Skip to main content

Bioremediation of Pesticides from Soil and Wastewater

  • Chapter
  • First Online:
Environmental Protection Strategies for Sustainable Development

Part of the book series: Strategies for Sustainability ((STSU))

Abstract

The rapid increase in demand and development of industrial chemicals, fertilizers, pesticides and pharmaceuticals to sustain and improve quality of life worldwide have resulted in the contamination and high prevalence of these chemicals in air, water and soils, posing a potential threat to the environment. Pesticides are a common hazard around the world, as these chemicals are leaching into soils, groundwater and surface water and creating health concerns in many communities. The persistence of pesticides makes their removal and detoxification a more urgent undertaking. The toxicity or the contamination of pesticides can be reduced by the bioremediation process which involves the use of microbes or plants. Bioremediation technologies have been successfully employed in the field and are gaining more and more importance with increased acceptance of eco-friendly remediation solutions. Owing to complex nature of pesticides, more versatile and robust techniques need to be developed which can produce the desired result in a very cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh N (2009) Pesticide use and application: An Indian Scenario. J Hazard Mater 165:1-12

    Article  CAS  Google Scholar 

  • Adhya TK, Wahid PA, Sethunathan N (1987) Persistence and biodegradation of selected organophosphorus insecticides in flooded versus non-flood soils. Biol Fertil Soils 4:36-40

    Google Scholar 

  • Agrios GN (2002) Plant Pathology, IV Edition. ISBN 0120445646, Academic Press, London

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley Eastern Ltd, New Delhi

    Google Scholar 

  • Alexander M (1994) Biodegradation and Bioremediation. Academic, New York

    Google Scholar 

  • Alexander M (1995) How toxic are chemicals in soil? Environ Sci Technol 29:2713-2717

    Article  CAS  Google Scholar 

  • Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enj Microbial Technol 37:487-496

    Article  CAS  Google Scholar 

  • Anon (1994) Biotechnology for a clean environment: prevention, Detection, Remediation, Organization for Economic Cooperation and Development, Paris, France

    Google Scholar 

  • Anon (2003) Herbicide Use Essential to Crop Production, Chemical market reporter, vol 263, No 18, p4

    Google Scholar 

  • Anon (2005) Ingenuity thrives in battle to beat pests and rodents. Poultry World 159(7):28

    Google Scholar 

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400-405

    Article  CAS  Google Scholar 

  • Araújo ASF, Monterio RTR, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799-804

    Article  CAS  Google Scholar 

  • Arshad M, Hussain S, Saleem M (2007) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104:364-370

    Google Scholar 

  • Aust SD, Swaner PR, Stahl JD (2004) Detoxification and metabolism of chemicals by white-rot fungi. In: Zhu JJPC, Aust SD, Lemley Gan AT (eds) Pesticide decontamination and detoxification, Oxford, Washington DC, pp 3-14

    Google Scholar 

  • Austin RB (1998) Yield of wheat in the UK: Recent advances and prospects. Annual Meeting of the crop Science Society of America

    Google Scholar 

  • Baczynski TP, Pleissner D, Groten Huis T (2010) Anaerobic biodegradation of organochlorine pesticides in contaminated soil-significance of temperature and availability. Chemosphere 78(1):22-28

    Article  CAS  Google Scholar 

  • Bailey AM, Coffey MD (1985) Biodegradation of Metalaxyl in avocado soils. Phytopathology 74:135-137

    Article  Google Scholar 

  • Banerjee A, Padhi S, Adhya TK (1999) Persistence and biodegradation of vinclozolin in tropical rice soils. Pestic Sci 55:1177-1181

    Article  CAS  Google Scholar 

  • Baarschers WH, Heitland HS (1986) Biodegradation of fenitrothion and fenitrooxon by the fungus Trichoderma viride. J Ag Food Chem 34(4):707-709

    Article  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms the white-rot fungi use to degrade pollutants. Env Sci Technol 28:79A-87A

    Google Scholar 

  • Beaudette LA, Davies S, Fedorak PM, Ward O P, Pickard MA (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white-rot fungi. Appl Environ Microbiol 64:2020-2025

    CAS  Google Scholar 

  • Betts WD (ed) (1991) Biodegradation: natural and synthetic materials. Springer, Germany

