Skip to main content

A Review of Environmental Contamination and Remediation Strategies for Heavy Metals at Shooting Range Soils

  • Chapter
  • First Online:
Environmental Protection Strategies for Sustainable Development

Part of the book series: Strategies for Sustainability ((STSU))

Abstract

Many shooting ranges are contaminated by heavy metals and the used bullets have been known as a primary source. Once the bullets perch on soils, toxic metals such as lead (Pb), copper (Cu), nickel (Ni), antimony (Sb), and zinc (Zn) can be released into the soils and further transformed into available forms threatening the surrounding environment. In this review, we evaluated different sources of waste materials as soil amendments to silize heavy metals in soils. Amendments such as red mud, sugar foam, poultry waste, and dolomitic residue have been used to silize Pb at shooting ranges. Among various amendments, lime-based waste materials such as oyster shell and eggshell can effectively immobilize heavy metals, thereby reducing their bioavailability in soils. The main mechanism of Pb immobilization is closely associated with sorption and precipitation at high soil pH. Calcium aluminate hydrate (CAH) and calcium silicate hydrate (CSH) also can be formed to retain the metals in hardened soils. Overall, the use of lime-based wastes is applicable to immobilize toxic metals at shooting range soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpaslan B, Yukselen MA (2002) Remediation of lead contaminated soils by stabilization/solidification. Water Air Soil Pollut 133:253-263

    Article  CAS  Google Scholar 

  • Arwidsson Z, Elgh-Dalgren K, von Kronhelm T, Sjöberg R, Allard B, van Hees P (2010) Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids. J Hazard Mater 173:697-704

    Article  CAS  Google Scholar 

  • Astrup T, Boddum JK, Christensen TH (1999) Lead distribution and mobility in a soil embankment used as a bullet stop at a shooting range. J Soil Contam 8(6):653-665

    Article  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Bioremediation and biodegradation—analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432-440

    CAS  Google Scholar 

  • Berthelot Y, Valton E, Auroy A, Trottier B, Robidoux PY (2008) Integration of toxicological and chemical tools to assess the bioavailability of metals and energetic compounds in contaminated soils. Chemosphere 74:166-177

    Article  CAS  Google Scholar 

  • Braida W, Christodoulatos C, Ogundipe A, Dermatas D, O’Connor G (2007) Electrokinetic treatment of firing ranges containing tungsten-contaminated soils. J Hazard Mater 149:562-567

    Article  CAS  Google Scholar 

  • Braun U, Pusterla N, Ossent P (1997) Lead poisoning of calves pastured in the target area of a military shooting range. Schweiz Arch Tierheilkd 139:403-407

    CAS  Google Scholar 

  • Brown S, Christensen B, Lombi E, McLaughlin M, McGrath S, Colpaert J, Vangronsveld J (2005) An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environ Pollut 138:34-45

    Article  CAS  Google Scholar 

  • Cang L, Zhou DM, Wang QY, Wu DY (2009) Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities. J Hazard Mater 172:1602-1607

    Article  CAS  Google Scholar 

  • Cao X, Dermatas D, Xu X, Shen G (2008) Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments. Environ Sci Pollut Res Int 15:120-127

    Article  CAS  Google Scholar 

  • Cao X, Ma LQ, Chen M, Hardison DW Jr, Harris WG (2003a) Weathering of lead bullets and their environmental effects at outdoor shooting ranges. J Environ Qual 32:526-534

    CAS  Google Scholar 

  • Cao X, Ma LQ, Chen M, Hardison DW Jr, Harris WG (2003b) Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci Total Environ 307:179-189

    Article  CAS  Google Scholar 

  • Chen QY, Tyrer M, Hills CD, Yang XM, Carey P (2009) Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manage 29:390-403

    Article  CAS  Google Scholar 

  • Chrastný V, Komárek M, Hájek T (2010) Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ Monit Assess 162:37-46

    Article  Google Scholar 

  • Ciccu R, Ghiani M, Serci A, Fadda S, Peretti R, Zucca A (2003) Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Miner Eng 16:187-192

