Skip to main content

Antimicrobial Compounds from Tree Endophytes

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 80))

Abstract

Endophytes are organisms that live at least parts of their life cycle asymptomatically within the plant tissue. Endophytic fungi include new species as well as latent pathogens and dormant saprophytes. The estimated high species diversity of endophytes and their adaptation to various plant habitats presumes a rich and almost untapped source of new secondary metabolites, some of which might become useful leads for pharmaceutical or agricultural applications. Forests are large reservoirs for fungal diversity, covering 30.3% of the land area in the world. This chapter focuses on bioactive natural compounds, which were isolated from tree endophytes described from 2007 on. Furthermore, an overview is given on research efforts of pharmaceutically significant plant compounds produced by endophytic fungi, namely: taxol, camptothecin, as well as podophyllotoxin and derivatives. In addition, recent literature on endophytes and the biological activity of their extracts is cited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ITS:

internal transcribed spacer

MIC:

minimal inhibitory concentration

IC50 :

half maximal inhibitory concentration

HIV:

human immunodeficiency virus

VOC:

volatile organic compound

References

  • Aly A, Debbab A, Kjer J et al (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can J Microbiol 48:871–878

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Arnstein HR, Cook AH (1947) Production of antibiotics by fungi; javanicin; an antibacterial pigment from Fusarium javanicum. J Chem Soc 1021–1028 doi:10.1039/JR9470001021

    Google Scholar 

  • Arora R, Singh S, Sharma RK (2008) Neem leaves: Indian herbal medicine. In: Watson RR, Preedy VR (eds) Botanical medicine in clinical practise. CAB International, Wallingford, pp 85–98

    Google Scholar 

  • Banerjee D, Strobel G, Geary B et al (2010) Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology 1:179–186

    Article  CAS  Google Scholar 

  • Barceloux DG (2008) Medical toxicology of natural substances: foods, fungi, medicinal herbs, plants, and venomous Animals. Wiley, Hoboken

    Google Scholar 

  • Bashyal B, Li JY, Strobel G et al (1999) Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon 72:33–42

    Google Scholar 

  • Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482

    Article  Google Scholar 

  • Boonphong S, Kittakoop P, Isaka M et al (2001) Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex. J Nat Prod 64:965–967

    Article  PubMed  CAS  Google Scholar 

  • Brady SF, Wagenaar MM, Singh MP et al (2000) The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org Lett 2:4043–4046

    Article  PubMed  CAS  Google Scholar 

  • Breen J, Dacre JC, Raistrick H et al (1955) Studies in the biochemistry of microorganisms. 95. Rugulosin, a crystalline coloring matter of Penicillium rugulosum Thom. Biochem J 60: 618–626

    PubMed  CAS  Google Scholar 

  • Brenan JPM (1955) Notes on Mimosoideae: I. Kew Bull 10:161–192

    Article  Google Scholar 

  • Calhoun LA, Findlay JA, Miller JD et al (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96:281–286

    Article  Google Scholar 

  • Camarda L, Merlini L, Nasini G (1976) Metabolites of Cercospora. Taiwapyrone, an [alpha]-pyrone of unusual structure from Cercospora taiwanensis. Phytochemistry 15:537–539

    Article  CAS  Google Scholar 

  • Campos FF, Rosa LH, Cota BB et al (2008) Leishmanicidal Metabolites from Cochliobolus sp., an endophytic fungus isolated from Piptadenia adiantoides (Fabaceae). PLoS Negl Trop Dis. doi:101371/annotation/49748d99-fe4d-4c28-b77a-306d0cf7062e

    PubMed  Google Scholar 

  • Campos FF, Johann S, Cota BB et al (2010) Antifungal activity of trichothecenes from Fusarium sp. against clinical isolates of Paracoccidioides brasiliensis. Mycoses. doi:10.1111/j.1439-0507.2009.01854.x

    PubMed  Google Scholar 

  • Canel C, Moraes RM, Dayan FE et al (2000) Podophyllotoxin. Phytochemistry 54:115–120

    Article  PubMed  CAS  Google Scholar 

  • Carroll G (1995) Forest endophytes – pattern and process. Can J Bot 73:1316–1324

