. Myny, J. Genoe, P. Heremans, Correlation between bias stress instability and phototransistor operation of pentacene thin-film transistors. Appl. Phys. Lett. 91, 103508 (2007)

    Article  ADS  Google Scholar 

  81. T.N. Ng, W.S. Wong, M.L. Chabinyc, S. Sambandan, R.A. Street, Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 92, 213303 (2008)

    Article  ADS  Google Scholar 

  82. C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Plastic solar cells. Adv. Funct. Mater. 11(1), 15–26 (2001)

    Article  Google Scholar 

  83. H. Sirringhaus, N. Tessler, R.H. Friend, Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998)

    Article  ADS  Google Scholar 

  84. N. Tessler, Laser based on semiconducting organic materials. Adv. Mater. 11(5), 363–370 (1999)

    Article  Google Scholar 

  85. M.D. McGehee, A.J. Heeger, Semiconducting (conjugated) polymers as material for solid-state lasers. Adv. Mater. 12(22), 1655–1668 (2000)

    Article  Google Scholar 

  86. I.D.W. Samuel, G.A. Turnbull, Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007)

    Article  Google Scholar 

  87. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187(4736), 493–494 (1960)

    Article  ADS  Google Scholar 

  88. D. Meschede, Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  89. J. Engelen, Optische communicatie h245 & h806, k.u.leuven, ir.elektronica: ict-telecommunicatie en telematica (2003)

    Google Scholar 

  90. V.G. Kozlov, V. Bulovic, P.E. Burrows, S.R. Forrest, Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362–364 (1997)

    Article  ADS  Google Scholar 

  91. G. Kranzelbinder, G. Leising, Organic solid-state lasers. Rep. Prog. Phys. 63(5), 729–762 (2000)

    Article  ADS  Google Scholar 

  92. B. Schweitzer, G. Wegmann, H. Giessen, D. Hertel, H. Bässler, R.F. Mahrt, U. Scherf, K. Müllen, The optical gain mechanism in solid conjugated polymers. Appl. Phys. Lett. 72, 2933–2935 (1998)

    Article  ADS  Google Scholar 

  93. A.R. Brown, A. Pomp, C.M. Hart, D.M. de Leeuw, Logic gates made from polymer transistors and their use in ring oscillators. Science 270(5238), 972–974 (1995)

    Article  ADS  Google Scholar 

  94. Z. Bao, A. Bodabalapur, A.J. Lovinger, Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69(26), 4108–4110 (1996)

    Article  ADS  Google Scholar 

  95. C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic thin film transistors for large area electronics. Adv. Mater. 14(2), 99–117 (2002)

    Article  Google Scholar 

  96. V.G. Kozlov, V. Bulovic, P.E. Burrows, M. Baldo, V.B. Khalfin, G. Parthasarathy, S.R. Forrest, Study of lasing action based on förster energy transfer in optically pumped organic semiconductor thin films. J. Appl. Phys. 84(8), 4096–4108 (1998)

    Article  ADS  Google Scholar 

  97. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85(11), 1886–1888 (2004)

    Article  ADS  Google Scholar 

  98. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, O. Werner, M. Kröger, E. Becker, H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, A. Gerhard, P. Stössel, H. Vestweber, Deep blue widely tunable organic solid-state laser based on a spirobifluorene derivative. Appl. Phys. Lett. 84(23), 4693–4695 (2004)

    Article  ADS  Google Scholar 

  99. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, R. Hinze, B. Nehls, T. Farrell, U. Scherf, Tunable organic thin-film laser pumped by an inorganic violet diode laser. Appl. Phys. Lett. 88, 241116 (2006)

    Article  ADS  Google Scholar 

  100. G. Wegmann, H. Giessen, A. Greiner, R.F. Mahrt, Laser emission from a solid conjugated polymer: gain, tunability and coherence. Phys. Rev. B 57(8), R4218–R4221 (1998)

    Article  ADS  Google Scholar 

  101. A.K. Sheridan, G.A. Turnbul, A.N. Safonov, I.D.W. Samuel, Tuneability of amplified spontaneous emission through control of the waveguide-mode structure in conjugated polymer films. Phys. Rev. B 62(18), R11929–R11932 (2000)

    Article  ADS  Google Scholar 

  102. G.A. Turnbull, T.F. Krauss, W.L. Barnes, I.D.W. Samuel, Tuneable distributed feedback lasing in MEH-PPV films. Synth. Met. 121, 1757–1758 (2001)

    Article  Google Scholar 

  103. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A.G. Mückl, W. Brütting, Very compact tunable solid-state laser utilizing a thin-film organic semiconductor. Opt. Lett. 26(9), 593–595 (2001)

    Article  ADS  Google Scholar 

  104. B. Schütte, H. Gothe, S.I. Hintschich, M. Sudzius, H. Fröb, V.G. Lyssenko, K. Leo, Continuously tunable laser emission from a wedge-shaped organic microcavity. Appl. Phys. Lett. 92, 163309 (2008)

