Skip to main content

Methods for Genotoxicity Testing of Environmental Pollutants

  • Chapter
  • First Online:
Environmental Protection Strategies for Sustainable Development

Part of the book series: Strategies for Sustainability ((STSU))

Abstract

Genetic hazard assessment deals with changes in genetic material of organisms, either human or other natural origin. Although considered an important element of the basic mechanisms of evolution, mutations often have a more detrimental effect on individuals and their offspring, and may adversely affect populations. There is consensus about a close association of DNA damage, mutations and the induction of various types of cancer. In eco-genotoxicity, possible effects of mutagenic/genotoxic substances on populations and ecosystems are investigated. Mutagenicity testing has been performed with all types of organisms. For monitoring purposes higher organisms (eukaryotes) are exposed to the environmental compartment “in situ” or in laboratory tests “in vivo”. Mutagenicity represents permanent changes to single genes or chromosomes, while genotoxicity focuses on primary damage of DNA. The bacterial Ames, umuC and SOS chromo assays have been predominantly used. Tests with eukaryotic cells or organisms might be more relevant for human and ecological risk assessment, but generally they are much more time-consuming. Several tests have been developed using the integrity of DNA as a non-specific endpoint of genotoxicity e.g. comet assay, alkaline DNA-elution assay, DNA alkaline unwinding assay, UDS-assay; the comet assay probably the most cost-efficient test among them. Most eukaryotic genotoxicity tests detect macro damage of chromosomes in the visible light microscope following appropriate staining (chromosomal aberration, micronucleus assay, SCE assay). Plants, amphibians, fish and water mussels as well as permanent mammalian cell lines such as V79, CHO or CHL have been used as the test organisms. Newer technologies such as transcriptomics, proteomics and metabolomics provide the opportunity to gain insight into genotoxic mechanisms and also to provide new markers in vitro and in vivo. There is also an increasing number of animal models with relevance to genotoxicity testing. These types of models will undoubtedly have an impact on genotoxicity testing in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanassiev V, Sefton M, Anantachaiyong T et al (2000) Application of yeast cells transformed with GFP expression constructs containing the RAD54 or RNR2 promoter as a test for the genotoxic potential of chemical substances. Mutat Res 464:297-308

    CAS  Google Scholar 

  • Aidoo A, Morris SM, Casciano DA (1997) Development and utilization of the rat lymphocyte hprt mutation assay. Mutat Res 387:69-88

    CAS  Google Scholar 

  • Aleem A, Malik A (2003) Genotoxic hazards of long-term application of wastewater on agricultural soil. Mutat Res 538:145-154

    CAS  Google Scholar 

  • Ames B, Lee F, Durston WD (1973) An improved bacterial system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A 70:782-786

    CAS  Google Scholar 

  • Andrade VM, Silva J, Silva FR et al (2004) Fish as bioindicators to assess the effects of pollution in two southern Brazilian rivers using the Comet assay and micronucleus test. Environ Mol Mutagen 44:459-468

    Google Scholar 

  • Ansari MI, Malik A (2009a) Genotoxicity of agricultural soils in the vicinity of industrial area. Mutat Res 673:124-132

    CAS  Google Scholar 

  • Ansari MI, Malik A (2009b) Genotoxicity of wastewaters used for irrigation of food crops. Environ Toxicol 24:103-115

    CAS  Google Scholar 

  • Aoyama K, Iwahori K, Miyata N (2003) Application of Euglena gracilis cells to comet assay: evaluation of DNA damage and repair. Mutat Res 538:155-162

    CAS  Google Scholar 

  • Atak C, Alikamanoglu S, Acik L et al (2004) Induced of plastid mutations in soybean plant (Glycine max L. Merrill) with gamma radiation and determination with RAPD. Mutat Res 556:35-44

    CAS  Google Scholar 

  • Atienzar FA, Cordi B, Donkin ME (2000) Depledge, Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae Palmaria palmate. Aquat Toxicol 50:1-12

    CAS  Google Scholar 

  • Atienzar FA, Cheung VV, Jha AN et al (2001) Fitness parameters and DNA effects are sensitive indicators of copper induced toxicity in Daphnia magna. Toxicol Sci 59:241-250

    CAS  Google Scholar 

  • Bonassi S, Lando C, Ceppi M et al (2004) No association between increased levels of high frequency sister chromatid exchange cells (HFCs) and the risk of cancer in healthy individuals. Environ Mol Mutagen 43:134-136