    Article  Google Scholar 

  • Carruthers JR, Cerrini S, Fedeli W et al (1971) Structures of cochlioquinones A and B, new metabolites of Cochliobolus miyabeanus: chemical and X-ray crystallographic determination. J Chem Soc D 164–166 doi:10.1039/C29710000164

    Google Scholar 

  • Che Y, Gloer JB, Wicklow DT (2002) Phomadecalins A-D and Phomapentenone A: new bioactive metabolites from Phoma sp. NRRL 25697, a fungal colonist of Hypoxylon stromata. J Nat Prod 65:399–402

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z-S, Pan J-H, Tang W-C et al (2009) Biodiversity and biotechnological potential of mangrove-associated fungi. J For Res 20:63–72

    Article  CAS  Google Scholar 

  • Daferner M, Mensch S, Anke T et al (1999) Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z Naturforsch C 54:474–480

    PubMed  CAS  Google Scholar 

  • Daisy BH, Strobel G, Castillo U et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741

    PubMed  CAS  Google Scholar 

  • Daniel M (2006) Medicinal plants: chemistry and properties. Science Publishers, Enfield

    Google Scholar 

  • Danishefsky SJ, Masters JJ, Young WB et al (1996) Total synthesis of baccatin III and taxol. J Am Chem Soc 118:2843–2859

    Article  CAS  Google Scholar 

  • Dhar TK, Siddiqui KAI, Ali E (1982) Structure of phaseolinone, a novel phytotoxin from Macrophomina phaseolina. Tetrahedron Lett 23:5459–5462

    CAS  Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals. In: Gullo VP (ed) Discovery of natural products with therapeutic potential. Butterworth-Heinemann, Boston, pp 49–80

    Google Scholar 

  • Eckenwalder JE (2009) Conifers of the world: the complete reference. Timber Press, Portland

    Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • FAO – Food and Agriculture Organization of the United Nations (2006) Forestry Paper 147. Global Forest Resources Assessment 2005 – Progress towards sustainable forest management. FAO, Rome

    Google Scholar 

  • FAO – Food and Agriculture Organization of the United Nations (2008) The world’s mangroves, 1980–2005: a thematic study in the framework of the Global Forest Resources Assessment 2005. FAO, Rome

    Google Scholar 

  • Fernandes MDRV, Silva TAC, Pfenning LH et al (2009) Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L. Braz J Pharm Sci 45:677–685

    Article  Google Scholar 

  • Filip P, Weber RWS, Sterner O et al (2003) Hormonemate, a new cytotoxic and apoptosis-inducing compound from the endophytic fungus Hormonema dematioides. I. Identification of the producing strain, and isolation and biological properties of hormonemate. Z Naturforsch C 58:547–552

    PubMed  CAS  Google Scholar 

  • Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257

    Article  CAS  Google Scholar 

  • Flores-Bustamante ZR, Rivera-Orduna FN, Martinez-Cardenas A et al (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63:460–467

    Article  PubMed  CAS  Google Scholar 

  • Frense D (2007) Taxanes: perspectives for biotechnological production. Appl Microbiol Biotechnol 73:1233–1240

    Article  PubMed  CAS  Google Scholar 

  • Gallo MBC, Guimarães DO, Momesso LDS et al (2008) Natural products from endophytic fungi. In: Saikia R (ed) Microbial biotechnology. New India Publishing Agency, New Delhi, pp 139–168

    Google Scholar 

  • Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724

    Article  CAS  Google Scholar 

  • Ge HM, Shen Y, Zhu CH et al (2008) Penicidones A-C, three cytotoxic alkaloidal metabolites of an endophytic Penicillium sp. Phytochemistry 69:571–576

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Lorenzo MG, García-Bustos JF (1998) Ribosomal P-protein stalk function is targeted by sordarin. J Biol Chem 273:25041–25044

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MC, Anaya A, Glenn AE et al (2009) Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon 110:363–372

    Article  Google Scholar 

  • Gordaliza M, García PA, Miguel JM et al (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459

    Article  PubMed  CAS  Google Scholar 

  • Govindachari TR, Viswanathan N (1972) Alkaloids of Mappia foetida. Phytochemistry 11: 3529–3531