    Article  ADS  Google Scholar 

  105. D. Amarasinghe, A. Ruseckas, A.E. Vasdekis, M. Goossens, G.A. Turnbull, I.D.W. Samuel, Broadband solid state optical amplifier based on a semiconducting polymer. Appl. Phys. Lett. 89, 201119 (2006)

    Article  ADS  Google Scholar 

  106. J.R. Lawrence, G.A. Turnbull, I.D.W. Samuel, Broadband optical amplifier based on a conjugated polymer. Appl. Phys. Lett. 80(17), 3036–3038 (2002)

    Article  ADS  Google Scholar 

  107. I.D.W. Samuel, G.A. Turnbull, Polymer lasers: recent advances. Mater. Today 28–35 (2004)

    Google Scholar 

  108. U. Rauscher, H. Bässler, D.D.C. Bradley, M. Hennecke, Exciton versus band description of the absorption and luminescence spectra in poly(p-phenylenevinylene). Phys. Rev. B 42(16), 9830–9836 (1990)

    Article  ADS  Google Scholar 

  109. R. Kersing, U. Lemmer, R.F. Mahrt, K. Leo, H. Kurz, H. Bässler, E.O. Böbel, Femtosecond energy relaxation in π-conjugated polymers. Phys. Rev. B 70(24), 3820–3823 (1993)

    ADS  Google Scholar 

  110. M. Andersson, G. Yub, A. Heeger, Photoluminescence and electroluminescence of films from soluble PPV-polymers. Synth. Met. 85, 1275–1276 (1997)

    Article  Google Scholar 

  111. S. Tasch, A. Niko, G. Leising, U. Scherf, Highly efficient electroluminescence of new wide band gap ladder-type poly(para-phenylenes). Appl. Phys. Lett. 68(8), 1090–1092 (1996)

    Article  ADS  Google Scholar 

  112. B.R. Hsieh, Y. Yu, E.W. Forsythe, G.M. Schaaf, W.A. Feld, A new family of highle emissive soluble poly(p-phenylene vinylene) derivatives. A step toward fully conjugated blue-emitting poly(p-phenylene vinylenes). J. Am. Chem. Soc. 120, 231–232 (1998)

    Article  Google Scholar 

  113. L. Chan, Y. Lee, C. Chen, Synthesis and characterization of 3,4-diphenylmaleimide copolymers that exhibit organic to red photoluminescence and electroluminescence. Macromolecules 39, 3262–3269 (2006)

    Article  ADS  Google Scholar 

  114. M. Berggren, A. Dodabalapur, R.E. Slusher, Stimulated emission and lasing in dye-doped organic thin films with förster transfer. Appl. Phys. Lett. 71, 2230 (1997)

    Article  ADS  Google Scholar 

  115. A. Tsumara, H. Koezuka, T. Ando, Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49(18), 1210–1212 (1986)

    Article  ADS  Google Scholar 

  116. V.L. Broude, V.S. Mashkevich, A.F. Prikhot’ko, N.F. Prokopyuk, M.S. Soskin, On the possibility of stimulated emission in systems with electronic vibrational levels. Fiz. Tverd. Tela 4, 2976 (1962)

    Google Scholar 

  117. P.P. Sorokin, J.R. Lankard, Stimulated emission observed from an organic dye chloro-aluminum phthalocyanine. IBM J. Res. Dev. 10, 162–163 (1966)

    Article  Google Scholar 

  118. M. Maeda, Laser Dyes: Properties of Organic Compounds for Dye Lasers (OHM, Tokyo, 1984)

    Google Scholar 

  119. B.H. Soffer, B.B. McFarland, Continously tunable, narrow-band organic dye lasers. Appl. Phys. Lett. 10(10), 266–267 (1967)

    Article  ADS  Google Scholar 

  120. N. Karl, Laser emission form an organic molecular crystal. Phys. Status Solidi A 13, 651 (1972)

    Article  ADS  Google Scholar 

  121. O.S. Avanesjan, V.A. Benderskii, V.K. Brikenstein, V.L. Broude, L.I. Korshunov, A.G. Lavrushko, I.I. Tartakovskii, Anthracene crystals under intensive optical pumping. Mol. Cryst. Liq. Cryst. 29, 165–174 (1974)

    Article  Google Scholar 

  122. H. Kogelnik, C.V. Shank, Stimulated emission in a periodic structure. Appl. Phys. Lett. 18(4), 152–154 (1971)

    Article  ADS  Google Scholar 

  123. T.W. Hänsch, M. Pernier, A.L. Schawlow, Laser action of dyes in gelatin. IEEE J. Quantum Electron. 7(1), 45–46 (1971)