    CAS  Google Scholar 

  • Boettcher M, Grund S, Keiter S et al (2010) Comparison of in vitro and in situ genotoxicity in the Danube River by means of the comet assay and the micronucleus test. Mutat Res 700:11-17

    CAS  Google Scholar 

  • Bradley WE, Letovanec D (1982) High-frequency non random mutational event at the adenine phosphoribosyltransferase (aprt) locus of sib-selected CHO variants heterozygous for aprt. Somatic Cell Genet 9:51-66

    Google Scholar 

  • Brinkmann C, Eisentraeger A (2008) Completely automated short-term genotoxicity testing for the assessment of chemicals and characterisation of contaminated soils and waste waters. Env Sci Pollut Res 15: 211-217

    CAS  Google Scholar 

  • Brüschweiler BJ, Märki W, Wülser R (2010) In vitro genotoxicity of polychlorinated butadienes (Cl4-Cl6). Mutat Res 699:47-54

    Google Scholar 

  • Castano A, Becerril C (2004) In vitro assessment of DNA damage after short- and long-term exposure to benzo(a)pyrene using RAPD and the RTG-2 fish cell line. Mutat Res 552:141-151

    CAS  Google Scholar 

  • Cavas T and Konen S (2007) Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 22:263-268

    CAS  Google Scholar 

  • Čėsnienė T, Kleizaitė V, Ursache R et al (2010) Soil-surface genotoxicity of military and urban territories in Lithuania, as revealed by Tradescantia bioassays. Mutat Res 697:10-18

    Google Scholar 

  • Chakraborty R, Mukherjee A (2009) Mutagenicity and genotoxicity of coal fly ash water leachate. Ecotoxicol Environ Saf 72:838-842

    CAS  Google Scholar 

  • Chauhan LKS, Saxena PN, Gupta SK (1999) Cytogenetic effects of cypermethrin and fenvalerate on the root meristem cells of Allium cepa. Environ Exp Bot 42:181-189

    CAS  Google Scholar 

  • Claxton LD, Matthews PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res 567:347-399

    CAS  Google Scholar 

  • Clive D, Flamm WG, Machesko MR (1972) A mutational assay system using the thymidine kinase locus in mouse lymphoma cells. Mutat Res 16:77-87

    CAS  Google Scholar 

  • Cochrane JE, Skopek TR (1994) Mutagenicity of butadiene and its epoxide metabolites: II. Mutational spectra of butadiene, 1, epoxybutane and diepoxybutane at the hprt locus in splenic T-cells from exposed B6C3F1 mice. Carcinogenesis 15:719-723

    CAS  Google Scholar 

  • Cormack BP, Valdivia RH, Falkow S (1996) FACS optimized mutants of the green fluorescent protein (GFP). Gene 173:33-38

    CAS  Google Scholar 

  • Courty B, Le Curieux F, Belkessam L et al (2008) Mutagenic potency in Salmonella typhimurium of organic extracts of soil samples originating from urban, suburban, agricultural, forest and natural areas. Mutat Res 653:1-5

    CAS  Google Scholar 

  • de Lemos CT, Rödel PM, Terra NR et al (2007) River water genotoxicity evaluation using micronucleus assay in fish erythrocytes. Ecotoxicol Environ Saf 66:391-401

    Google Scholar 

  • de Maagd PG, Tonkes M (2000) Selection of genotoxicity tests for risk assessment of effluents. Environ Toxicol 15:81-90

    CAS  Google Scholar 

  • de Vizcaya-Ruiz A, Barbier O, Ruiz-Ramos R et al (2008) Biomarkers of oxidative stress and damage in human populations exposed to arsenic. Mutat Res 674:85-92

    Google Scholar 

  • Dearfield KL, Cimino MC, McCarroll NE et al (2002) Genotoxicity risk assessment: a proposed classification strategy. Mutat Res 521:121-135

    CAS  Google Scholar 

  • Deasi SR, Verlecar XN, Ansari ZA et al (2010) Evaluation of genotoxic responses of Chaetoceros tenuissimus and Skeletonema costatum to water accommodated fraction of petroleum hydrocarbons as biomarker of exposure. Water Res 44:2235-2244

    Google Scholar 

  • Dong Y and Zhang J (2010) Testing the genotoxicity of coking wastewater using Vicia faba and Hordeum vulgare bioassays. Ecotoxicol Environ Saf 73:944-948

    CAS  Google Scholar 

  • Enan MR (2006) Application of random amplified polymorphic DNA to detect genotoxic effect of heavy metals. Biotechnol Appl Biochem 43:147-154

