Skip to main content

Biofilm Formation by Environmental Bacteria

  • Chapter
  • First Online:
Book cover Environmental Protection Strategies for Sustainable Development

Part of the book series: Strategies for Sustainability ((STSU))

Abstract

The majority of bacteria in the environment live associated with surfaces, in so called biofilms. Bacterial cells embedded in a biofilm can better withstand environmental stress, such as nutrient deprivation, unphysiological temperatures and pH changes. Within the biofilm they become more resistant to detachment, oxygen radicals, disinfectants, and antibiotics than the individual planktonic cells. In this chapter, the current status of biofilm research is summarized, with focus on the mechanims involved in formation of biofilms, characteristics of bacteria living in biofilms, e.g. the production of extracelluar polymeric substances (EPS) and the intercellular communication via quorum sensing. Detrimental and beneficial effects of microbial biofilms are described, as well as their application in modern biotechnology. An overview about state of the art techniques to analyse complex biofilms is given, as well as a summary on existing and emerging biofilm inhibitors. We developed a continuous upflow biofilm reactor system where mixed species environmental biofilms can form attached to glass beads. Studies on these biofilms by lectin-binding analysis and fluorescence microscopy are described. Experimental systems developed to visualize biofilms by fluorescent labels using confocal laser scanning microscopy (CLSM) and the current strategies in removing or controlling the biofilm are dicussed. The chapter ends with perspectives on the development of new emerging biofilm inhibitors and with an outlook on new promising techniques that will enable analysis of the composition as well as the structure of biofilms in even more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adnan M, Morton G, Singh J et al (2010) Contribution of rpoS and bolA genes in biofilm formation in Escherichia coli K-12 MG1655. Mol Cell Biochem. doi: 10.1007/s11010-010-0485-7

    Google Scholar 

  • Amara N, Mashiach R, Amar D et al (2009) Covalent inhibition of bacterial quorum sensing. J Am Chem Soc 131:10610–10619

    Article  CAS  Google Scholar 

  • Anderl JN, Zahller J, Roe F et al (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–1256

    Article  CAS  Google Scholar 

  • Anderson GG, O’toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    Article  CAS  Google Scholar 

  • Andrews JS, Rolfe SA, Huang WE et al (2010) Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species. Environ Microbiol. doi:10.1111/j.1462-2920.2010.02223.x

    Google Scholar 

  • Antoniani D, Bocci P, Maciag A et al (2010) Monitoring of di-guanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85:1095–1104

    Article  CAS  Google Scholar 

  • Attila C, Ueda A, Wood TK (2009) 5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound. Appl Microbiol Biotechnol 82:525–533

    Article  CAS  Google Scholar 

  • Augspurger C, Karwautz C, Mussmann M et al (2010) Drivers of bacterial colonization patterns in stream biofilms. FEMS Microbiol Ecol 72:47–57

    Article  CAS  Google Scholar 

  • Balaban N, Novick RP (1995) Autocrine regulation of toxin synthesis by Staphylococcus aureus. Proc Natl Acad Sci USA 92:1619–1623

    Article  CAS  Google Scholar 

  • Balzer M, Witt N, Flemming HC et al (2010) Faecal indicator bacteria in river biofilms. Water Sci Technol 61:1105–1111

    Article  CAS  Google Scholar 

  • Barber CE, Tang JL, Feng JX et al (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566

    Article  CAS  Google Scholar 

  • Baselga R, Albizu I, Amorena B (1994) Staphylococcus aureus capsule and slime as virulence factors in ruminant mastits. A review.Vet Microbiol 39:195–204

    Article  CAS  Google Scholar 

  • Becker P, Hufnagle W, Peters G et al (2001) Detection of Differential Gene Expression in Biofilm-Forming versus Planktonic Populations of Staphylococcus aureus Using Micro-Representational-Difference Analysis. Appl Environ Microbiol 67:2958–2965

    Article  CAS  Google Scholar 

  • Beech IB (2004) Corrosion of technical materials in the presence of biofilms current understanding and state of the art methods of study. Int Biodeterior Biodegradation 53:177–183