    Article  ADS  Google Scholar 

  124. F.P. Schäfer, K.H. Drexhage, Dye Lasers, vol. 1, 2nd rev. edn. (Springer, Berlin, 1977)

    Google Scholar 

  125. D. Zhang, Y. Wang, D. Ma, Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles. Appl. Phys. Lett. 91, 091115 (2007)

    Article  ADS  Google Scholar 

  126. D. Moses, High quantum efficiency luminescence from a conducting polymer in solution: A novel polymer laser dye. Appl. Phys. Lett. 60(26), 3215–3216 (1992)

    Article  ADS  Google Scholar 

  127. L.J. Rothberg, M. Yan, F. Papadimitrakopoulos, M.E. Galvin, E.W. Kwock, T.M. Miller, Photophysics of phenylenevinylene polymers. Synth. Met. 80, 41–58 (1996)

    Article  Google Scholar 

  128. L.J. Rothberg, M. Yan, S. Son, M.E. Galvin, E.W. Kwock, T.M. Miller, H.E. Katz, R.C. Haddon, F. Papadimitrakopoulos, Intrinsic and extrinsic constraints on phenylenevinylene polymer electroluminescence. Synth. Met. 78, 213–236 (1996)

    Article  Google Scholar 

  129. G.J. Denton, N. Tessler, N.T. Harrison, R.H. Friend, Factors influencing stimulated emission from poly(p-phenylenevinylene). Phys. Rev. Lett. 78(4), 733–736 (1997)

    Article  ADS  Google Scholar 

  130. F. Hide, B.J. Schwartz, M.A. Diaz-Garcia, A.J. Heeger, Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals. Chem. Phys. Lett. 256, 424–430 (1996)

    Article  ADS  Google Scholar 

  131. W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S.D. Silvestri, U. Scherf, Femtosecond relaxation of photoexcitations in a poly(para-phenylene)-type ladder polymer. Phys. Rev. Lett. 76(5), 847–850 (1996)

    Article  ADS  Google Scholar 

  132. N. Tessler, G.J. Denton, R.H. Friend, Lasing from conjugated polymer microcavities. Nature 382, 695–697 (1996)

    Article  ADS  Google Scholar 

  133. F. Hide, M.A. Diaz-Garcia, B.J. Schwartz, M.R. Andersson, Q. Pei, A.J. Heeger, Semiconducting polymers: a new class of solid-state laser materials. Science 273, 1833–1836 (1996)

    Article  ADS  Google Scholar 

  134. S.V. Frolov, M. Ozaki, W. Gellermann, Z.V. Vareeny, K. Yoshino, Mirrorless lasing in conducting polymer poly(2,5-dioctyloxy-p-phenylenevinylene) films. J. Appl. Phys. 35(10B), 1371–1373 (1996)

    Google Scholar 

  135. M. Berggren, A. Dodabalapur, R.E. Slusher, Z. Bao, Light amplification in organic thin films using cascade energy transfer. Nature 389, 466–469 (1997)

    Article  ADS  Google Scholar 

  136. V.G. Kozlov, G. Parthasarathy, P.E. Burrows, S.R. Forrest, Y. You, M.E. Thompson, Optically pumped blue organic semiconductor lasers. Appl. Phys. Lett. 72(2), 144–146 (1998)

    Article  ADS  Google Scholar 

  137. T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasebae, C. Adachi, 100% fluorescence efficiency of 4.4’-bis[(n-carbazole)styryl]biphenyl in a solid film and the very low amplified spontanous emission threshold. Appl. Phys. Lett. 86(7), 071110 (2005)

    Article  ADS  Google Scholar 

  138. M.D. McGehee, R. Gupta, S. Veenstra, E.K. Miller, M.A. Diaz-Garcia, A.J. Heeger, Amplified spontaneous emission from photopumped films of a conjugated polymer. Phys. Rev. B 58(11), 7035–7039 (1998)

    Article  ADS  Google Scholar 

  139. A. Andreev, F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, H. Sitter, G. Hlawacek, C. Teichert, N.S. Sariciftci, Coherent random lasing in the deep blue from self-assembled organic nanofibers. J. Appl. Phys. 99, 034305 (2006)

    Article  ADS  Google Scholar 

  140. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, Laser threshold reduction in an all-spiro guest-host system. Appl. Phys. Lett. 85(10), 1659–1661 (2004)

    Article  ADS  Google Scholar 

  141. T. Rabe, M. Hoping, D. Schneider, E. Becker, H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, B.S. Nehls, U. Scherf, T. Farrell, T. Riedl, Threshold reduction in polymer lasers based on poly(9,9-dioctylfluorene) with statistical binaphthyl units. Adv. Funct. Mater. 12, 1188–1192 (2005)

    Article  Google Scholar 

  142. C. Zenz, W. Graupner, S. Tasch, G. Leising, K. Müllen, U. Scherf, Blue green stimulated emission from a high gain conjugated polymer. Appl. Phys. Lett. 71(18), 2566–2568 (1997)