    CAS  Google Scholar 

  • Erbes M, Wessler A, Obst U et al (1997) Detection of primary DNA damage in Chlamydomonas reinhardtii by means of modified microgel electrophoresis. Environ Mol Mutagen 30:448-458

    CAS  Google Scholar 

  • Ergene S, Çelik A, Çavaş T et al (2007) Genotoxic biomonitoring study of population residing in pesticide contaminated regions in Göksu Delta: Micronucleus, chromosomal aberrations and sister chromatid exchanges. Environ Int 33:877-885

    CAS  Google Scholar 

  • Farmer PB, Singh R (2008) Use of DNA adducts to identify human health risk from exposure to hazardous environmental pollutants: the increasing role of mass spectrometry in assessing biologically effective doses of genotoxic carcinogens. Mutat Res 659:68-76

    CAS  Google Scholar 

  • Fatima RA, Ahmad M (2006) Genotoxicity of industrial wastewaters obtained from two different pollution sources in northern India: A comparision of three bioassays. Mutat Res 609:81-91

    CAS  Google Scholar 

  • Ferreira MI, Domingos M, Gomes HA et al (2007) Evaluation of mutagenic potential of contaminated atmosphere at Ibirapuera Park, São Paulo-SP, Brazil, using the Tradescantia stamen-hair assay. Environ Pollut 145:219-224

    CAS  Google Scholar 

  • Fiskesjo G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99-112

    CAS  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res 681:80-92

    CAS  Google Scholar 

  • Frische T (2002) Screening for soil toxicity and mutagenicity using luminescent bacteria-a case study of the explosive 2, 4, 6-trinitrotoluene (TNT). Ecotoxicol Environ Saf 51:133-144

    CAS  Google Scholar 

  • Fritsch P, Rieseberg LH (1996) The use of random amplified polymorphic DNA (RAPD) in conservation genetics. In: Smither TB, Wayne RK (eds) Molecular Genetic Approaches in Conservation, Oxford University, pp 55-73

    Google Scholar 

  • Gana JM, Ordonez R, Zampini C et al (2008) Industrial effluents and surface waters genotoxicity and mutagenicity evaluation of a river of Tucuman, Argentina. J Hazard Mater 155:403-406

    CAS  Google Scholar 

  • Garinis GA, Van Der Horst GT, Vijg J et al (2008) DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol 10:1241-1247

    CAS  Google Scholar 

  • Garry S, Nesslany F, Aliouat EM et al (2003) Potent genotoxic activity of benzo[a]pyrene coated onto hematite measured by unscheduled DNA synthesis in vivo in the rat. Mutagenesis 18:449-455

    CAS  Google Scholar 

  • Glatt H, Schneider H, Liu Y (2005) V79-hCYP2E1-hSULT1A1, a cell line for the sensitive detection of genotoxic effects induced by carbohydrate pyrolysis products and other food-borne chemicals. Mutat Res 580:41-52

    CAS  Google Scholar 

  • Gustavsson L, Engwall M (2006) Genotoxic activity of nitroarene-contaminated industrial sludge following large-scale treatment in aerated and non-aerated sacs. Sci Total Environ 367:694-703

    CAS  Google Scholar 

  • Hagiwara Y, Watanabe M, Oda Y et al (1993) Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possessing elevated levels of both nitroreductase and acetyltransferase activity. Mutat Res 291:171-180

    CAS  Google Scholar 

  • Hagmar L, Stromberg U, Tinnerberg H et al (2004) Epidemiological evaluation of cytogenetic biomarkers as potential surrogate end-points for cancer. IARC Sci Publ 157:207-215

    Google Scholar 

  • Hastwell PW, Chai LL, Roberts KJ et al (2006) High-specificity and high sensitivity genotoxicity assessment in a human cell line: validation of the Green Screen HC GADD45a-GFP genotoxicity assay. Mutat Res 607:160-175

    CAS  Google Scholar 

  • Helma C, Eckl P, Gottmann E et al (1998) Genotoxic and ecotoxic effects of groundwaters and their relation to routinely measured chemical parameters. Environ Sci Technol 32:1799-1805

    CAS  Google Scholar 

  • Hua G, Lyons B, Killham K et al (2009) Potential use of DNA adducts to detect mutagenic compounds in soil. Environ Pollut 157;916-921