    Article  CAS  Google Scholar 

  • Clark RB, Ritchey KD, Baligar VC (2001) Benefits and constraints for use of FGD products on agricultural land. Fuel 80:821-828

    Article  CAS  Google Scholar 

  • Cohen SZ (2000) Testing your outdoor range—using the right tools. ://www.nssf.org/ranges/resources/NSRS/04Policy Track/Testing Range.pdf. Accessed 11 February 2009

  • Conder JM, Lanno RP, Basta NT (2001) Assessment of metal availability in smelter soil using earthworms and chemical extractions. J Environ Qual 30:1231-1237

    Article  CAS  Google Scholar 

  • Dermatas D, Cao X, Tsaneva V, Shen G, Grubb DG (2006a) Fate and behavior of metal(loid) contaminants in an organic matter-rich shooting range soil: implications for remediation. Water Air Soil Pollut 6:143-155

    Article  CAS  Google Scholar 

  • Dermatas D, Shen G, Chrysochoou M, Grubb DG, Menounou N, Dutko P (2006b) Pb speciation versus TCLP release in army firing range soils. J Hazard Mater 136:34-46

    Article  CAS  Google Scholar 

  • Dermatas D, Chrysochoou M, Grubb DG, Xu X (2008) Phosphate treatment of firing range soils: lead fixation or phosphorous release. J Environ Qual 37:47-56

    Article  CAS  Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and groundwater. Technology evaluation report TW-97-01. ://www.clu-in.org/download/toolkit/metals.pdf. Accessed 28 March 2010

  • FDEP (2004) Best management practices for environmental stewardship of Florida shooting ranges. Florida Department of Environmental Protection. ://www.dep.state.fl.us/waste/quick_topics/publications/shw/hazardous/shootingrange/FloridaBMP-2004reducedsize.pdf. Accessed 11 February 2009

  • Fristad WE (2006) Case study: Using soil washing/leaching for the removal of heavy metal at the twin cities army ammunition plant. Remed J 5:61-72

    Article  Google Scholar 

  • Garau G, Castaldi P, Santona L, Deiana P, Melis P (2007) Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 142:47-57

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229-236

    Article  CAS  Google Scholar 

  • Garrido F, Illera V, García-González MT (2005) Effect of the addition of gypsum- and lime-rich industrial by-products on Cd, Cu and Pb availability and leachability in metal-spiked acid soils. Appl Geochem 20:397-408

    Article  CAS  Google Scholar 

  • Geebelen W, Adriano DC, van der Lelie D, Mench M, Carleer R, Clijsters H, Vangronsveld J (2003) Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil 249:217-228

    Article  CAS  Google Scholar 

  • Gulson BL, Palmer JM, Bryce A (2002) Changes in blood lead of a recreational shooter. Sci Total Environ 293:143-150

    Article  CAS  Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513-528

    Article  CAS  Google Scholar 

  • Hartikainen H, Kerko E (2009) Lead in various chemical pools in soil depth profiles on two shooting ranges of different age. Boreal Environ Res 14(suppl. A):61-69

    CAS  Google Scholar 

  • Hashimoto Y, Matsufuru H, Sato T (2008) Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species. Chemosphere 73:643-649

    Article  CAS  Google Scholar 

  • Hashimoto Y, Taki T, Sato T (2009) Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions. J Environ Manage 90:1782-1789

    Article  CAS  Google Scholar 

  • Heier LS, Lien IB, Strømseng AE, Ljønes M, Rosseland BO, Tollefsen KE, Salbu B (2009) Speciation of lead, copper, zinc and antimony in water draining a shooting range—Time dependant metal accumulation and biomarker responses in brown trout (Salmo trutta L.). Sci Total Environ 407:4047-4055

    Article  CAS  Google Scholar 

  • ITRC (2005) Environmental management at operating outdoor small arms firing ranges. Interstate Technology and Regulatory Council, Small Arms Firing Range Team. Washington, DC. ://www.itrcweb.org/Documents/SMART-2.pdf://www.itrcweb.org/Documents/SMART-2.pdf. Accessed 25 April 2010

  • Jin CW, Zheng SJ, He YF, Zhou GD, Zhou ZX (2005) Lead contamination in tea garden soils and factors affecting its bioavailability. Chemosphere 59:1151-1159