    Article  ADS  Google Scholar 

  143. A. Dodabalapur, M. Berggren, R.E. Slusher, Z. Bao, A. Timko, P. Schiortino, E. Laskowsk, H.E. Katz, O. Nalamasu, Resonators and materials for organic lasers based on energy transfer. IEEE J. Quantum Electron. 4(1), 67–74 (1998)

    Google Scholar 

  144. G. Heliotis, R. Xia, D.D.C. Bradley, G.A. Turnbull, I.D.W. Samuel, P. Andrew, W.L. Barnes, Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium. J. Appl. Phys. 96(12), 6959–6965 (2004)

    Article  ADS  Google Scholar 

  145. C. Bauer, H. Giessen, B. Schnabel, E. Kley, C. Schmitt, U. Scherf, R.F. Mahrt, A surface-emitting circular grating polymer laser. Adv. Mater. 13(15), 1161–1164 (2001)

    Article  Google Scholar 

  146. C. Karnutsch, C. Gärtner, V. Haug, U. Lemmer, T. Farrell, B.S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J.C. deMello, D.D.C. Bradley, Low threshold blue conjugated polymer lasers with first-and second-order distributed feedback. Appl. Phys. Lett. 89, 201108 (2006)

    Article  ADS  Google Scholar 

  147. K. Baumann, T. Stöferle, N. Moll, R. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauser, C. Moormann, U. Scherf, Organic mixed-order photonic crystal lasers with ultrasmall footprint. Appl. Phys. Lett. 91, 171108 (2007)

    Article  ADS  Google Scholar 

  148. C. Karnutsch, C. Pflumm, G. Heliotis, J.C. deMello, D.D.C. Bradley, Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90, 131104 (2007)

    Article  ADS  Google Scholar 

  149. U. Scherf, S. Riechel, U. Lemmer, R.F. Mahrt, Conjugated polymers: lasing and stimulated emission. Curr. Opin. Solid State Mater. Sci. 5, 143–154 (2001)

    Article  ADS  Google Scholar 

  150. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, M.-C. Amann, U. Scherf, Nonlinear emission and recombination in conjugated polymer waveguides. Appl. Phys. Lett. 85(2), 1124–1130 (1999)

    Google Scholar 

  151. W. Holzer, A. Penzkofer, S. Gong, A. Bleyer, D.D.C. Bradley, Laser action in poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene). Adv. Mater. 8(12), 974–978 (1996)

    Article  Google Scholar 

  152. M. Yan, L.J. Rothberg, F. Papadimitrakopoulos, L.E. Galvin, T.M. Miller, Spatially indirect excitons as primary photoexcitations in conjugated polymers. Phys. Rev. Lett. 72(7), 1104–1107 (1994)

    Article  ADS  Google Scholar 

  153. S.V. Frolov, Z.V. Vardeny, K. Yoshina, Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions. Phys. Rev. B 57(15), 9141–9147 (1998)

    Article  ADS  Google Scholar 

  154. T. Granlund, M. Theander, M. Berggren, M. Andersson, A. Ruzeckas, V. Sundström, G. Björk, M. Granström, O. Inganäs, A polythiophene microcavity laser. Chem. Phys. Lett. 288, 879–884 (1998)

    Article  ADS  Google Scholar 

  155. F. Laquai, A.K. Mishra, K. Müllen, R.H. Friend, Amplified spontaneous emission of poly(ladder-type phenylene)s—the influence of photophysical properties on ASE thresholds. Adv. Funct. Mater. 18, 3265–3275 (2008)

    Article  Google Scholar 

  156. B.K. Yap, R. Xia, M. Campoy-Quiles, M.N. Stavrinou, D.D.C. Bradley, Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nat. Mater. 7, 376–380 (2088)

    Article  ADS  Google Scholar 

  157. G. Wegmann, B. Schweitzer, D. Hertel, H. Giessen, M. Oestreich, U. Scherf, K. Mullen, R.F. Mahrt, The dynamics of gain-narrowing in a ladder-type π-conjugated polymer. Chem. Phys. Lett. 312, 376–384 (1999)

    Article  ADS  Google Scholar 

  158. G. Cerullo, S. Stagira, M. Nisoli, S.D. Silvestri, G. Lanzani, G. Kranzelbinder, W. Graupner, G. Leising, Excited-state dynamics of poly(para-phenylene)-type ladder polymers at high photoexcitation density. Phys. Rev. B 57(20), 12806–12811 (1998)

    Article  ADS  Google Scholar 

  159. H. Tanaka, Y. Yoshida, T. Nakao, N. Tsujimoto, A. Fujii, M. Ozaki, Photopumped laser oscillation and charge carrier mobility of composite films based on poly(3-haxylthiophene)s with different stereoregularity. Jpn. J. Appl. Phys. 45(40), L1077–L1079 (2006)