    Google Scholar 

  • Bhatia MR, Fox-Rushby J, Mills A (2004) Cost-effectiveness of malaria control interventions when malaria mortality is low: insecticide-treated nets versus in-house residual spraying in India. Soc Sci Med 59:525-539

    Article  Google Scholar 

  • Bhupathiraju VK, Krauter P, Holman H-YN, Conrad ME, Daley PF, Templeton AS, Hunt JR, Hernandez M, Alvarez-Cohen L (2002) Assessment of in-situ bioremediation at a refinery waste-contaminated site and an aviationgasoline contaminated site. Biodegradation 13:79-90

    Article  CAS  Google Scholar 

  • Briceno G, Palma G, Duran N (2007) Influence of organic amendment on the biodegradation and movement of pesticides. Critic Rev Environ Sci Technol 37:233-271

    Article  CAS  Google Scholar 

  • Bhushan B, Paquet L, Halasz A, Spain JC, Hawari J (2003) Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions. Biochem Biophys Res Commun 306:509-515

    Article  CAS  Google Scholar 

  • Brown I (2004) UK pesticides residue committee report 2004: http://www.pesticides.gov.uk/uploadedfiles/Web_Assets/PRC/PRC

    Google Scholar 

  • Bumpus JA, Kakar SN, Coleman RD (1993) Fungal degradation of organophosphorous insecticides. Appl Biochem Biotechnol 39:715-726

    Article  Google Scholar 

  • Burns RG (1975) Factors affecting pesticides loss from soil. In: Paul EA, McLaren AD (eds) Soil biochemistry, vol 4. Marcel Dekker, New York, pp 103-141

    Google Scholar 

  • Burns RG, Edwards JA (1980) Pesticide breakdown by soil enzymes. Pest Sci 11:506-512

    Article  CAS  Google Scholar 

  • Caplan JA (1993) Trends Biotechnol 11:320-323

    Google Scholar 

  • Chakrabarty T, Subrahmanyam PVR, Sundaresan BB (1988) Biodegradation of recalcitrant industrial wastes. In: Wise D (ed) Bio- treatment Systems, vol 2. CRC Press, Boca Raton. pp 172-234

    Google Scholar 

  • Cohen M (2007) Environmental toxins and health-the health impact of pesticides. Aus Fam Phy 36(12):1002-1004

    Google Scholar 

  • Colleran E (1997) Uses of bacteria in bioremediation. In: Sheehan D (ed) Methods in Biotechnology, vol 2, Bioremediation Protocols. Humana Press, New Jersey, pp 3-22

    Chapter  Google Scholar 

  • Cork DJ, Krueger JP (1991) Mirobial transformation of herbicides and pesticides. Adv Appl Microbiol 36:1-66

    Article  CAS  Google Scholar 

  • Croplife (2004) International at: http://www.croplife.org/default.aspx

    Google Scholar 

  • Crawford RL, Crawford DL (1996) Bioremediation principles and applications. Cambridge, UK

    Google Scholar 

  • Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68:864-70

    Article  CAS  Google Scholar 

  • Das AC, Mukherjee D (2000) Influence of insecticides on microbial transformation of nitrogen and phosphorus in typic orchragualf soil. Agric Food Chem 48:3728-3732

    Article  CAS  Google Scholar 

  • Das AC, Chakravarty A, Sen G, Sukul P, Mukherjee D (2005) A comparative study on the dissipation and microbial metabolism of organophosphate and carbamate insecticides in orchaqualf and fluvaquent soils of West Bengal. Chemosphere 58:579-584

    Article  CAS  Google Scholar 

  • Deeb RA, Cohen L (2000) Aerobic biotransformation of gasoline aromatics in multicomponent mixtures. Bioremediation J 4(1):1-9

    Article  Google Scholar 

  • Delacollette C (ed) (2004) Global strategic framework for integrated vector management. World Health Report

    Google Scholar 

  • Dietary guidelines for Americans (2005) US Department of Health and Human Services, US Department of Agriculture

    Google Scholar 

  • Dindal DL (1990) Soil biology guide. Wiley, New York

    Google Scholar 

  • Droby S, Coffey MD (1991) Biodegradation processes and the nature of metabolism of metalaxyl in soil. Ann Appl Biol 118:543-553