    Article  CAS  Google Scholar 

  • Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192-207

    Article  CAS  Google Scholar 

  • Johnson CA, Moench H, Wersin P, Kugler P, Wenger C (2005) Solubility of antimony and other elements in samples taken from shooting ranges. J Environ Qual 34:248-254

    CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95-122

    Article  Google Scholar 

  • Knechtenhofer LA, Xifra IO, Scheinost AC, Flühler H, Kretzschmar R (2003) Fate of heavy metals in a strongly acidic shooting-range soil: small-scale metal distribution and its relation to preferential water flow. J Plant Nutr Soil Sci 166:84-92

    Article  CAS  Google Scholar 

  • Kostarelos K, Reale D, Dermatas D, Rao E, Moon DH (2006) Optimum dose of lime and fly ash for treatment of hexavalent chromium-contaminated soil. Water Air Soil Pollut 6:171-189

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215-225

    Article  CAS  Google Scholar 

  • Labare MP, Butkus MA, Reigner D, Schommer N, Atkinson J (2004) Evaluation of lead movement from the abiotic to biotic at a small-arms firing range. Environ Geol 46:750-754

    Article  CAS  Google Scholar 

  • Lanphear BP, Succop P, Roda S, Henningsen G (2003) The effect of soil abatement on blood lead levels in children living near a former smelting and milling operation. Public Health Rep. 118:83-91

    Google Scholar 

  • Lee IS, Kim OK, Chang YY, Bae B, Kim HH, Baek KH (2002) Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range. J Biosci Bioeng 94:406-411

    CAS  Google Scholar 

  • Lee JY, Lee CH, Yoon YS, Ha BH, Jang BC, Lee KS, Lee DK, Kim PJ (2005) Effects of oyster-shell meal on improving spring Chinese cabbage productivity and soil properties. Korean J Soil Sci Fert 38:274-280

    CAS  Google Scholar 

  • Lee SH, Lee JS, Choi YJ, Kim JG (2009) In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77:1069-1075

    Article  CAS  Google Scholar 

  • Levonmäki M, Hartikainen H, Kairesalo T (2006) Effect of organic amendment and plant root on the solubility and Immobilization of lead in soils at a shooting range. J Environ Qual 35:1026-1031

    Article  Google Scholar 

  • Lim JE, Moon DH, Kim D, Kwon OK, Yang JE, Ok YS (2009) Evaluation of the feasibility of oyster-shell and eggshell wastes for stabilization of arsenic-contaminated soil. Korean Soc Environ Eng 31:1095-1104

    Google Scholar 

  • Lin Z (1996) Secondary mineral phases of metallic lead in soils of shooting ranges from Örebro County, Sweden. Environ Geol 27:370-375

    Article  CAS  Google Scholar 

  • Lin HK, Man XD, Walsh DE (2001) Lead removal via soil washing and leaching. J Miner Met Mater Soc 53:22-25

    Article  CAS  Google Scholar 

  • Lindsay W (1979) Chemical equilibria in soil. Wiley, New York

    Google Scholar 

  • Lombi E, Zhao F, Zhang G, Sun B, Fitz W, Zhang H, McGrath SP (2002) In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ Pollut 118:435-443

    Article  CAS  Google Scholar 

  • Ma LQ, Cao RX, Hardison D, Chen M, Harris WG, Sartain J (2002) Environmental impacts of lead pellets at shooting ranges and arsenical herbicides on golf courses in Florida. Report # 02-01. ://noflac.org/wp-content/uploads/2010/02/Environmental-Impacts-of-Lead-Pellets-at-Shooting-Ranges-%E2%80%93-FL-2000.pdf. Accessed 11 February 2009

  • Ma LQ, Hardison DW, Harris WG, Cao X, Zhou Q (2007) Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water Air Soil Pollut 178:297-307

    Article  CAS  Google Scholar 

  • Ma QY, Logan TJ, Traina SJ (1995) Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol 29:1118-1126

    Article  CAS  Google Scholar 

  • Manninen S, Tanskanen N (1993) Transfer of lead from shotgun pellets to humus and three plant species in a Finnish shooting range. Arch Environ Contam Toxicol 24:410-414