    Article  ADS  Google Scholar 

  160. T. Nguyen, I.B. Martini, J. Liu, B.J. Schwartz, Controlling interchain interactions in conjugated polymers: the effects of chain morphology on exciton-exciton annhililation and aggregation in meh-ppv films. J. Phys. Chem. B 104, 237–255 (2000)

    Article  Google Scholar 

  161. T. Nguyen, V. Doan, B.J. Schwartz, Conjugated polymer aggregates in solution: control of interchain interactions. J. Chem. Phys. 110(8), 4068–4078 (1999)

    Article  ADS  Google Scholar 

  162. M. Anni, G. Gigli, R. Cingolan, M. Zavelani-Ross, C. Gadermaier, G. Lanzani, G. Barbarella, L. Favaretto, Amplified spontaneous emission from a soluble thiophene-based oligomer. Appl. Phys. Lett. 78(18), 2679–2681 (2001)

    Article  ADS  Google Scholar 

  163. F. Laquai, P.E. Keivanidis, S. Baluschev, J. Jacob, K. Müllen, G. Wegner, Low threshold amplified spontaneous emission in thin films of poly(tetraarylindenofluorene). Appl. Phys. Lett. 87, 261917 (2005)

    Article  ADS  Google Scholar 

  164. H. Nakanotani, N. Matsumoto, H. Uchiuzou, M. Nishiyama, M. Yahiro, C. Adachi, Very low amplified spontaneous emission threshold and electroluminescence characteristics of 1,1’-diphenyl substituted fluorene derivatives. Opt. Mater. 30, 630–636 (2007)

    Article  ADS  Google Scholar 

  165. K.L. Shaklee, R.F. Leheny, Direct determination of optical gain in semiconductor crystals. Appl. Phys. Lett. 18(11), 475–477 (1971)

    Article  ADS  Google Scholar 

  166. Y. Sorek, R. Reisfeld, I. Finkelstein, S. Ruschin, Light amplification in dye-doped glass planar waveguide. Appl. Phys. Lett. 66(10), 1169–1171 (1995)

    Article  ADS  Google Scholar 

  167. G. Jordan, M. Flämmich, M. Rüther, T. Kobayashi, W.J. Blau, Y. Suzuki, T. Kaino, Light amplification at 501 nm and large nanosecond optical gain in organic dye-doped polymeric waveguides. Appl. Phys. Lett. 88, 161114 (2006)

    Article  ADS  Google Scholar 

  168. G. Heliotis, D.C. Bradley, G.A. Turnbull, I.D.W. Samuel, Light amplification and gain in polyfluorene waveguides. Appl. Phys. Lett. 81(3), 415–417 (2002)

    Article  ADS  Google Scholar 

  169. S.V. Frolov, W. Gellermann, M. Ozaki, K. Yoshino, Z.V. Vardeny, Cooperative emission in π-conjugated polymer thin films. Phys. Rev. Lett. 78(4), 729–732 (1997)

    Article  ADS  Google Scholar 

  170. G.H. Gelinck, J.M. Warman, M. Remmers, D. Neher, Narrow-band emissions from conjugated-polymer films. Chem. Phys. Lett. 265, 320–326 (1997)

    Article  ADS  Google Scholar 

  171. T. Virgili, D.G. Lidzey, M. Grell, D.D.C. Bradley, S. Stagira, M. Zavelani-Rossi, S.D. Silvestri, Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity. Appl. Phys. Lett. 80(22), 4088–4090 (2002)

    Article  ADS  Google Scholar 

  172. M. Koschorreck, R. Gehlhaar, V.G. Lyssenko, M. Swoboda, M. Hoffmann, K. Leo, Dynamics of a high-Q vertical-cavity organic laser. Appl. Phys. Lett. 87, 181108 (2005)

    Article  ADS  Google Scholar 

  173. L. Persano, P.D. Carro, E. Mele, R. Cingolani, D. Pisignano, M. Zavelani-Rossi, S. Longhi, G. Lanzani, Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors. Appl. Phys. Lett. 88, 121110 (2006)

    Article  ADS  Google Scholar 

  174. M.A. Díaz-García, F. Hide, B.J. Schwartz, M.D. McGehee, M.R. Andersson, A.J. Heeger, Plastic lasers: comparison of gain narrowing with a soluble semiconducting polymer in waveguides and microcavities. Appl. Phys. Lett. 70(24), 3191–3193 (1997)

    Article  ADS  Google Scholar 

  175. A. Schülzgen, C. Spiegelberg, M.M. Morrell, S.B. Mendes, B. Kippelen, N. Peyghambarian, Near diffraction-limited laser emission from a polymer in a high finesse planar cavity. Appl. Phys. Lett. 72(3), 269–271 (1998)

    Article  ADS  Google Scholar 

  176. X. Liu, H. Li, C. Song, Y. Liao, M. Tian, Microcavity organic laser device under electrically pumping. Opt. Lett. 34(4), 503–505 (2009)