    CAS  Google Scholar 

  • Huang D, Zhang Y, Wang Y et al (2007) Assessment of the genotoxicity in toad Bufo raddei exposed to petrochemical contaminants in Lanzhou Region, China. Mutat Res 629:81-88

    CAS  Google Scholar 

  • ICH (International Cooperation on Harmonization) (1997) ICH Harmonized Tripartite Guideline. S2B. Genotoxicity: A Standard Battery for Genotoxicity Testing of Pharmaceuticals. http://www.ich.org. Accessed 16 July 1997

    Google Scholar 

  • Izzotti A, Kanitz S, D’Agostini F et al (2009) Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat Res 679:28-32

    CAS  Google Scholar 

  • Jolibois B, Guerbet M (2005) Efficacy of two wastewater treatment plants in removing genotoxins. Arch Environ Contam Toxicol 48:289-295

    CAS  Google Scholar 

  • Jones C, Kortenkamp A (2000) RAPD library fingerprinting of bacterial and human DNA: applications in mutation detection. Teratogen Carcin Mut 20:49-63

    CAS  Google Scholar 

  • Jung Y, Youn Y, Ryu J, Surh Y (2001) Salsolinol, a naturally occurring tetrahydroisoquinoline alkaloid, induces DNA damage and chromosomal aberrations in cultured Chinese hamster lung fibroblast cells 474:25-33

    Google Scholar 

  • Kim IY, Hyun CK (2006) Comparative evaluation of the alkaline comet assay with the micronucleus test for genotoxicity monitoring using aquatic organisms. Ecotoxicol Environ Saf 64:288-297

    CAS  Google Scholar 

  • Kirkland D, Aardema M, Henderson L et al (2005) Evaluation of the ability of a battery of three genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity. Mutat Res 584:1-256

    CAS  Google Scholar 

  • Kirkland D, Müller L (1999) Interpretation of the biological relevance of genotoxicity test results: the importance of thresholds. Mutat Res 464:137-147

    Google Scholar 

  • Klarmann B, Wixler V, Lorenz R et al (1995) Mutant frequency at the H-2K class 1 and hprt genes in T-lymphocytes from the X-ray exposed mouse. Int J Radiat Biol 67:421-430

    CAS  Google Scholar 

  • Kohlpoth M, Rusche B, Nusse M (1999) Flow cytometric measurement of micronuclei induced in a permanent fish cell line as a possible screening test for the genotoxicity of industrial waste waters. Mutagenesis 14:397-402

    CAS  Google Scholar 

  • Kohn K, Ericson L, Ewig R et al (1976) Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 15:4629-4637

    CAS  Google Scholar 

  • Konuk M, Liman R, Cigerci IH (2007) Determination of genotoxic effect of boron on Allium cepa root meristematic cells. Pakistan J Bot 39:73-79

    Google Scholar 

  • Kosmehl T, Hallare AV, Braunbeck T et al (2008) DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutat Res 650:1-14

    CAS  Google Scholar 

  • Kovalchuk O, Kovalchuk I, Arkhipov A et al (1998) The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident. Mutat Res 415:47-57

    CAS  Google Scholar 

  • Kuo ML, Lin JK (1993) The genotoxicity of the waste water discharged from paraquat manufacturing and its pyridyl components. Mutat Res 300:223-229

    CAS  Google Scholar 

  • Kurelec B (1993) The genotoxic disease syndrome. Mar Environ Res 35:341-348

    Google Scholar 

  • Kuroda S, Yano H, Koga-Ban Y et al (1999) Identification of DNA polymorphism induced by X-ray and UV irradiation in plant cells. Jpn Agric Res Quart 33: 223-226

    CAS  Google Scholar 

  • Kwan KK, Dutka BJ, Rao SS et al (1990) Mutatox test: a new test for monitoring environmental genotoxic agents. Environ Pollut 65:323-332

    CAS  Google Scholar 

  • Labieniec M, Biernat M, Gabryelak T (2007) Response of digestive gland cells of freshwater mussel Unio tumidus to phenolic compound exposure in vivo. Cell Biol Int 31:683-690

    CAS  Google Scholar 

  • Lah B, Vidic T, Glasencnik E et al (2008) Genotoxicity evaluation of water soil leachates by Ames test, comet assay, and preliminary Tradescantia micronucleus assay. Environ Monit Assess 139:107-118

    CAS  Google Scholar 

  • Lichtenberg-Frate H, Schmitt M, Gellert G et al (2003) A yeast based method for the detection of cyto- and genotoxicity. Toxicol in vitro 17:709-716