    Article  CAS  Google Scholar 

  • Bendinger B, Rijnaarts HHM, Altendorf K et al (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59:3973–3977

    CAS  Google Scholar 

  • Bjarnsholt T, Jensen P-Ø, Burmølle M et al (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiol 151:373–83

    Article  CAS  Google Scholar 

  • Bjarnsholt T, Jensen PØ, Fiandaca MJ et al (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–58

    Article  Google Scholar 

  • Boyd A, Chakrabarty AM (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 60:2355–2359

    CAS  Google Scholar 

  • Brady RA, Leid JG, Calhoun JH, et al (2008) Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52:13–22

    Article  CAS  Google Scholar 

  • Branda SS, Vik A, Friedman L et al (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi RD et al (2010) Engineered nanoparticles in wastewater and wastewater sludge–Evidence and impacts. Waste Manage 30(3):504–520

    Article  CAS  Google Scholar 

  • Brown MR, Allison DG, Gilbert PJ (1988) Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? Antimicrob Chemother 22 777–780

    Article  CAS  Google Scholar 

  • Bryers JD (2008) Medical biofilms. Biotechnol Bioeng 100:1–18

    Article  CAS  Google Scholar 

  • Buchholz F, Wolf A, Lerchner J, Mertens F, Harms H, Maskow T (2010) Chip calorimetry for fast and reliable evaluation of bactericidal and bacteriostatic treatments of biofilms. Antimicrob Agents Chemother 54:1312–319

    Google Scholar 

  • Caiazza NC, Merritt JH, Brothers KM et al (2007) Inverse Regulation of Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14. J Bacteriol 3603–3612

    Google Scholar 

  • Characklis WG, McFeters GA, Marshall KC (1990) In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 341–394

    Google Scholar 

  • Chen X, Stewart PS (1996) Chlorine penetration into artificial biofilm is limited by a reaction diffusion interaction. Environ Sci Technol 30:2078–2083

    Article  CAS  Google Scholar 

  • Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279

    Article  CAS  Google Scholar 

  • Clark JD, Maaloe O (1967) DNA replication and the division cycle in Escherichia coli. J Mol Biol 23:99–112

    Article  CAS  Google Scholar 

  • Clarke S, Mielke RE, Neal A et al (2010) Bacterial and mineral elements in an arctic biofilm: a correlative study using fluorescence and electron microscopy. Microsc Microanal 16:153–165

    Article  CAS  Google Scholar 

  • Combaret PC, Vidal O, Dorel C et al (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002

    Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  Google Scholar 

  • Costerton W, Veeh R, Shirtliff M et al (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–77

    CAS  Google Scholar 

  • Cowan MM, Warren TM, Fletcher M (1991) Mixed- species colonization of solid surfaces in laboratory biofilms. Biofouling 3:23–34

    Article  Google Scholar 

  • Cross JL, Ramadan HH, Thomas JG (2007) The impact of a cation channel blocker (furosemide) on Pseudomonas aeruginosa PAO1 biofilm architecture Otolaryngology. Head Neck Surg 137(1):21–26

    Article  Google Scholar 

  • Crueger W, Crueger A (1990) Acetic acids. In: Brock TD (ed) Biotechnology: a textbook of industrial microbiology,pp 134–147. Science Tech, Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Cuzman OA, Ventura S, Sili C et al (2010) Biodiversity of phototrophic biofilms dwelling on monumental fountains. Microb Ecol 60(1):81–95

    Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–67

    Article  CAS  Google Scholar 

  • Davies DG and Geesey GG (1995) Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61:860–867

    CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP et al (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  CAS  Google Scholar 

  • De Beer D, Srinivasan R, Stewart PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60:4339–4344

    Google Scholar 

  • de Carvalho CC, Fernandes P (2010) Production of metabolites as bacterial responses to the marine environment. Mar Drugs 8(3):705–727

    Article  CAS  Google Scholar 

  • Demirci A, Pometto AL, Ho KL (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 19:299–304

    Article  CAS  Google Scholar 

  • Dibdin GH, Assinder SJ, Nichols WW et al (1996) Mathematical model of β-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released -lactamases. J Antimicrob Chemother 38:757–769

