Skip to main content

Endophytes in Forest Management: Four Challenges

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 80))

Abstract

In spite of exciting, new research, endophytes remain more of a potentiality than an actuality in forestry. Of many upcoming challenges to endophyte applications in forestry, four are discussed in this chapter: (1) the assay-based, selection problem, (2) the question of replacement dynamics within complex, endophytic communities, (3) the need to complement the objectives of tree improvement programs, and (4) the decisions that will need to be made on deliberate introductions of selected endophytes outside sites where they were initially discovered. Ideally, endophytes selected in assays would first be effective as inoculants in improving the survival, growth or defense of trees in the forest setting. Furthermore, inoculants would be resistant to replacement by combative, unselected endophytes, complementary to genetically improved traits of trees in plantations, and unlikely to switch hosts and ecological roles when moved from one part of the world to another. Progress towards applications will likely be made as foresters become more aware of the potential of endophytes to extend host adaptations to pathogens, herbivores, anthropogenic disturbance and climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlholm JU, Helander M, Henriksson J et al (2002) Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 56:1566–1573

    PubMed  Google Scholar 

  • Akello J, Dubois T, Gold CS et al (2007) Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J Invert Pathol 96:34–42

    Article  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS et al (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Bailey BA, Bae H, Strem MD et al (2008) Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46:24–35

    Article  Google Scholar 

  • Bailey BA, Bae H, Strem MD et al (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    Article  PubMed  CAS  Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988

    Article  CAS  Google Scholar 

  • Booth BD, Larson DW (1999) Impact of language, history and choice of system on the study of assembly rules. In: Weiher E, Keddy P (eds) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge, pp 206–229

    Chapter  Google Scholar 

  • Cornelissen JHC, Cerabolini B, Castro-Díez P et al (2003) Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J Veg Sci 14:311–322

    Article  Google Scholar 

  • Coyle DR, Nebeker TE, Hart ER et al (2005) Biology and management of insect pests in North American intensively managed hardwood forest systems. Annu Rev Entomol 50:1–29

    Article  PubMed  CAS  Google Scholar 

  • Daubenmire R (1968) Plant communities: a textbook of plant synecology. Harper & Row, New York, Evanston, London, 300 p

    Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  PubMed  CAS  Google Scholar 

  • Dowkiw A, Bastien C (2004) Characterization of two major genetic factors controlling quantitative resistance to Melampsora larici-populina leaf rust in hybrid poplars: strain specificity, field expression, combined effects, and relationship with a defeated qualitative resistance gene. Phytopathology 94:1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Enebak SA, Carey WA (2000) Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growth-promoting rhizobacteria. Plant Dis 84:306–308

    Article  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    Article  PubMed  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br J Exp Pathol 10:226–236

    CAS  Google Scholar 

  • Fukami T, Morin PJ (2003) Productivity-biodiversity relationships depend on the history of community assembly. Nature 424:423–426

    Article  PubMed  CAS  Google Scholar 

  • Gagné A, Jany JL, Bousquet J et al (2006) Ectomycorrhizal fungal communities of nursery-inoculated seedlings outplanted on clear-cut sites in northern Alberta. Can J For Res 36:1684–1694

    Article  Google Scholar 

  • Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci 101:10107–10112

    Article  PubMed  CAS  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327

    Article  PubMed  Google Scholar 

  • Ganley RJ, Sniezko RA, Newcombe G (2008) Endophyte-mediated resistance against white pine blister rust in Pinus monticola. For Ecol Manag 255:2751–2760

    Article  Google Scholar 

  • Gilbert SF, McDonald E, Boyle N et al (2010) Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. Philos Trans R Soc B: Biol Sci 365:671–678

    Article  Google Scholar 

  • Gold A, Giraud T, Hood ME (2009) Within-host competitive exclusion among species of the anther smut pathogen. BMC Ecol 9:11

    Article  PubMed  Google Scholar 

  • Gure A, Wahlstrom K, Stenlid J (2005) Pathogenicity of seed-associated fungi to Podocarpus falcatus in vitro. For Pathol 35:23–35

    Google Scholar 

  • Höfnagels MH, Linderman RG (1999) Biological suppression of seedborne Fusarium spp. during cold stratification of Douglas-fir seeds. Plant Dis 83:845–852

    Article  Google Scholar 

  • Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol Monogr 68:465–485

    Article  Google Scholar 

  • Kaltz O, Gandon S, Michalakis Y et al (1999) Local maladaptation in the anther-smut fungus Microbotryum violaceum to its host plant Silene latifolia: evidence from a cross-inoculation experiment. Evolution 53:395–407

    Article  Google Scholar 

  • Kayihan GC, Huber DA, Morse AM et al (2005) Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theor Appl Genet 110:948–958

    Article  PubMed  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  PubMed  CAS  Google Scholar 

  • Krauss J, Harri SA, Bush L et al (2007) Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Funct Ecol 21:107–116

    Article  Google Scholar 

  • Lefevre F, Goue-Mourier MC, Faivre-Rampant P et al (1998) A single gene cluster controls incompatibility and partial resistance to various Melampsora larici-populina races in hybrid poplars. Phytopathology 88:156–163