    Article  ADS  Google Scholar 

  177. H. Kogelnik, C.V. Shank, Stimulated emission in a periodic structure. Appl. Phys. Lett. 18(4), 152–154 (1971)

    Article  ADS  Google Scholar 

  178. H. Kogelnik, C.V. Shank, Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43(5), 2327–2335 (1972)

    Article  ADS  Google Scholar 

  179. M.D. McGehee, M.A. Diaz-Garcia, F. Hide, R. Gupta, E.K. Miller, D. Moses, A.J. Heeger, Semiconducting polymer distributed feedback lasers. Appl. Phys. Lett. 72(13), 1536–1538 (1998)

    Article  ADS  Google Scholar 

  180. G.A. Turnbull, P. Andrew, M.J. Jory, W.L. Barnes, I.D.W. Samuel, Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Phys. Rev. B 64, 125122 (2001)

    Article  ADS  Google Scholar 

  181. G. Heliotis, R. Xia, G.A. Turnbull, P. Andrew, W.L. Barnes, I.D.W. Samuel, D.D.C. Bradley, Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14(1), 91–97 (2004)

    Article  Google Scholar 

  182. M. Reufer, S. Riechel, J.M. Lupton, J. Feldmann, U. Lemmer, D. Schneider, T. Benstem, T. Dobbertin, W. Kowalsky, A. Gombert, K. Forberich, V. Wittwer, U. Scherf, Low-threshold polymeric distributed feedback lasers with metallic contacts. Appl. Phys. Lett. 84(17), 3262–3264 (2004)

    Article  ADS  Google Scholar 

  183. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, V. Wittwer, A flexible conjugated polymer laser. Adv. Mater. 10(12), 920–923 (1998)

    Article  Google Scholar 

  184. V.G. Kozlov, G. Parthasarathy, P.E. Burrows, V.B. Khalfin, J. Wang, S.Y. Chou, S.R. Forrest, Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations. IEEE J. Quantum Electron. 36(1), 18–26 (2000)

    Article  ADS  Google Scholar 

  185. T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, T. Rabe, T. Riedl, H.H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, Organic solid-state ultraviolet-laser based on spiro-terphenyl. Appl. Phys. Lett. 87, 161103 (2005)

    Article  ADS  Google Scholar 

  186. D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, L. Favaretto, Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Appl. Phys. Lett. 83(13), 2545–2547 (2003)

    Article  ADS  Google Scholar 

  187. A. Rose, Z. Zhu, C.F. Madigan, T.M. Swager, V. Bulovic, Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005)

    Article  ADS  Google Scholar 

  188. D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H. Johannes, W. Kowalsky, T. Weimann, J. Wang, P. Hinze, Wavelength-tunable organic solid-state distributed-feedback laser. Appl. Phys. B 77, 399–402 (2003)

    Article  ADS  Google Scholar 

  189. R. Xia, G. Heliotis, P.N. Stavrinou, D.D.C. Bradley, Polyfluorene distributed feedback lasers operating in the green-yellow spectral region. Appl. Phys. Lett. 87, 031104 (2005)

    Article  ADS  Google Scholar 

  190. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, U. Scherf, A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Appl. Phys. Lett. 77(15), 2310–2312 (2000)

    Article  ADS  Google Scholar 

  191. A.E. Vasdekis, G.A. Turnbull, I.D.W. Samuel, P. Andrew, W.L. Barnes, Low threshold edge emitting polymer distributed feedback laser based on a square lattice. Appl. Phys. Lett. 86, 161102 (2005)

    Article  ADS  Google Scholar 

  192. J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J.M. Lupton, T.A. Klar, J. Feldmann, A.W. Holleitner, M. Forster, U. Scherf, A low threshold polymer laser based on metallic nanoparticle gratings. Adv. Mater. 15(20), 1726–1729 (2003)

    Article  Google Scholar 

  193. G.A. Turnbull, P. Andrew, W.L. Barnes, I.D.W. Samuel, Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Appl. Phys. Lett. 82(3), 313–315 (2003)

    Article  ADS  Google Scholar 

  194. M. Notomi, H. Suzuki, T. Tamamura, Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Appl. Phys. Lett. 78(10), 1325–1327 (2001)

    Article  ADS  Google Scholar 

  195. N. Moll, R.F. Mahrt, C. Bauer, H. Giessen, B. Schnabel, E.B. Kley, U. Scherf, Evidence for bandedge lasing in a two-dimensional photonic bandgap polymer laser. Appl. Phys. Lett. 80(5), 734–736 (2002)

    Article  ADS  Google Scholar 

  196. G.A. Turnbull, A. Carleton, G.F. Barlow, A. Tahraouhi, T.F. Krauss, K.A. Shore, I.D.W. Samuel, Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers. J. Appl. Phys. 98, 023105 (2005)