    Google Scholar 

  • Liu W, Li PJ, Qi XM et al (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61:158-167

    CAS  Google Scholar 

  • Ma TH, Cabrera GL, Chen R et al (1994) Tradescantia micronucleus bioassay. Mutat Res 310:221-230

    CAS  Google Scholar 

  • MacGregor JT, Casciano D, Müller L (2000) Strategies and testing methods for identifying mutagenic risks. Mutat Res 455:3-20

    CAS  Google Scholar 

  • MacGregor JT (1994) Environmental mutagenesis: past and future directions. Mutat Res 23:73-77

    Google Scholar 

  • Mañas F, Peralta L, Raviolo J et al (2009) Genotoxicity of AMPA, the environmental metabolite of glyphosate, assessed by the Comet assay and cytogenetic tests. Ecotoxicol Environ Saf 72:834-837

    Google Scholar 

  • Maron D, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173-215

    CAS  Google Scholar 

  • Marzo Solano M , Alves de Lima PL, João Francisco Lozano Luvizutto JFL et al (2009) In vivo genotoxicity evaluation of a treated urban sewage sludge sample. Mutat Res 676:69-73

    Google Scholar 

  • Masuda S, Deguchi Y, Masuda Y et al (2004) Genotoxicity of 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) and 4-amino-3,30-dichloro-5,40-dinitro-biphenyl (ADDB) in goldfish (Carassius auratus) using the micronucleus test and the comet assay. Mutat Res 560:33-40

    CAS  Google Scholar 

  • Meireles J, Rocha R, Neto AC (2009) Genotoxic effects of vehicle traffic pollution as evaluated by micronuclei test in Tradescantia (Trad-MCN). Mutat Res 675:46-50

    CAS  Google Scholar 

  • Mouchet F, Gauthier L, Mailhes C et al (2005) Biomonitoring of the genotoxic potential of draining water from dredged sediments, using the comet and micronucleus tests on amphibian (Xenopus Laevis) larvae and bacterial assays (Mutatox® and Ames tests). J Toxicol Environ Health 68:811-832

    CAS  Google Scholar 

  • Mouchet F, Gauthier L, Mailhes C (2006) Comparative evaluation of genotoxicity of captan in amphibian larvae (Xenopus laevis and Pleurodeles waltl) using the comet assay and the micronucleus test. Environ Toxicol 21:264-277

    CAS  Google Scholar 

  • Nagarajappa A, Ganguly U, Goswami (2006) DNA damage in male gonad cells of Green mussel (Perna viridis) upon exposure to tobacco products. Ecotoxicology 15:365-369

    Google Scholar 

  • Newton RK, Aardema M, Aubrecht J (2004) The utility of DNA microarrays for characterizing genotoxicity. Environ Health Perspect 112:420-422

    CAS  Google Scholar 

  • Oda Y, Nakamura S, Oki I et al (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147:219-229

    CAS  Google Scholar 

  • Oda Y, Shimada T, Watanabe M et al (1992) A sensitive umu test system for the detection of mutagenic nitroarenes in Salmonella typhimurium NM1011 having high nitroreductase activity. Mutat Res 272:91-99

    CAS  Google Scholar 

  • Oda Y, Yamazaki H, Watanabe M et al (1993) Highly sensitive umu test system for the detection of mutagenic nitroarenes in Salmonella typhimurium NM3009 having high acetyltransferase and nitroreductase activities. Environ Mol Mutagen 21:357-364

    CAS  Google Scholar 

  • Oda Y, Yamazaki H, Watanabe M et al (1995) Development of high sensitive umu test system: rapid detection of genotoxicity of promutagenic aromatic amines by Salmonella typhimurium strain NM2009 possessing high O-acetyltransferase activity. Mutat Res 334:145-156

    CAS  Google Scholar 

  • Oliveira M, Pacheco M, Santos MA (2007) Cytochrome P4501A, genotoxic and stress responses in golden grey mullet (Liza aurata) following short-term exposure to phenanthrene. Chemosphere 66:1284-1291

    CAS  Google Scholar 

  • Pereira R, Marques CR, Ferreira MJS et al (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42:209-220

    Google Scholar 

  • Perez S, Reifferscheid G, Eichhorn P et al (2003) Assessment of the mutagenic potency of sewage sludges contaminated with polycyclic aromatic hydrocarbons by an ames sludges for fluctuation assay. Environ Toxicol Chem 22:2576-2584