    Article  CAS  Google Scholar 

  • Martin WA, Larson SL, Felt DR, Wright J, Griggs CS, Thompson M, Conca JL, Nestler CC (2008) The effect of organics on lead sorption onto Apatite IITM. Appl Geochem 23:34-43

    Article  CAS  Google Scholar 

  • Migliorini M, Pigino G, Bianchi N, Bernini F, Leonzio C (2004) The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ Pollut 129:331-340

    Article  CAS  Google Scholar 

  • Moon DH, Dermatas D (2006) An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions. Eng Geol 85:67-74

    Article  Google Scholar 

  • Moon DH, Cheong KH, Kim TS, Khim J, Choi SB, Ok YS, Moon OR (2010) Stabilization of Pb contaminated army firing range soil using calcinated waste oyster shells. Korean Soc Environ Eng 32:1353-1358

    Google Scholar 

  • Mozafar A, Ruh R, Klingel P, Gamper H, Egli S, Frossard E (2002) Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environ Monit Assess 79:177-191

    Article  CAS  Google Scholar 

  • Ok YS, Kim JG (2007) Enhancement of cadmium phytoextraction from contaminated soils with Artemisia princeps var. orientalis. J Appl Sci 7:263-268

    Article  CAS  Google Scholar 

  • Ok YS, Chang SX, Feng YS (2007a) Sensitivity to acidification of forest soils in two watersheds with contrasting hydrological regimes in the oil sands region of Alberta. Pedosphere 17:747-757

    Article  CAS  Google Scholar 

  • Ok YS, Chang SX, Feng Y (2007b) The role of atmospheric N deposition in soil acidification in forest ecosystems. In: Muñoz SI (ed) Ecology research progress. Nova Science Publishers, New York

    Google Scholar 

  • Ok YS, Yang JE, Zhang YS, Kim SJ, Chung DY (2007c) Heavy metal adsorption by a formulated zeolite-Portland cement mixture. J Hazard Mater 147:91-96

    Google Scholar 

  • Ok YS, Lim JE, Moon DH (2010a) Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environ Geochem Health. 33:83-91

    Google Scholar 

  • Ok YS, Lim JE, Ahmad M, Hyun S, Kim KR, Moon DH, Lee SS, Lim KJ, Yang JE (2010b) Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ Earth Sci 61:1301-1308

    Article  CAS  Google Scholar 

  • Ok YS, Kim SC, Kim DK, Skousen JG, Lee JS, Cheong YW, Kim SJ, Yang JE (2011a) Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ Geochem Health 33:23-30

    Article  CAS  Google Scholar 

  • Ok YS, Lee SS, Jeon WT, Oh SE, Usman ARA, Moon DH (2011b) Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environ Geochem Health 33:31-39

    Article  CAS  Google Scholar 

  • Palka K (2002) Chemical composition and structure of foods. In: Sikorski ZE (ed) Chemical and functional properties of food components, 2nd edn. CRC press, Florida

    Google Scholar 

  • Palomo A, Palacios M (2003) Alkali-activated cementitious materials: Alternative matrices for the immobilization of hazardous wastes: Part II. Stabilization of chromium and lead. Cement Concrete Res 33:289-295

    Article  CAS  Google Scholar 

  • Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151-210

    Article  CAS  Google Scholar 

  • Ragnvaldsson D, Brochu S, Wingfors H (2007) Pressurized liquid extraction with water as a tool for chemical and toxicological screening of soil samples at army live-fire training ranges. J Hazard Mater 142:418-424

    Article  CAS  Google Scholar 

  • Robinson BH, Bischofberger S, Stoll A, Schroer D, Furrer G, Roulier S, Gruenwald A, Attinger W, Schulin R (2008) Plant Uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications. Environ Pollut 153:668-676

    Article  CAS  Google Scholar 

  • Rodríguez-Jordá MP, Garrido F, García-González MT (2010) Potential use of gypsum and lime rich industrial by-products for induced reduction of Pb, Zn and Ni leachability in an acid soil. J Hazard Mater 175:762-769