    Article  ADS  Google Scholar 

  197. G. Ramos-Ortiz, C. Spiegelberg, N. Peyghambarian, B. Kippelen, Temperature dependence of the threshold for laser emission in polymer microlasers. Appl. Phys. Lett. 77(18), 2783–2785 (2000)

    Article  ADS  Google Scholar 

  198. S.V. Frolov, M. Shkunov, Z.V. Vardeny, Ring microlasers from conducting polymers. Phys. Rev. B 56(8), 4363–4366 (1997)

    Article  ADS  Google Scholar 

  199. S.V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, Z.V. Vardeny, Lasing and stimulated emission in π-conjugated polymers. IEEE J. Quantum Electron. 36(1), 2–11 (2000)

    Article  ADS  Google Scholar 

  200. Y. Kawabe, C. Spiegelberg, A. Schülzgen, M.F. Nabor, B. Kippelen, E.A. Mash, P.M. Allemand, M. Kuwata-Gonokami, K. Takeda, N. Peyghambarian, Whispering-gallery-mode microring laser using a conjugated polymer. Appl. Phys. Lett. 72(2), 141–143 (1998)

    Article  ADS  Google Scholar 

  201. S.V. Frolov, A. Fujii, D. Chinn, Z.V. Vardeny, Cylindrical microlasers and light emitting devices from conducting polymers. Appl. Phys. Lett. 72(22), 2811–2813 (1998)

    Article  ADS  Google Scholar 

  202. M. Berggren, A. Dodabalapur, Z. Bao, R.E. Slusher, Solid-state droplet laser made from an organic blend with a conjugated polymer emitter. Adv. Mater. 9(12), 968–971 (1997)

    Article  Google Scholar 

  203. S.V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, Z.V. Vardeny, Microlasers and micro-leds from disubstituted polyacetylene. Adv. Mater. 10(11), 869–872 (1998)

    Article  Google Scholar 

  204. M. Berggren, A. Dodabalapur, R.E. Slusher, Z. Bao, Organic lasers based on förster transfer. Synth. Met. 91, 65–68 (1997)

    Article  Google Scholar 

  205. R. Gupta, M. Stevenson, A. Dogariu, M.D. McGehee, J.Y. Park, V. Srdanov, A.J. Heeger, H. Wang, Low-threshold amplified spontaneous emission in blends of conjugated polymers. Appl. Phys. Lett. 73(24), 3492–3494 (1998)

    Article  ADS  Google Scholar 

  206. M.A. Baldo, M.E. Thompson, S.R. Forrest, Phosphorescent materials for application to organic light emitting devices. Pure Appl. Chem. 71(11), 2095–2106 (1999)

    Article  Google Scholar 

  207. V.G. Kozlov, P.E. Burrows, G. Parthasarathy, S.R. Forrest, Optical properties of molecular organic semiconductor thin films under intense electrical excitation. Appl. Phys. Lett. 74, 1057 (1999)

    Article  ADS  Google Scholar 

  208. L. Ma, J. Ouyang, Y. Yang, High-speed and high-current density C60 diodes. Appl. Phys. Lett. 84(23), 4786–4788 (2004)

    Article  ADS  Google Scholar 

  209. N. Tessler, N.T. Harrison, R.H. Friend, High brightness polymer light-emitting diodes. Adv. Mater. 10(1), 64–68 (1998)

    Article  Google Scholar 

  210. H. Yamamoto, H. Kasajima, W. Yokayama, H. Sasabe, C. Adachi, Extremely-high-density carrier injection and transport over 12000 A/cm2 into organic thin films. Appl. Phys. Lett. 86(8), 083502 (2005)

    Article  ADS  Google Scholar 

  211. T. Matsushima, H. Sasabe, C. Adachi, Carrier injection and transport characteristics of copper phthalocynanine thin films under low to extremely high current densities. Appl. Phys. Lett. 88, 033508 (2006)

    Article  ADS  Google Scholar 

  212. M.A. Baldo, R.J. Holmes, S.R. Forrest, Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 35321 (2002)

    Article  ADS  Google Scholar 

  213. P. Andrew, G.A. Turnbull, I.D.W. Samuel, W.L. Barnes, Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Appl. Phys. Lett. 81(6), 954–956 (2002)

    Article  ADS  Google Scholar 

  214. J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J.M. Lupton, T.A. Klar, J. Feldmann, A.W. Holleitner, M. Forster, U. Scherf, A low threshold polymer laser based on metallic nanoparticle gratings. Adv. Mater. 15(20), 1426–1729 (2003)

    Google Scholar 

  215. C. Gärtner, C. Karnutsch, U. Lemmer, C. Pflumm, The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 023107 (2007)

    Article  ADS  Google Scholar 

  216. H. Kim, C.M. Gilmore, J.S. Horwitz, A. Piqué, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, D.B. Chrisey, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 76(3), 259–261 (2000)