    CAS  Google Scholar 

  • Qu SX, Bai CL, Stacey NH (1997) Determination of bulky DNA adducts in biomonitoring of carcinogenic chemical exposures: Features and comparison of current techniques. Biomarkers 2:3-6

    CAS  Google Scholar 

  • Quillardet P, Huisman O, D´Ari R et al (1982) SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc Natl Acad Sci U S A 79:5971-5975

    CAS  Google Scholar 

  • Quillardet P, De Bellecombe C, Hofnung M (1985) The SOS chromotest; a colorimetric bacterial assay for genotoxins: validation study with 83 compounds. Mutat Res 147:79-95

    CAS  Google Scholar 

  • Rank J, Lehtonen KK, Strand J et al (2007) Aquatic toxicology, DNA damage, acetylcholinesterase activity and lysosomal stability in native and transplanted mussels (Mytilus edulis) in areas close to coastal chemical dumping sites in Denmark. Aquat Toxicol 84:50-61

    CAS  Google Scholar 

  • Reddy G, Song J, Mecchi MS et al (2010) Genotoxicity assessment of two hypergolic energetic propellant compounds. Mutat Res 700:26-31

    CAS  Google Scholar 

  • Reifferscheid G, Zipperle J (2000) Development and application of luminometric and fluorometric umu-test systems for the detection of genotoxic compounds in surface water. In Grummt T (ed) Erprobung, Vergleich, Weiterentwicklung und Beurteilung von Gentoxizitätstests für Oberflächenwasser. Forschungszentrum Karlsruhe GmbH, Projektträger Wassertechnologie und Entsorgung, Außenstelle Dresden, Dresden. p 217

    Google Scholar 

  • Roemer E, Stabbert R, Rustemeier K et al (2004) Chemical composition, cytotoxicity and mutagenicity of smoke from US commercial and reference cigarettes smoked under two sets of machine smoking conditions. Toxicology 195:31-52

    CAS  Google Scholar 

  • Rojiéková R, Marsálek B, Dutka B et al (1998) Bioassays used for detection of ecotoxicity at contaminated areas. NATO Sci Ser 2:227-232

    Google Scholar 

  • Rosenkranz HS, Mermelstein R (1985) The genotoxicity, metabolism and carcinogenicity of nitrated polycyclic aromatic hydrocarbons. J Environ Sci Heal C 3:221-272

    Google Scholar 

  • Rosenkranz HS, McCoy EC, Sanders DR et al (1980) Nitropyrenes: isolation, identification and reduction of mutagenic impurities in carbon black and toners. Science 209:1039-1043

    CAS  Google Scholar 

  • Rossmann TG, Molina M, Meyer LW (1984) The genetic toxicology of metal compounds. I. Induction of lambda prophage in E. coli WP2s (lambda). Environ Mutagen 6:59-69

    Google Scholar 

  • Sánchez P, Llorente MT, Castano A (2000) Flow cytometric detection of micronuclei and cell cycle alterations in fish-derived cells after exposure to three model genotoxic agents: mitomycin C, vincristine sulfate; and benzo[a]pyrene. Mutat Res 465:113-122

    Google Scholar 

  • Sarkar A, Dipak CS, Gaitonde et al (2008) Evaluation of impairment of DNA integrity in marine gastropods (Cronia contracta) as a biomarker of genotoxic contaminants in coastal water around Goa, West coast of India. Ecotoxicol Environ Saf 71:473-482

    Google Scholar 

  • Savva D, Castellani S, Mattei N et al (1994) The use of PCR and DNA fingerprints to detect the genotoxic effects of environmental chemicals. In: Varnavas SP (ed) Environmental Contamination, Proceedings of the 6th International Conference, Delphi, Greece, CEP Consultants, Edinburgh

    Google Scholar 

  • Schmitt M, Gellert G, Ludwig J et al (2004) Phenotypic yeast growth analysis for chronic toxicity testing. Ecotoxicol Environ Saf 59:142-150

    CAS  Google Scholar 

  • Schmeiser HH, Fürstenberger G, Takamura-Enya T et al (2009) The genotoxic air pollutant 3-nitrobenzanthrone and its reactive metabolite N-hydroxy-3-aminobenzanthrone lack initiating and complete carcinogenic activity in NMRI mouse skin. Cancer Lett 284:21-29

    CAS  Google Scholar 

  • Seagrave J, Gigliotti A, McDonald JD et al (2005) Composition, toxicity, and mutagenicity of particulate and semivolatile emissions from heavy-duty compressed natural gas-powered vehicles. Toxicol Sci 87:232-241