    Article  CAS  Google Scholar 

  • Gianessi L (1999) Beneficial impacts of pesticide use for consumers in Ragsdale, Nancy, Seiber J (eds), Pesticides: Managing Risks and Optimizing Benefits, American Chemical Society Symposium Series #734, American Chemical Society, Washington DC, USA, p207

    Google Scholar 

  • EPA REACH IT (2004) “Remediation and characterization innovative technologies.” Information snapshots: Technologies by type

    Google Scholar 

  • Evans C, Hedger J (2001) Degradation of cell wall polymers. In: Gadd G (ed) Fungi in Bioremediation. Cambridge, UK

    Google Scholar 

  • Ferguson JF, Pietari JMH (2000) Anaerobic transformations and bioremediation of chlorinated solvents. Environ Pollut 107:209-215

    Article  CAS  Google Scholar 

  • Frankland P, Frankland MP (1894) Micro-organisms in Water. Longmans Green, London

    Google Scholar 

  • Gander M, Jefferson B, Judd S (2000) Aerobic MBRs for domestic waste water treatment: a review with cost considerations. Sep Purif Technol 18:119-130

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4):528-534

    CAS  Google Scholar 

  • Gold RE, Howell HN, Pawson BM, Wright MS, Lutz JL (1996) Persistence and bioavailability of termicides to subterranean termites from five soils types and location in Texas. Sociobiol 28:337-363

    Google Scholar 

  • Gogate PR, Pandit AR (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501-551

    Article  CAS  Google Scholar 

  • Gratz NG (1994) What role for insecticides in vector control programs? Am J Trop Med Hyg 50(6):11-20

    CAS  Google Scholar 

  • Grommen R, Verstraete W (2002) Environmental biotechnology: the ongoing quest. J Biotechnol 98:113-123

    Article  CAS  Google Scholar 

  • Gupta S, Gajbhiye VT (2002) Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemosphere 47:901-906

    Article  CAS  Google Scholar 

  • Hafez HFH, Theimann WHP (2003) Persistence and biodegradation of iazinone and imidacloprid in soil. Proc XII Symp Pest Chem, Congress Centre Universita Cattolica, Via Emilia Parmense 84, Piacenza, pp 35-42

    Google Scholar 

  • Hance RJ (1973) The effects of nutrients on the decomposition of the herbicides atrazine and linuron incubated with soil. Pestic Sci 4:817-822

    Article  CAS  Google Scholar 

  • Handa SK, Agnihotri NP, Kulshreshtha G (1999) Effect of pesticide on soil fertility. In Pesticide residues; Significance, Management and analysis, pp 184-198

    Google Scholar 

  • Head MA, Oleszkiewicz JA (2004) Bioaugmentation for nitrification at cold temperatures. Water Res 38:523-530

    Article  CAS  Google Scholar 

  • Hicks RJ, Stotzky G, Voris PV (1990) Review and evaluation of the effects of xenobiotic chemicals on microorganisms in soil. Adv Appl Microbiol 35:195-253

    Article  CAS  Google Scholar 

  • Hong, Q, Zhang ZH, Hong YF, Li SP (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp FDS-1. Int Biodeter Biodeg 59:55-61

    Article  CAS  Google Scholar 

  • Hughes JB, Neale CN, Ward CH (2000) Bioremediation. Enclyclopedia of microbiology, 2nd edn. Academic, New York, pp 587-610

    Google Scholar 

  • Hwang S, Cutright TJ (2002) Biodegradability of aged pyrene and phenenthrene in a natural soil. Chemosphere 47:891-899

    Article  CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1-8

    CAS  Google Scholar 

  • Jha D, Chand R (1999) National Centre for Agricultural Economics and Policy Research (ICAR), New Delhi, India from Agro-chemicals News in Brief Special Issue

    Google Scholar 

  • Jianlong W, Xiangchun Q, Libo W, Yi Q, Hegemann W (2002) Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater. Process Biochem, Oxford, UK, 38:777-781

    Article  Google Scholar 

  • Jitender K, Kumar J, Prakash J (1993) Persistence of thiobencarb and butachlor in soil incubated at different temperatures. In: Integrated weed management for sustainable agriculture. Proc. Indian Soc. Weed. Sci. Int. Seminar. Hisar, India, pp 123-124

    Google Scholar 

  • Jones WJ, Ananyeva ND (2001) Correlations between pesticide transformation rate and microbial respiration activity in soil of different ecosystems. Biol Fertil Soils 33:477-483