    Article  CAS  Google Scholar 

  • Gu W, Ding H (2008) Two new tetralone derivatives from the culture of Xylaria hypoxylon AT-028. Chin Chem Lett 19:1323–1326

    Article  CAS  Google Scholar 

  • Guenard D, Gueritte-Voegelein F, Potier P (1993) Taxol and taxotere: discovery, chemistry, and structure-activity relationships. Acc Chem Res 26:160–16

    Article  CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Wang Y, Sun X et al (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    Article  CAS  Google Scholar 

  • Hatakeyama T, Koseki T, Murayama T et al (2010) Eremophilane sesquiterpenes from the endophyte Microdiplodia sp. KS 75–1 and revision of the stereochemistries of phomadecalins C and D. Phytochem Lett 3:148–151

    Article  CAS  Google Scholar 

  • Hauser D, Sigg HP (1971) Isolierung und Abbau von Sordarin. Helv Chim Acta 54:1187–1190

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 15 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hazalin NAMN, Ramasamy K, Lim SM et al (2009) Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia. BMC Complement Altern Med. doi:10.1186/1472-6882-9-46

    PubMed  Google Scholar 

  • Herre EA, Meíja LC, Kyllo DA et al (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558

    Article  PubMed  Google Scholar 

  • Hu Z-Y, Li Y-Y, Huang Y-J et al (2008) Three new sesquiterpenoids from Xylaria sp. NCY2. Helvetica Chim Acta 91:46–52

    Article  CAS  Google Scholar 

  • Hu Z-Y, Li Y-Y, Lu C-H et al (2010) Seven novel linear polyketides from Xylaria sp. NCY2. Helvetica Chim Acta 93:925–933

    Article  CAS  Google Scholar 

  • Huang KC (1999) The pharmacology of Chinese herbs, 2nd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  • Huang Z, Cai X, Shao C et al (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69: 1604–1608

    Article  PubMed  CAS  Google Scholar 

  • Hussain H, Akhtar N, Draeger S et al (2009) New bioactive 2,3-epoxycyclohexenes and isocoumarins from the endophytic fungus Phomopsis sp. from Laurus azorica. Eur J Org Chem 2009:749–756

    Article  CAS  Google Scholar 

  • Isaka M, Jaturapat A, Kladwang W et al (2000) Antiplasmodial compounds from the wood-decayed fungus Xylaria sp. BCC 1067. Planta Med 66:473–475

    Article  PubMed  CAS  Google Scholar 

  • Janeš D, Kreft S, Jurc M et al (2007) Antibacterial activity in higher fungi (mushrooms) and endophytic fungi from Slovenia. Pharm Biol 45:700–706

    Article  Google Scholar 

  • Janick J, Pauli RE (2008) The encyclopedia of fruit & nuts. CAB International, Wallingford

    Google Scholar 

  • Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics and biotechnological applications. Appl Microbiol Biotechnol 57:13–19

    Article  PubMed  CAS  Google Scholar 

  • Justice CJ, Hsu M, Tse B et al (1998) Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273:3148–3151

    Article  PubMed  CAS  Google Scholar 

  • Kharwar RN, Verma VC, Kumar A et al (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238

    Article  PubMed  CAS  Google Scholar 

  • Kour A, Shawl A, Rehman S et al (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121

    Article  CAS  Google Scholar 

  • Kumaran RS, Muthumary J, Hur BK (2008) Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng Life Sci 8:438–446

    Article  CAS  Google Scholar 

  • Kumaran RS, Kim HJ, Hur B-K (2010) Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J Biosci Bioeng 110:541–546

    Article  PubMed  CAS  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2001) Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res 105:1388–1391

    Article  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009a) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2009b) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  PubMed  CAS  Google Scholar 

  • Lacey LA, Horton DR, Jones DC et al (2009) Efficacy of the biofumigant fungus Muscodor albus (Ascomycota: Xylariales) for control of codling moth (Lepidoptera: Tortricidae) in simulated storage conditions. J Econ Entomol 102:43–49

    Article  PubMed  CAS  Google Scholar 

  • Li TSC (2008) Vegetables and fruits – nutritional and therapeutic values. CRC, Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Li JY, Sidhu RS, Ford EJ et al (1998) The induction of taxol production in the endophytic fungus Periconia sp. from Torreya grandifolia. J Ind Microbiol Biotechnol 20:259–264