    CAS  Google Scholar 

  • Shishu, Kaur IP (2003) Inhibition of mutagenicity of food-derived heterocyclic amines by sulforaphane—a constituent of broccoli. Indian J Exp Biol 41:216-219

    Google Scholar 

  • Siddiqui AH, Ahmad M (2003) The Salmonella mutagenicity of industrial, surface and groundwater water samples of Aligarh region of India. Mutat Res 541:21-29

    CAS  Google Scholar 

  • Siddiqui MF, Ahmad R, Ahmad W (2006) Micronuclei induction and chromosomal aberrations in Rattus norvegicus by chloroacetic acid and chlorobenzene. Ecotoxicol Environ Saf 65:159-164

    Google Scholar 

  • Singh NP, McCoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184-191

    CAS  Google Scholar 

  • Singh A, Chandra S, Gupta SK et al (2007) Mutagenicity of leachates from industrial solid wastes using Salmonella reverse mutation assay. Ecotoxicol Environ Saf 66:210-216

    CAS  Google Scholar 

  • Siu WHL, Hung CL, Wong BJ et al (2003) Exposure and time dependent DNA strand breakage in hepatopancreas of green-lipped mussles (Perna viridis) exposed to Aroclor 1254, and mixtures of BαP and Aroclor 1254. Mar Pollut Bull 46:1285-1293

    CAS  Google Scholar 

  • Soloneski S, Larramendy ML (2010) Sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary (CHO-K1) cells treated with the insecticide pirimicarb. J Hazard Mater 174:410-415

    CAS  Google Scholar 

  • Strauss GH, Albertini RJ (1979) Enumeration of 6-thioguanineresistant peripheral blood lymphocytes in man as a potential test for somatic cell mutations arising in vivo. Mutat Res 61:353-379

    CAS  Google Scholar 

  • Sugimura T, Wakabayashi K, Nakagama H et al (2004) Heterocyclic amines: mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95:290-299

    CAS  Google Scholar 

  • Tabrez S, Ahmad M (2009) Toxicity, biomarker, genotoxicity and carcinogenicity of trichloroethylene (TCE) and its metabolites: A review. J Environ Sci Heal C 27:178-196

    CAS  Google Scholar 

  • Thybaud V, Aardema M, Clements J et al (2007) Strategy for genotoxicity testing: Hazard identification and risk assessment in relation to in vitro testing. Mutat Res 627:41-58

    CAS  Google Scholar 

  • Traversi D, Degan R, Marco RD et al (2009) Mutagenic properties of PM2.5 urban pollution in the Northern Italy: The nitro-compounds contribution. Environ Int 35:905-910

    CAS  Google Scholar 

  • Tweats DJ, Scott AD, Westmoreland C, Carmichael PL (2007) Determination of genetic toxicity and potential carcinogenicity in vitro-challenges post the Seventh Amendment to the European Cosmetics Directive. Mutagenesis 22:5-13

    CAS  Google Scholar 

  • Udroiu I (2006) The micronucleus test in piscine erythrocytes. Aquat Toxicol 79:201-204

    CAS  Google Scholar 

  • Valente-Campos S, Dias CL, Barbour EDA et al (2009) The introduction of the Salmonella/microsome mutagenicity assay in a groundwater monitoring program. Mutat Res 675:17-22

    CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57-149

    CAS  Google Scholar 

  • Van’t Hof J, Schairer LA (1982) Tradescantia assay system for gaseous mutagens. A report of the US Environmental Protection Agency Gene-Tox Program. Mutat Res 99:303-315

    Google Scholar 

  • Vargas VM, Migliavacca SB, de Melo AC et al (2001) Genotoxicity assessment in aquatic environments under the influence of heavy metals and organic contaminants. Mutat Res 490:141-158

    CAS  Google Scholar 

  • Villarini M, Fatigoni C, Dominici L et al (2009) Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays. Environ Pollut 157:3354-3356

    CAS  Google Scholar 

  • Waldman P, Kramer M, Metz I et al (2000) The alkaline elution with the clam Corbicula fluminea: a rapid and sensitive method for the detection of genotoxic potentials in native surface waters-data of two laboratories. Pages 217 in T. Grummt, editor. Erprobung, Vergleich, Weiterentwicklung und Beurteilung von Gentoxizitätstests für Oberflächenwasser. Forschungszentrum Karlsruhe GmbH, Projektträger Wassertechnologie und Entsorgung, Außenstelle Dresden, Dresden