    Article  CAS  Google Scholar 

  • Karpouzas DG, Fotopoulou A, Menkissoglu-Spiroudi U, Singh BK (2005) Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol Ecol 53:369-378

    Article  CAS  Google Scholar 

  • Karpouzas DG, Walker A, Williams RJF, Drennan DS (1999) Evidence for the enhanced biodegradation of ethoprophos and carbofuran in soils from Greece and the UK. Pest Sci 55:301-311

    Article  CAS  Google Scholar 

  • Kumar M, Philip L (2006) Enrichment and isolation of a mixed bacterial culture for complete mineralization of endosulfan. J Environ Sci Health 41:81-96

    Article  CAS  Google Scholar 

  • Kumar S, Mukerji KG, Lal R (1996) Molecular aspects of pesticide degradation by microorganisms. Critical Rev Microbiol 22(1):1-26

    Article  CAS  Google Scholar 

  • Lal R, Dadhwal M, Kumari K, Sharma P, Singh A, Kumari H, Jit S, Gupta SK, Nigam A, Lal D, Verma M, Kaur J, Bala K, Jindal S (2007) Pseudomonas sp to Sphingobium indicum: a journey of microbial degradation and bioremediation of Hexachlorocyclohexane. Indian J Microbiol 48:3-18

    Article  Google Scholar 

  • Lewis, Nancy M, Ruud J (2004) Apples in the American Diet. Nutrition in Clinical Care 7(2):82

    Google Scholar 

  • Lewis, Nancy M, Ruud J (2005) Blueberries in the American Diet. Nutrition Today 40(2):92

    Google Scholar 

  • Majeau J-A, Satinder KB, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Biresour Technol 101:2331-2350

    Article  CAS  Google Scholar 

  • Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and characterization of a Pseudomonas sp that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451-1457

    CAS  Google Scholar 

  • Maroli M (2004) Prevenzione e controllo dei vettori di leishmaniosi: attuali metodologie. Parassitologia 46:211-215

    CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacteria community composition in the rhizosphere. Soil Biol Biochem 33:1437-1445

    Article  CAS  Google Scholar 

  • Martikainen E, Haimi J, Ahtiainen J (1998) Effects of dimethoate and benomyl on soil organisms and soil processes: A microcosm study. Appl Soil Ecol 9:381-387

    Article  Google Scholar 

  • Masaphy S, Levanon D, Vaya J, Henis Y (1993). Isolation and characterization of a novel atrazine metabolite produced by the fungus Pleurotus pulmonarius, 2-chloro-4-ethylamino-6-(1-hydroxyisopropyl)amino-1,3,5-triazine. Appl Environ Microbiol 59:4342-4346

    CAS  Google Scholar 

  • Matsumoto E, Kawanaka Y, Yun S, Oyaizu H (2009) Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Appl Microbiol Biotechnol 84:205-216

    Article  CAS  Google Scholar 

  • Megharaj M, Kantachote D, Singleton I, Naidu R (2000) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformations of DDT. Environ Pollution 109:35-42

    Article  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizae—extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32:1475-1484

    Article  CAS  Google Scholar 

  • Melling FB Jr (1993) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York

    Google Scholar 

  • Moretti L (2005) In situ bioremediation of DNAPL source zones Washington, DC: US EPA, Office of Solid Waste and Emergency Response Technology Innovation and Field Services Division. Available at: http://wwwclu-inorg/download/studentpapers/moretti dnaplbioremediationpdf (available October 7, 2009)

    Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P (1994) Biotransformation of the herbicide atrazine by the white-rot fungus Phanerochaete chrysosporin. Appl Environ Microbiol 60:705-708

    CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195-206

    Google Scholar 

  • Murugesan AG, Jeyasanthi T, Maheswari S (2010) Isolation and characterization of cypermethrin utilizing bacteria from brinjal cultivated soil. Afr J Microbiol Res 4(1):10-13

    Google Scholar 

  • Panda S, Sahu SK (1999) Effects of malathion on the growth and reproduction of Drawida willsi (Oligochaete) under laboratory conditions. Soil Biol Biochem 31:363-366

    Article  CAS  Google Scholar 

  • Panda S, Sahu SK (2004) Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaete) following application of three pesticides to soil. Chemosphere 55:283-290