    Article  PubMed  CAS  Google Scholar 

  • Lillemo M, Asalf B, Singh RP et al (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Mangan SA, Schnitzer SA, Herre EA et al (2010) Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–755

    Article  PubMed  CAS  Google Scholar 

  • McLellan CA, Turbyville TJ, Wijeratne EM et al (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145:174–182

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Mackenzie S, Foto M et al (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106:471–479

    Article  Google Scholar 

  • Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625–627

    Article  PubMed  CAS  Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M et al (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Namkoong G (1991) Maintaining genetic diversity in breeding for resistance in forest trees. Annu Rev Phytopathol 29:325–342

    Article  Google Scholar 

  • Newcombe G, Dugan F (2010) Fungal pathogens of plants in the homogocene. In: Gherbawy Y, Voigt K (eds) Molecular identification of fungi. Springer, Berlin, Heidelberg, New York, pp 3–35

    Chapter  Google Scholar 

  • Newcombe G, Martin F, Kohler A (2010) Defense and nutrient mutualisms in Populus. In: Jansson S, Groover AT, Bhalerao RP (eds) Genetics and genomics of Populus. Springer, New York, Dordrecht, Heidelberg, London, pp 247–278

    Google Scholar 

  • Newcombe G, Shipunov A, Eigenbrode SD et al (2009) Endophytes influence protection and growth of an invasive plant. Commun Integr Biol 2:1–3

    Article  Google Scholar 

  • Olden JD, Poff NL, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  PubMed  Google Scholar 

  • Omacini M, Eggers T, Bonkowski M et al (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  • Pan JJ, Baumgarten AM, May G (2008) Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays). New Phytol 178:147–156

    Article  PubMed  Google Scholar 

  • Peterson RS (1960) Western gall rust on hard pines. Forest Pest Leaflet No. 50. Department of Agriculture, Forest Service, Fort Collins.

    Google Scholar 

  • Redman RS, Seehan KB, Stout RG et al (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    Article  PubMed  CAS  Google Scholar 

  • Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103–113

    Article  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM et al (2000) Plant invasions – the role of mutualisms. Biol Rev 75:65–93

    Article  PubMed  CAS  Google Scholar 

  • Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the southern hemisphere: determinants of spread and invadability. J Biogeogr 21:511–527

    Article  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Change 9:261–272

    Article  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Rossman AY, Farr DF, Platas G et al (2008) Hydropisphaera fungicola Rossman, Farr & Newcombe, sp. nov. Fungal Planet 24:1–2

    Google Scholar 

  • Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia 144:463–471

    Article  PubMed  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M et al (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Sedjo R (2005) Sustainable forestry in a world of specialization and trade. In: Kant S, Berry RA (eds) Institutions, sustainability, and natural resources. Springer, Dordrecht, pp 211–231

    Chapter  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Springer YP (2007) Clinal resistance structure and pathogen local adaptation in a serpentine flax–flax rust interaction. Evolution 61:1812–1822

    Article  PubMed  Google Scholar 

  • Stanton BJ, Neale DB, Li S (2010) Populus breeding: from the classical to the genomic approach. In: Jansson S, Groover AT, Bhalerao RP (eds) Genetics and genomics of Populus. Springer, New York, Dordrecht, Heidelberg, London, pp 309–348

    Google Scholar 

  • Stone JK (1987) Initiation and development of latent infections by Rhabdocline parkeri on Douglas-fir. Can J Bot 65:2614–2621

    Article  Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–29

    Google Scholar 

  • Sullivan TJ, Faeth SH (2008) Local adaptation in Festuca arizonica infected by hybrid and nonhybrid Neotyphodium endophytes. Microb Ecol 55:697–704

    Article  PubMed  CAS  Google Scholar 

  • Sumarah MW, Adams GW, Berghout J et al (2008) Spread and persistence of a rugulosin-producing endophyte in Picea glauca seedlings. Mycol Res 112:731–736

    Article  PubMed  Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ et al (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    Article  PubMed  Google Scholar 

  • Todd D (1988) The effects of host genotype, growth rate, and needle age on the distribution of a mutualistic, endophytic fungus in Douglas-fir plantations. Can J For Res 18:601–605

    Article  Google Scholar 

  • Varma A, Verma S, Sahay N et al (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    PubMed  CAS  Google Scholar 

  • Verma S, Varma A, Rexer KH et al (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Vu T, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852

    Article  Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  PubMed  CAS  Google Scholar 

  • Webber J (1981) A natural biological control of Dutch elm disease. Nature 292:449–450

    Article  Google Scholar 

  • Weiher E, Keddy P (1999) Assembly rules as general constraints on community composition. In: Weiher E, Keddy P (eds) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge, pp 251–271

    Chapter  Google Scholar 

  • Wilson JB (1999) Assembly rules in plant communities. In: Weiher E, Keddy P (eds) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge, pp 130–164

    Chapter  Google Scholar 

  • Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci 100:10452–10459

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Newcombe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Newcombe, G. (2011). Endophytes in Forest Management: Four Challenges. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1599-8_16

Download citation

Publish with us

Policies and ethics