    Article  ADS  Google Scholar 

  217. H. Yamamoto, T. Oyamada, H. Sasabe, C. Adachi, Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84(8), 1401–1403 (2004)

    Article  ADS  Google Scholar 

  218. P. Görrn, T. Rabe, T. Riedl, W. Kowalsky, F. Galbrecht, U. Scherf, Low loss contacts for organic semiconductor lasers. Appl. Phys. Lett. 89, 161113 (2006)

    Article  ADS  Google Scholar 

  219. P. Görrn, T. Riedl, W. Kowalsky, Loss reduction in fully contacted organic laser waveguides using TE2 modes. Appl. Phys. Lett. 91, 041113 (2007)

    Article  ADS  Google Scholar 

  220. M. Reufer, J. Feldmann, P. Rudati, A. Ruhl, D. Müller, K. Meerholz, C. Karnutsch, M. Gerken, U. Lemmer, Amplified spontaneous emission in an organic semiconductor multilayer waveguide structure including a highly conductive transparent electrode. Appl. Phys. Lett. 86, 221102 (2005)

    Article  ADS  Google Scholar 

  221. E.B. Namdas, T. Minghong, P. Ledochowitsch, S.R. Mednick, J.D. Yuen, D. Moses, A.J. Heeger, Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress towards electrically pumped plastic lasers. Adv. Mater. 20, 1–4 (2008)

    Article  Google Scholar 

  222. M.C. Gwinner, S. Khodabakhsh, M.H. Song, H. Schweizer, H. Giessen, H. Sirringhaus, Integration of a rib waveguide distributed feedback structure into a light-emitting polymer field-effect transistor. Adv. Funct. Mater. 19(9), 1360–1370 (2009)

    Article  Google Scholar 

  223. C. Gärtner, C. Karnutsch, C. Pflumm, U. Lemmer, Numerical device simulation of double-heterostructure organic laser diodes including current-induced absorption processes. IEEE J. Quantum Electron. 43(11), 1006–1017 (2007)

    Article  ADS  Google Scholar 

  224. V.G. Kozlov, S.R. Forrest, Lasing action in organic semiconductor thin films. Curr. Opin. Solid State Mater. Sci. 4, 203–208 (1999)

    Article  ADS  Google Scholar 

  225. N. Tessler, D.J. Pinner, V. Cleave, D.S. Thomas, G. Yahioglu, P.L. Barny, R.H. Friend, Pulsed excitation of low-mobility light-emitting diodes: implication for organic lasers. Appl. Phys. Lett. 74, 2764–2766 (1999)

    Article  ADS  Google Scholar 

  226. N. Tessler, D.J. Pinner, V. Cleave, P.K.H. Ho, R.H. Friend, G. Yahioglu, P.L. Barney, J. Gray, M. de Souza, G. Rumbles, Properties of light emitting organic materials within the context of future electrically pumped lasers. Synth. Met. 115, 57–62 (2000)

    Article  Google Scholar 

  227. N. Tessler, N.T. Harrison, D.S. Thomas, R.H. Friend, Current heating in polymer light emitting diodes. Appl. Phys. Lett. 73(6), 732–734 (1998)

    Article  ADS  Google Scholar 

  228. C. Gärtner, C. Karnutsch, J. Brückner, N. Christ, S. Uebe, U. Lemmer, P. Görrn, T. Rabe, T. Riedl, W. Kowaslsky, Loss processes in organic double-heterostructure laser diodes. Proc. SPIE 6655, 665525 (2007)

    Google Scholar 

  229. J.M. Lupton, Over the rainbow. Nature 453, 459–460 (2008)

    Article  ADS  Google Scholar 

  230. D. Hertel, S. Setayesh, H. Nothofer, U. Scherf, K. Müllen, H. Bässler, Phosphorescence in conjugated poly(para-phenylene)-derivatives. Adv. Mater. 13(1), 65–70 (2001)

    Article  Google Scholar 

  231. Y. Yang, G.A. Turnbull, I. Samuel, Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Appl. Phys. Lett. 92, 163306 (2008)

    Article  ADS  Google Scholar 

  232. C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, T. Weimann, Laser diode-pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators. IEEE Photonics Technol. Lett. 19(10), 741–743 (2007)

    Article  ADS  Google Scholar 

  233. D. Yokoyama, M. Moriwake, C. Adachi, Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. J. Appl. Phys. 103, 123104 (2008)

    Article  ADS  Google Scholar 

  234. Y. Tian, Z. Gan, Z. Zhou, D.W. Lynch, J. Shinar, J. Kang, Q. Park, Spectrally narrowed edge emission from organic light-emitting diodes. Appl. Phys. Lett. 91, 143504 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Schols .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schols, S. (2011). Introduction. In: Device Architecture and Materials for Organic Light-Emitting Devices. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1608-7_1

Download citation

Publish with us

Policies and ethics