    Article  CAS  Google Scholar 

  • Pandey S, Singh DK (2004) Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soils. Chemosphere 55:197-205

    Article  CAS  Google Scholar 

  • Pastor M, Castro J (1995) Soil management systems and erosion. Olivae 59:64-74

    Google Scholar 

  • Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81-89

    Article  CAS  Google Scholar 

  • Perucci P, Dumontet S, Bufo SA, Mazzatura A, Casucci C (2000) Effects of organic amendments and herbicide treatment on soil microbial biomass. Biol Fertil Soils 32: Texas Sociobiol 28:337-363

    Google Scholar 

  • Phillips TM, Lee H, Trevors JT, Seech AG (2006) Full-scale in situ bioremediation of hexachlorocyclohexane-contaminated soil. J Chem Technol Biotechnol 81:289-298

    Article  CAS  Google Scholar 

  • Pimental D, Levitan L (1986) Pesticides: amounts applied and amounts reaching pests. Biosciences 36:86-91

    Article  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. App Microbiol Biotechnol 57:20-33

    Article  CAS  Google Scholar 

  • Prakash NB, Suseela Devi L (2000) Persistence of butachlor in soils under different moisture regime. J Ind Soc Soil Sci 48:249-256

    CAS  Google Scholar 

  • Purdue (2006) University at: http://www.hort.purdue.edu/rhodcv/hort640c/nuse/nu00003.htm

    Google Scholar 

  • Quan X, Shi H, Liu H, Wang J, Qian Y (2004) Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation. Process Biochem, Oxford, UK, 39:1701-1707

    Article  CAS  Google Scholar 

  • Quintero JC, Moreira MT, Feijoo G, Lema JM (2005) Effects of surfactants on the soil desorption of hexachlorocyclohexane (HCH) isomers and their anaerobic biodegradation. J Chem Technol Biotechnol 80(9):1005-1015

    Article  CAS  Google Scholar 

  • Plangklang P, Reungsang A (2010) Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor. Process Biochemistry 45:230-238

    Article  CAS  Google Scholar 

  • Racke KD, Skidmore MW, Hamilton DJ, Unsworth JB, Miyamoto J, Cohen SZ (1997) Pesticide fate in tropical soils. Pure Appl Chem 69:1349-1371

    Article  CAS  Google Scholar 

  • Rajagopal BS, Rao VR, Nagendrappa G, Sethunathan N (1984) Metabolism of carbaryl and carbofuran by soil -enrichment and bacterial cultures. Can J Microbiol 30:1458-1466

    Article  Google Scholar 

  • Rajeswari R, Kanmani S (2009) A study on degradation of pesticide wastewater by TiO2 catalysis. J Sci Indus Res 68:1063-1067

    CAS  Google Scholar 

  • Raymond RL, Jamison VW, Hudson JO Jr (1975) Final report on beneficial stimulation of bacterial activity in groundwater containing petroleum products. American petroleum institute, Washington

    Google Scholar 

  • Reddy BR, Sethunathan N (1985) Salinity and the persistence of parathion in flooded soil. Soil Biol Biochem 17:235-239

    Article  CAS  Google Scholar 

  • Robles-Gonzalez IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Fact 7:1-16

    Article  CAS  Google Scholar 

  • Ross G (2005) Risks and benefits of DDT. Lancet 366:1771-1772

    Google Scholar 

  • Sahu SK, Patnaik KK, Sharmila M, Sethunnathan N (1990) Degradation of alpha-, beta- and gamma- Hexachlorocyclohexane by a soil bacterium under aerobic conditions. Appl Environ Microbiol 56:3620-3622

    CAS  Google Scholar 

  • Sajc L, Novakovic GV (2000) Extractive bioconversion in a four phase external-loop airlift bioreactor. AIChE J 46(7):1368-1375

    Article  CAS  Google Scholar 

  • Sarma PN, Venkat Mohan S, Rama Krishna M, Shailaja S (2006) Bioremediation of pendimethalin contaminated soil by augmented bioslurry phase reactor operated in sequential batch (SBR) mode: Effect of substrate concentration. Indian J Biotechnol 5:169-174

    Google Scholar 

  • Sasek (2003) Why mycoremediations have not yet come to practice. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions, Kluwer Academis Publishers, New York, pp 247-276