    Article  CAS  Google Scholar 

  • Dong YH, Xu JL, Li XZ et al (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531

    Article  CAS  Google Scholar 

  • Donlan RM (2002) Biofilms: Microbial Life on Surfaces. Emerg Infect Dis. 8(9):881–890

    Article  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiol Rev 15:167–193

    Google Scholar 

  • Donlan RM, Pipes WO, Yohe TL (1994) Biofilm formation on cast iron substrata in water distribution systems. Water Res 28:1497–1503

    Article  CAS  Google Scholar 

  • Driffield K, Miller K, Bostock M et al (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61:1053–1056

    Article  CAS  Google Scholar 

  • Eberl L, Winson MK, Sternberg C et al (1996) Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136

    Article  CAS  Google Scholar 

  • Eboigbodin KE, Ojeda JJ, Biggs CA (2007) Investigating the surface properties of Escherichia coli under glucose controlled conditions and its effect on aggregation. Langmuir 23:6691–6697

    Article  CAS  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM et al (2000) An archaeal iron-oxidizing extreme acidophile important inacid mine drainage. Science 287:1731–1732

    Article  Google Scholar 

  • El-Mansi EMT, Ward FB (2007) Microbiology of industrial fermentation. In: El-Mansi EMT (ed) Fermentation, microbiology and biotechnology, pp 11–46. Taylor and Francis, Boca Raton

    Google Scholar 

  • Espeland EM, Wetzel RG (2001) Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: implications for biofilm microbiota. Microb Ecol 42:572–585

    Article  CAS  Google Scholar 

  • Farah C, Vera M, Morin D et al (2005) Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans. Appl Environ Microbiol 71:7033–7040

    Article  CAS  Google Scholar 

  • Fera P, Siebel MA, Characklis WG, Prieur D (1989) Seasonal variations in bacterial colonization of stainless steel, aluminum, and polycarbonate surfaces in seawater flow system. Biofouling 1:251–261

    Article  Google Scholar 

  • Fett WF (2000) Naturally occuring biofilms on alfalfa and other types of sprouts. J Food Prot 63:625–632

    CAS  Google Scholar 

  • Flemming HC and Wingender J (2001a) Relevance of microbial extracellular polymeric substances (EPSs)—part I: structural and ecological aspects. Water Sci Technol 43:1–8

    CAS  Google Scholar 

  • Flemming HC and Wingender J (2001b) Relevance of microbial extracellular polymeric substances (EPSs)—Part II: technical aspects. Water Sci Technol 43:9–16

    CAS  Google Scholar 

  • Fletcher M (1988) Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol 170:2027–2030

    CAS  Google Scholar 

  • Fletcher M and Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37:67–72

    CAS  Google Scholar 

  • Folkesson A, Haagensen JAJ, Zampaloni C et al (2008) Biofilm induced tolerance towards antimicrobial peptides. PLoS ONE 3(4):e1891. doi:10.1371/journal.pone.0001891

    Google Scholar 

  • Fux CA, Costerton JW, Stewart PS et al (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Article  CAS  Google Scholar 

  • Gaddy JA, Actis LA (2009) Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 4:273–278

    Article  CAS  Google Scholar 

  • Galperin MY (2004) Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6:552–567

    Article  CAS  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D et al (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    CAS  Google Scholar 

  • Geller JT, Holman HY, Su G et al (2000) Flow dynamics and potential for biodegradation of organic contaminants in fractured rock vadose zones. J Contam Hydrol 43:63–90

    Article  CAS  Google Scholar 

  • Geske GD, O’Neill JC, Miller DM et al (2007) Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J Am Chem Soc 129:13613–13625

    Article  CAS  Google Scholar 

  • Ghigo J M (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412: 442–445

    Article  CAS  Google Scholar 

  • Ghigo JM (2003) Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res Microbiol 154:1–8

    Article  CAS  Google Scholar 

  • Gilbert P, Allison DG, McBain AJ (2002) Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 92:S98–S110

    Article  Google Scholar 

  • Hall-Stoodley L and Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Google Scholar 

  • Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104

    Article  CAS  Google Scholar 

  • Harneit K, Goksel A, Kock D et al (2006) Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254