    Article  CAS  Google Scholar 

  • Li S, Zhang Z, Cain A et al (2005) Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J Agric Food Chem 53:32–37

    Article  PubMed  CAS  Google Scholar 

  • Li QY, Zu YG, Shi RZ et al (2006) Review camptothecin: current perspectives. Curr Med Chem 13:2021–2039

    Article  PubMed  CAS  Google Scholar 

  • Li E, Tian R, Liu S et al (2008) Pestalotheols A-D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71:664–668

    Article  PubMed  CAS  Google Scholar 

  • Lim CH, Ueno H, Miyoshi H et al (1996) Phytotoxic compounds cochlioquinones are inhibitors of mitochondrial NADH-ubiquinone reductase. Nippon Noyaku Gakkaishi 21:213–215

    CAS  Google Scholar 

  • Liu Y-Q, Yang L, Tian X (2007) Podophyllotoxin: current perspectives. Curr Bioact Compd 3: 37–66

    Article  CAS  Google Scholar 

  • Liu X, Dong M, Chen X et al (2008a) Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78:241–247

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Tian R, Liu S, Chen X et al (2008b) Pestaloficiols A-E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 16:6021–6026

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Ding X, Deng B et al (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Cai X-L, Yang H et al (2010a) The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L) Druce. Planta Med 76:185–189

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Ding X, Deng B et al (2010b) 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol Lett 32:689–693

    Article  PubMed  CAS  Google Scholar 

  • Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F et al (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra S, Banerjee D (2010) Diversity and screening for antimicrobial activity of endophytic fungi from Alstonia scholaris. Acta Microbiol Immunol Hung 57:215–23

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Sumarah MW, Adams GW (2008) Effect of a rugulosin-producing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol 34:362–368

    Article  PubMed  CAS  Google Scholar 

  • Nicolaou KC, Yang Z, Liu JJ et al (1994) Total synthesis of taxol. Nature 367:630–634

    Article  PubMed  CAS  Google Scholar 

  • Ogawara H, Higashi K, Machida T et al (1994) Inhibitors of diacylglycerol kinase from Drechslera sacchari. J Antibiot 47:499–501

    PubMed  CAS  Google Scholar 

  • Ojima I, Habus I, Zhao M et al (1992) New and efficient approaches to the semisynthesis of taxol and its C-13 side chain analogs by means of [beta]-lactam synthon method. Tetrahedron 48:6985–7012

    Article  CAS  Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Alfermann AW (2001) The production of cytotoxic lignans by plant cell cultures. Appl Microbiol Biotechnol 55:135–142

    Article  PubMed  CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JA, Hirano SS (eds) Microbial ecology of leaves. Springer Verlag, New York, pp 179–197

    Google Scholar 

  • Phongpaichit S, Nikom J, Rungjindamai N et al (2007) Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immun Med Microbiol 51:517–525

    Article  CAS  Google Scholar 

  • Pimentel MR, Molina G, Dionísio AP et al (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int. doi:104061/2011/576286

    PubMed  Google Scholar 

  • Pongcharoen W, Rukachaisirikul V, Phongpaichit S et al (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Powell RG, Petroski RJ (1992) Alkaloid toxins in endophyte-infected grasses. Nat Toxins 1: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Puri SC, Verma V, Amna T et al (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  PubMed  CAS  Google Scholar 

  • Puri SC, Nazir A, Chawla R et al (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122: 494–510

    Article  PubMed  CAS  Google Scholar 

  • Qin JC, Zhang YM, Gao JM et al (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19: 1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rehman S, Shawl AS, Verma V et al (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl Biokhim Mikrobiol 44:225–231

    PubMed  CAS  Google Scholar 

  • Riche C, Pascard-Billy C, Devys M et al (1974) Crystal and molecular structure of phomenone, phytotoxin from the mushroom Phoma exigua. Tetrahedron Lett 15:2765–2766