    Chapter  Google Scholar 

  • Schmitz P (2003) Michael economic effects of chemical use reduction in European Agriculture, Institute of Agribusiness, University of GieBen, Germany

    Google Scholar 

  • Schroll R, Becher HH, Dorfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40:3305-3312

    Article  CAS  Google Scholar 

  • Schukken YH, van Schaik G, McDermott JJ, et al (2004) Transition models to assess risk factors for new and persistent trypanosome infections in cattle-analysis of longitudinal data from the Ghibe Valley, southwest Ethiopia. J Parasit 90:1279-1287

    Google Scholar 

  • Schuster E, Schröder D (1990) Side-effects of sequentially applied pesticides on non-target soil microorganisms: field experiments. Soil Biol Biochem 22:367-373

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New York

    Google Scholar 

  • Scragg A (2005) Bioremediation. Environ Biotechnol 173-229

    Google Scholar 

  • Shannon MJ, Unterman R (1993) Evaluating bioremediation: distinguishing fact from fiction. Ann Rev Microbiol v47(Annual 1993): pp 715(24)

    Google Scholar 

  • Shen Y, West C, Hutchins SR (2000) In vitro cytotoxicity of aromatic aerobic biotransformation products in bluegill sunfish BF-2 cells. Ecotoxicol Environ Saf 45:27-32

    Article  CAS  Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankenberger WT Jr (2002) Temperature and pH effects on biodegradation of hexachlorocyclohexane isomers in water and soil slurry. J Agric Food Chem 50:5070-5076

    Article  CAS  Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankenberger WT (2003) Enrichment and isolation of endosulfan-degrading microorganisms. J Environ Qual 32:47-54

    CAS  Google Scholar 

  • Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Tech 29:2905-2914

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Wright DJ (2006) Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: Influence of different environmental conditions. Soil Biol Biochem 38:2682-2693

    Article  CAS  Google Scholar 

  • Somsamak P, Cowan RM, Haggblom MM (2001) Anaerobic biotransformation of fuel oxygenates under sulfate-reducing conditions. FEMS Microbiol Ecol 37:259-264

    Article  CAS  Google Scholar 

  • Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298(1-3):17-61

    Google Scholar 

  • Srinivas T, Sridevi M, Mallaiah KV (2008) Effect of pesticides on Rhizobium and nodulation of green gram Vigna Radita (L) Wilczek ICFAI. J Life Sci 2:36-44

    Google Scholar 

  • Srinivasan U (2003) US bioremediation markets. Frost and Sullivan research report, no. 7857. Frost and Sullivan, Palo Alto, California, pp 1-300

    Google Scholar 

  • Subhas KS, Irvine RL (1998) Bioremediation: Fundamentals and Applications, Vol. 1, Technomic Publishing

    Google Scholar 

  • Sukul P, Spiteller M (2001) Influence of biotic and abiotic factors on dissipating metalaxyl in soil. Chemosphere 45:941-947

    Article  CAS  Google Scholar 

  • Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine oil spills bioremediation. Microbiol Rev 60:342-365

    CAS  Google Scholar 

  • Thom E, Ottow JCG, Benckiser G (1997) Degradation of the fungicide difenoconazole in a silt loam soil as affected by pretreatment and organic amendement. Environ Poll 96:409-414

    Article  CAS  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201-204

    Article  CAS  Google Scholar 

  • Topp E, Vallayes T, Soulas G (1997) Pesticides: Microbial degradation and effects on microorganisms. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Mercel Dekker, New York, pp 547-575

    Google Scholar 

  • Trindade PVO, Sobral LG, Rizzo AC L, Leite SGF, Soriano AU (2005) Bioremediation of a weathered and recently oil-contaminated soils from Brazil: A comparison study. Chemosphere 58:515-522

    Article  CAS  Google Scholar 

  • Twigg LE, Socha LV (2001) Defluorination of sodium monofluoroacetate by soil microorganisms from central Australia. Soil Biol Biochem 33:227-234

    Article  CAS  Google Scholar 

  • US Microbics. (2003) Annual Report FY-2003. http://www.bugsatwork.com/USMX/BUGS%20Report%20PRINT%20(07-13-04)%20Hawaii%20(paginate%201-8)

  • Van Acken B, Godefroid LM, Peres CM, Naveau H, Agathos SN(1999) Mineralization of 14C-U ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese-dependent peroxidase of the white-rot basidiomycete Phlebia radiata. J Biotechnol 68:159-169