    Google Scholar 

  • Walmsley RM, Billinton N, Heyer WD (1997) Green fluorescent protein as a reporter for the DNA damage induced gene RAD54 in Saccharomyces cerevisiae. Yeast 13:1535-1545

    CAS  Google Scholar 

  • Watanabe M, Ishidate M Jr, Nohmi T (1989) A sensitive method for detection of mutagenic nitroarenes: construction of nitroreductase-overproducing derivatives of Salmonella typhimurium strains TA98 and TA100. Mutat Res 216:211-220

    CAS  Google Scholar 

  • Watanabe M, Ishidate M Jr, Nohmi T (1990) Sensitive method for detection of mutagenic nitroarenes and aromatic amines: new derivatives of Salmonella typhimurium tester strains possessing levated O-acetyltransfearse levels. Mutat Res 234:337-348

    CAS  Google Scholar 

  • Watanabe T, Takahashi K, Konishi E et al (2008) Mutagenicity of surface soil from residential areas in Kyoto city, Japan, and identification of major mutagens. Mutat Res 649:201-212

    CAS  Google Scholar 

  • Weisburger JH (1988) Past, present and future role of carcinogenic and mutagenic-N-substituted aryl compounds in human cancer causion. In: King CM et al (eds) Carcinogenic and Mutagenic Responses to Aromatic Amines and Nitroarenes. Elsevier, New York

    Google Scholar 

  • White PA, Claxton LD (2004) Mutagens in contaminated soil: a review. Mutat Res 567:227-345

    CAS  Google Scholar 

  • Wild D, Dirr A (1989) Mutagenic nitrenes/nitrenium ions from azidoimidoazoarenes and their structure-activity relationship. Mutagenesis 4:446-452

    CAS  Google Scholar 

  • Wittekindt E, Saftic S, Matthess C, Fischer B, Hansen P D, Schubert J (2000) In situ investigations for the detection of genotoxic potential in selected surface water with the DNA alkaline unwinding assay using fish cells, Early life stage of fish, crustaceae and mussels. Pages 217 in T. Grummt, editor. Erprobung, Vergleich, Weiterentwicklung und Beurteilung von Gentoxizitätstests für Oberflächenwasser. Forschungszentrum Karlsruhe GmbH, Projektträger Wassertechnologie und Entsorgung, Außenstelle Dresden, Dresden

    Google Scholar 

  • Xiao R, Wang Z, Wang C et al (2006) Contamination at a major industrialized city in north east China by a combination of in vitro and in vivo bioassays. Environ Sci Technol 40:6170-6175

    CAS  Google Scholar 

  • Yang Y, Yao J, Hu S (2000) Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD Marker. Microb Ecol 39:72-79

    CAS  Google Scholar 

  • Yildiz M, Arikan ES (2008) Genotoxicity testing of quizalofop-P-ethyl herbicide using the Allium cepa anaphase-telophase chromosome aberration assay. Caryologia 61:45-52

    Google Scholar 

  • Yildiz M, Cigerci IH, Konuk M et al (2009) Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere 75:934-938

    CAS  Google Scholar 

  • Yilmaz S, Ünal F, Yüzbaşıoğlu D (2009) The in vitro genotoxicity of benzoic acid in human peripheral blood lymphocytes. Cytotechnology 60:55-61

    CAS  Google Scholar 

  • Yüzbaşıoğlu D, Ünal F, Yilmaz S et al (2008) Genotoxicity testing of fluconazole in vivo and in vitro. Mutat Res 649:155-160

    Google Scholar 

  • Zeljezic D, Garaj-Vrhovac V (2002) Sister chromatid exchange and proliferative rate index in the longitudinal risk assessment of occupational exposure to pesticides. Chemosphere 46:295-303

    CAS  Google Scholar 

  • Zhao Z, Zhang L, Wu J et al (2010) Assessment of the potential mutagenicity of organochlorine pesticides (OCPs) in contaminated sediments from Taihu Lake. China 696:62-68

    CAS  Google Scholar 

  • Zhu Y, Wang J, Bai Y et al (2004) Cadmium, chromium, and copper induce polychromatocyte micro nuclei in carp (Cyprinus carpio). Bull Environ Contam Toxicol 72:78-86

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Masood, F., Anjum, R., Ahmad, M., Malik, A. (2012). Methods for Genotoxicity Testing of Environmental Pollutants. In: Malik, A., Grohmann, E. (eds) Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1591-2_7

Download citation

Publish with us

Policies and ethics