    Article  Google Scholar 

  • Rodriguez RJ, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Rosa LH, Gonçalves VN, Caligiorne RB et al (2010) Leishmanicidal, trypanocidal, and cytotoxic activities of endophytic fungi associated with bioactive plants in Brazil. Braz J Microbiol 41:420–430

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander ML et al (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Sayers EW, Barrett T, Benson DA et al (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37 Database issue: D5–15

    Google Scholar 

  • Schaeffer JM, Frazier EG, Bergstrom AR et al (1990) Cochlioquinone A, a nematocidal agent which competes for specific [3H]ivermectin binding sites. J Antibiot 43:1179–1182

    PubMed  CAS  Google Scholar 

  • Scherlach K, Boettger D, Remme N et al (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27:869–886

    Article  PubMed  CAS  Google Scholar 

  • Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111

    Article  Google Scholar 

  • Schneider G, Anke H, Sterner O (1995) Xylarin, an antifungal xylaria metabolite with an unusual tricyclic uronic acid moiety. Nat Prod Res 7:309–316, formerly Nat Prod Lett 7: 1478–6427

    Article  CAS  Google Scholar 

  • Sekita S, Yoshihira K, Natori S et al (1973) Structures of chaetoglobosin A and B, cytotoxic metabolites of Chaetomium globosum. Tetrahedron Lett 23:2109–2112

    Article  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT et al (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E Mey ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  PubMed  CAS  Google Scholar 

  • Sieber-Canavesi F, Sieber TN (1987) Endophytische Pilze in Tanne (Abies alba Mill)-Vergleich zweier Standorte im Schweizer Mittelland (Naturwald-Aufforstung). Sydowia 40:250–273

    Google Scholar 

  • Sieber-Canavesi F, Sieber TN (1993) Successional patterns of fungal communities in needles of European silver fir (Abies alba Mill). New Phytol 125:149–161

    Article  Google Scholar 

  • Siges TH, Hartemink AE, Hebinck P et al (2005) The invasive shrub Piper aduncum and rural livelihoods in the Finschhafen area of Papua New Guinea. Hum Ecol 33:875–893

    Article  Google Scholar 

  • Silva GH, de Oliveira CM, Teles HL et al (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3:164–167

    Article  CAS  Google Scholar 

  • Staniek A, Woerdenbag HJ, Kayser O (2009) Taxomyces andreanae: a presumed paclitaxel producer demystified? Planta Medica 75:1561–1566

    Article  PubMed  CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  PubMed  CAS  Google Scholar 

  • Stone JK, Polishook JD, White JF (2004) Endophytic fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi – inventory and monitoring methods. Elsevier Academic Press, San Diego, pp 241–270

    Google Scholar 

  • Strobel G (2010) Muscodor species – endophytes with biological promise. Phytochem Rev. doi:10.1007/s11101-010-9163-3

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Hess W, Li J et al (1997) Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot 45:1073–1082

    Article  CAS  Google Scholar 

  • Strobel G, Dirkse E, Sears J et al (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiol 147:2943–2950

    CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  • Sumarah MW, Adams GW, Berghout J et al (2008a) Spread and persistence of a rugulosin-producing endophyte in Picea glauca seedlings. Mycol Res 112:731–736

    Article  PubMed  Google Scholar 

  • Sumarah MW, Puniani E, Blackwell BA et al (2008b) Characterization of polyketide metabolites from foliar endophytes of Picea glauca. J Nat Prod 71:1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Sumarah MW, Puniani E, Sørensen D et al (2010) Secondary metabolites from anti-insect extracts of endophytic fungi isolated from Picea rubens. Phytochem 71:760–765

    Article  CAS  Google Scholar 

  • Sutjaritvorakul T, Whalley AJS, Sihanonth P et al (2010) Antimicrobial activity from endophytic fungi isolated from plant leaves in Dipterocarpous forest at Viengsa district Nan province, Thailand. J Agric Technol 6:309–315

    Google Scholar 

  • Swaminathan C, Raguraman S (2008) Silviculture of neem and its role in agroforestry and social forestry. In: Singh KK, Phogat S, Tomar A, Dhillon RS (eds) Neem: a treatise. I.K. International Publishing House Pvt. Ltd., New Delhi