    Article  Google Scholar 

  • Vasileva V, Ilieva A (2007) Effect of presowing treatment of seeds with insecticides on nodulating ability, nitrate reductase activity and plastid pigments content of lucerne (Medicago sativa L.). Agron Res 5:87-92

    Google Scholar 

  • Vidali M (2001) Bioremediation: An overview. Pure Appl Chem 73(7):1163-1172

    Article  CAS  Google Scholar 

  • Vijgen J (2005) Obsolete pesticides: how to solve a worldwide society problem? In: Lens P, Grotenhuis T, Malina G, Tabak H (eds) Soil and sediment remediation: mechanisms technologies and application. IWA Publishing, London, pp 331-340

    Google Scholar 

  • Vischetti C, Capri E, Trevisan M, Casucci C, Perucci P (2004) Biomass bed: a biological system to reduce pesticide point contaminationat farm level. Chemosphere 55:823-828

    Article  CAS  Google Scholar 

  • Walker N (1975) Microbial degradation of plant protection chemicals. In: Walker N (ed) Soil microbiology. Butterwoths, London, pp 181-194

    Google Scholar 

  • Walter-Echols G, Lichtenstein EP (1978) Movement and metabolism of 14C- phorate in a flooded soil system. J Agri Food Chem 26:599-604

    Article  CAS  Google Scholar 

  • Walters GW, Aitken MD (2001) Surfactant enhanced solubilization and anaerobic biodegradation of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)-ethane (DDT). Water Environ Res 73:15-23

    Article  CAS  Google Scholar 

  • Ward OP, Singh A (2004) Evaluation of current soil bioremediation technologies. In: Singh A, Ward OP (eds) Applied bioremediation and phytoremediation. Soil biology series, Vol 1. Springer, Berlin Heidelberg, New York, Texas. Sociobiol 28:337-363

    Google Scholar 

  • Ward OP, Singh A, VanHamme J (2003) Accelerated bioremediation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30:260-270

    Article  CAS  Google Scholar 

  • Webster JPG, Bowles RG, Williams NT (1999) Estimating the economic benefits of alternative pesticide usage scenarios: wheat production in the United Kingdom. Crop Protection 18:83-89

    Article  Google Scholar 

  • Wendt-Rasch L, Pirzadeh P, Woin P (2003) Effects of metsulfuron methyl and cypermethrin exposure on freshwater model ecosystems. Aq Toxicol 63(3):243-256

    Article  CAS  Google Scholar 

  • WWF website (undated) at: http://www.panda.org/about_wwf/where_we_work/africa/problems/environments/index.cfm

    Google Scholar 

  • Yancy J, Cecil H (2005) Study touts herbicide benefits, Southeast farm press 32(11):16

    Google Scholar 

  • Ying GG, Williams B (2000) Dissipation of herbicides in soil and grapes in a South Australian vineyard. Ag Ecosys Environ 78(3):283-289

    Article  CAS  Google Scholar 

  • Yoshida T (1978) Microbial metabolism in rice soils. In: Soils and Rice, International Rice Research Institute, Philippines, pp 445-463

    Google Scholar 

  • You G, Sayles GD, Kupferle MJ, Kim IS, Bishop PL (1996) Anaerobic DDT transformation: enhancement of surfactants and low oxidation reduction potential. Chemosphere 32(11):2269-2284

    Article  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968-989

    CAS  Google Scholar 

  • Zhang P, Sheng GY, Feng YC, Miller DM (2005) Role of wheat residue-derived char in the biodegradation of benzonitrile in soil: Nutritional stimulation versus adsorptive inhibition. Environ Sci Technol 39:5442-5448

    Article  CAS  Google Scholar 

  • Zhu G, Wu H, Guo J, Kimaro FME (2004) Microbial degradation of fipronil in clay loam soil. Water Air Soil Poll 153:35-44

    Article  CAS  Google Scholar 

  • Zwiener C, Frimmel FH (2003) Short term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen and diclofenac. Sci Total Environ 309:201-211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Anjum, R., Rahman, M., Masood, F., Malik, A. (2012). Bioremediation of Pesticides from Soil and Wastewater. In: Malik, A., Grohmann, E. (eds) Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1591-2_9

Download citation

Publish with us

Policies and ethics