    Article  Google Scholar 

  • Rooney CP, McLaren RG, Cresswell RJ (1999) Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water Air Soil Pollut 116:535-548

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422-430

    Article  CAS  Google Scholar 

  • Ryan JA, Zhang P, Hesterberg D, Chou J, Sayers DE (2001) Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environ Sci Technol 35:3798-3803

    Article  CAS  Google Scholar 

  • Scheetz CD, Rimstidt JD (2009) Dissolution, transport, and fate of lead on a shooting range in the Jefferson National Forest near Blacksburg, VA, USA. Environ Geol 58:655-665

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Norris SL (1996) The ecotoxicology of lead shot and lead fishing weights. Ecotoxicol 5:279-295

    Article  CAS  Google Scholar 

  • Singh TS, Pant KK (2006) Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J Hazard Mater 131:29-36

    Article  CAS  Google Scholar 

  • Smith LA, Means JL, Chen A, Alleman, B, Chapman CC, Tixier JS Jr, Brauning SE, Gavaskar AR, Royer MD (1995) Remedial options for metals-contaminated sites. Lewis Publisher, Boca Raton

    Google Scholar 

  • Sorvari J, Antikainen R, Pyy O (2006) Environmental contamination at Finnish shooting ranges—the scope of the problem and management options. Sci Total Environ 366:21-31

    Article  CAS  Google Scholar 

  • Spuller C, Weigand H, Marb C (2007) Trace metal stabilisation in a shooting range soil: Mobility and phytotoxicity. J Hazard Mater 141:378-387

    Article  CAS  Google Scholar 

  • Takamatsu T, Murata T, Koshikawa MK, Watanabe M (2010) Weathering and dissolution rates among Pb shot pellets of differing elemental compositions exposed to various aqueous and soil conditions. Arch Environ Contam Toxicol 59:91-99

    Article  CAS  Google Scholar 

  • Tardy BA, Bricka RM, Larson SL (2003) Chemical stabilization of lead in small arms firing range soils. http://el.erdc.usace.army.mil/elpubs/pdf/trel03-20.pdf. Accessed 1 July 2010

  • USEPA (1991) Innovative treatment technologies. Semi-annual status report. http://www.clu-in.org/download/remed/asr/asr3.pdf. Accessed 13 March 2010

  • USEPA (1992) Test methods for evaluating solid waste, physical/chemical methods. Method 1311. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/1311.pdf. Accessed 11 February 2009

  • USEPA (1994) Test methods for evaluating solid waste, physical/chemical methods. Method 1312. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/1311.pdf. Accessed 11 February 2009

  • USEPA (2001) Best management practices for lead at outdoor shooting ranges. http://www.epa.gov/region2/waste/leadshot/epa_bmp.pdf. Accessed 10 March 2010

  • USEPA (2003) TRW recommendations for performing human health risk analysis on small arm shooting ranges. http://www.epa.gov/superfund/lead/products/firing.pdf. Accessed 11 February 2009

  • USEPA (2004) Treatment technologies for site cleanup. http://www.epa.gov/tio/download/remed/asr/11/asr.pdf. Accessed 28 March 2010

  • Vantelon D, Lanzirotti A, Scheinost AC, Kretzscmar R (2005) Spatial distribution and speciation of lead around corroding bullets in a shooting range soil studied by micro-X-ray fluorescence and absorption spectroscopy. Environ Sci Technol 39:4808-4815

    Article  CAS  Google Scholar 

  • Wilde EW, Brigmon RL, Dunn DL, Heitkamp MA, Dagnan DC (2005) Phytoextraction of lead from firing range soil by Vetiver grass. Chemosphere 61:1451-1457

    Article  CAS  Google Scholar 

  • Wixson BG, Davies BE (1994) Guidelines for lead in soil. Proposal of the society for environmental geochemistry and health. Environ Sci Technol 28:26A-31A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sik Ok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ahmad, M., Lee, S., Moon, D., Yang, J.E., Ok, Y. (2012). A Review of Environmental Contamination and Remediation Strategies for Heavy Metals at Shooting Range Soils. In: Malik, A., Grohmann, E. (eds) Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1591-2_14

Download citation

Publish with us

Policies and ethics