    Article  CAS  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713

    CAS  Google Scholar 

  • Hentzer M, Riedel K, Rasmussen TB et al (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102

    CAS  Google Scholar 

  • Heydorn A, Ersboll B, Kato J et al (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017

    Article  CAS  Google Scholar 

  • Hiley P (2003) Performance of wastewater treatment and nutrient removal wetlands (reedbeds) in cold temperate climates. In: Mander Ü, Jenssen PD (eds) Constructed wetlands for wastewater treatment in cold climates, pp 1–18. WIT Press, Southampton, UK

    Google Scholar 

  • Ho KG, Pometto AI, Hinz PN et al (1997) Nutrient leaching and end product accumulation in plastic composite supports for L-(þ)-lactic acid biofilm fermentation. Appl Environ Microbiol 63:2524–2532

    CAS  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Internation J Antimicrob Agents 35(4):322–332

    Article  CAS  Google Scholar 

  • Holden MTG, Chhabra SR, de Nys R et al (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266

    Google Scholar 

  • Holland LM, O’Donnell ST, Ryjenkov DA et al (2008) A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J Bacteriol 190:5178–5189

    Article  CAS  Google Scholar 

  • Hooshangi S and Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555

    Article  CAS  Google Scholar 

  • Howell JA and Atkinson B (1976) Water Res 18:307–315

    Google Scholar 

  • Islam S, Oh H, Jalal S et al (2009) Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clin Microbiol Infect 15:60–66

    Article  CAS  Google Scholar 

  • Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C (2010) Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms. J Biophotonics 3(8–9):548–556

    Article  CAS  Google Scholar 

  • Jahnke LL et al (2001) Signature lipids and stable carbon isotope analyses of octopus spring hyperthermophilic communities compared with those of aquificales representatives. Appl Environ Microbiol 67:5179–5189

    Article  CAS  Google Scholar 

  • Jalal S, Ciofu O, Høiby N et al (2000) Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 44:710–712

    Article  CAS  Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    CAS  Google Scholar 

  • Jiao Y, Cody GD, Harding AK et al (2010) Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76:2916–2922

    Article  CAS  Google Scholar 

  • Junker LM, Clardy J (2007) High-throughput screens for small molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob Agents Chemother 51:3582–3590

    Article  CAS  Google Scholar 

  • Karatan E, Watnick PI (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347

    Article  CAS  Google Scholar 

  • Keren I, Kaldalu N, Spoering A et al (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18

    Article  CAS  Google Scholar 

  • Kierek K, Watnick PI (2003) Environmental determinants of Vibrio cholerae biofilm development. Appl Environ Microbiol 69:5079–5088

    Article  CAS  Google Scholar 

  • Kim DS, Fogler HS (2000) Biomass evolution in porous media and its effects on permeability under starvation conditions. Biotechnol Bioeng 69:47–56

    Article  CAS  Google Scholar 

  • Kiran MD, Adikesavan NV, Cirioni O et al (2008) Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Mol Pharmacol 73:1578–1586

    Article  CAS  Google Scholar 

  • Kjaergaard K, Schembri MA, Ramos C et al (2000) Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol 2:695–702

    Article  CAS  Google Scholar 

  • Klausen M, Heydorn A, Ragas P et al (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  Google Scholar 

  • Klingenberg C, Aarag E, Ronnestad A et al (2005) coagulase negative Staphylococcal sepsi in neonates: Association between antibiotic resistance, biofilm formation and the host inflammatory response. Ped inf dis J 24:817–822

    Article  Google Scholar 

  • Kolenbrander PE, Palmer Jr RJ (2004) Human oral bacterial biofilms. In: Ghannoum MA, O’Toole GA (eds) Microbial biofilms. ASM Press, Washington, DC

    Google Scholar 

  • Komlos J, Cunningham AB, Camper AK et al (2004) Biofilm barriers to contain and degrade dissolved trichloroethylene. Environ Prog 23:69–77

    Article  CAS  Google Scholar 

  • Kornaros M, Lyberatos G (2006) Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J Hazard Mater 136:95–102

    Article  CAS  Google Scholar 

  • Kulasakara H, Lee V, Brencic A et al (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci USA 103:2839–2844