    Google Scholar 

  • Tabata H (2004) Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol 87:1–23

    PubMed  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Tansuwan S, Pornpakakul S, Roengsumran S et al (2007) Antimalarial benzoquinones from an endophytic fungus, Xylaria sp. J Nat Prod 70:1620–1623

    Article  PubMed  CAS  Google Scholar 

  • Thomas A, Packham JR (2007) Ecology of woodlands and forests – description, dynamics and diversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Tredici PD (2000) The evolution, ecology, and cultivation of Ginkgo biloba. In: van Beek TA (ed) Ginkgo biloba medicinal and aromatic plants – industrial profiles. CRC, Boca Raton

    Google Scholar 

  • Umeda M, Ohtsubo K, Saito M et al (1975) Cytotoxicity of new cytochalasans from Chaetomium globosum. Experientia 31:435–438

    Article  PubMed  CAS  Google Scholar 

  • Wall ME, Wani MC, Cook CE et al (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  • Wang J, Li G, Lu H et al (2000) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Wu J, Mei X (2001) Enhancement of taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal. Appl Microbiol Biotechnol 55:404–410

    Article  PubMed  CAS  Google Scholar 

  • Wani MC, Taylor HL, Wall ME et al (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  PubMed  CAS  Google Scholar 

  • Weber D (2009) Endophytic fungi, occurrence and metabolites. In: Anke T, Weber D (eds) The mycota XV – physiology and genetics: selected basic and applied aspects. Springer, Berlin, pp 153–196

    Google Scholar 

  • Wu S-H, Chen Y-W, Shao S-C et al (2008) Ten-membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J Nat Prod 71:731–734

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Ge H, Song Y et al (2009a) Cytotoxic cytochalasin metabolites of endophytic Endothia gyrosa. Chem Biodivers 6:739–745

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Pang J, Lu B et al (2009b) Two metabolites with DNA-binding affinity from the mangrove fungus Xylaria sp. (nr 2508) from the South China Sea Coast. Chin J Chem 27:365–368

    Article  CAS  Google Scholar 

  • Yamada T, Doi M, Shigeta H et al (2008) Absolute stereostructures of cytotoxic metabolites, chaetomugilins A-C, produced by a Chaetomium species separated from a marine fish. Tetrahedron Lett 49:4192–4195

    Article  CAS  Google Scholar 

  • Yee WL, Lacey LA, Bishop BJ (2009) Pupal mortality and adult emergence of western cherry fruit fly (Diptera: Tephritidae) exposed to the fungus Muscodor albus (Xylariales: Xylariaceae). J Econ Entomol 102:2041–2047

    Article  PubMed  CAS  Google Scholar 

  • Yoganathan K, Yang L-K, Rossant C et al (2004) Cochlioquinones and epi-cochlioquinones: antagonists of the human chemokine receptor CCR5 from Bipolaris brizae and Stachybotrys chartarum. J Antibiot 57:59–63

    PubMed  CAS  Google Scholar 

  • Young DH, Michelotti EL, Swindell CS et al (1992) Antifungal properties of taxol and various analogues. Cell Mol Life Sci 48:882–885

    Article  CAS  Google Scholar 

  • Yu H, Zhang L, Li L et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449

    Article  PubMed  CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23: 753–771

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Zhou P-P, Jiang C et al (2008) Screening of Taxol-producing fungi based on PCR amplification from Taxus. Biotechnol Lett 30:2119–2123

    Article  PubMed  CAS  Google Scholar 

  • Zhang C-L, Wang G-P, Mao L-J et al (2010) Muscodor fengyangensis sp. nov from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol 114: 797–808

    Article  PubMed  CAS  Google Scholar 

  • Zhong J-J (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94:591–599

    PubMed  CAS  Google Scholar 

  • Zhou X, Zhu H, Liu L et al (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717

    Article  PubMed  CAS  Google Scholar 

  • Zhu F, Chen X, Yuan Y et al (2009) The chemical investigations of the mangrove plant Avicennia marina and its endophytes. Open Nat Prod J. doi:102174/18748481009020100241

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Schueffler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schueffler, A., Anke, T. (2011). Antimicrobial Compounds from Tree Endophytes. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1599-8_17

Download citation

Publish with us

Policies and ethics