    Article  CAS  Google Scholar 

  • Lagendijk EL, Validov S, Lamers GE et al (2010) Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol Lett 305:81–90

    Article  CAS  Google Scholar 

  • Landini P, Antoniani D, Burgess JG, Nijland R (2010) Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. App Microbiol Biotechnol 86(3):813–823

    Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Anton Van Leeuwenhoek 74:59–70

    Article  CAS  Google Scholar 

  • Larsen E, Greenway M (2004) Quantification of biofilms in a sub-surface flow wetland and their role in nutrient removal. Water Sci Technol 49:115–122

    CAS  Google Scholar 

  • Lazarova V, Perera J, Bowen M et al (2000) Application of aerated biofilters for production of high quality water for industrial reuse in West Basin. Water Sci Technol 41:417–424

    CAS  Google Scholar 

  • Le Magrex-Debar E, Lemoine J, Gelle MP et al (2000) Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J Food Microbiol 55:239–234

    Article  Google Scholar 

  • Leewenhoeck A (1683) An abstract of a Letter from Mr. Anthony Leewenhoeck at Delft, Dated Sep. 17. 1683. Containing some microscopical observations, about animals in the serf of the teeth, the substance call’d worms in the nose, the cuticula consisting of scales. Philosop Trans 14:568–574

    Article  Google Scholar 

  • Leid JG, Shirtliff ME, Costerton JW et al (2002) Human leukocytes adhere, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–6345

    Article  CAS  Google Scholar 

  • Lemon KP, Freitag NE, Kolter R (2010) The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes. J Bacteriol 192(15):3969–3976

    Google Scholar 

  • Leon Morales CF, Strathmann M et al (2007) Influence of biofilms on the movement of colloids in porous media. Implications for colloid facilitated transport in subsurface environments. Water Res 41:2059–2068

    Article  CAS  Google Scholar 

  • Lequette Y, Boels G, Clarisse M et al (2010) Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofoul 26(4):421–431

    Article  CAS  Google Scholar 

  • Lerner A, Castro-Sowinski S, Valverde A et al (2009) The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiol 155(12):4058–4068

    Article  CAS  Google Scholar 

  • Lewis K (2001) Riddle of Biofilm Resistance. Int J Antimicrob Agents Chemother 45(4):999–1007

    Article  CAS  Google Scholar 

  • Li J, Attila C, Wang L et al (2007) Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol 189:6011–6020

    Article  CAS  Google Scholar 

  • Li M, Ni N, Chou HT et al (2008) Structurebased discovery and experimental verification of novel AI-2 quorum sensing inhibitors against Vibrio harveyi. ChemMed Chem 3:1242–1249

    Article  CAS  Google Scholar 

  • Lichter JA, Thompson MT, Delgadillo M et al (2008) Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules 9:1571–1578

    Article  CAS  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of phyllosphere. App Environ Microbiol 69:1875–1883

    Article  CAS  Google Scholar 

  • Lönn-Stensrud J, Landin MA, Benneche T et al (2009) Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections? J Antimicrob Chemother 63:309–316

    Article  CAS  Google Scholar 

  • López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2:a000398

    Google Scholar 

  • Mäe A, Montesano M, Koiv V et al (2001) Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol Plant Microbe Interact 14:1035–1042

    Article  Google Scholar 

  • Mah TF O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  Google Scholar 

  • Majumder PS, Gupta SK (2003) Hybrid reactor for priority pollutant nitrobenzene removal. Water Res 37:4331–4336

    Article  CAS  Google Scholar 

  • Manefield M, Rasmussen TB, Henzter M et al (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiol 118:1119–1127

    Google Scholar 

  • Marketon MM, Glenn SA, Eberhard A et al (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331

    Article  CAS  Google Scholar 

  • Marshall KC (1992) Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News 58:202–207

    Google Scholar 

  • Matl FD, Obermeier A, Repmann S et al (2008) New anti-infective coatings of medical implants. Antimicrob Agents Chemother 52:1957–1963

    Article  CAS  Google Scholar 

  • McClean KH, Winson MK, Fish L et al (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol 143:3703–3711

    Article  CAS  Google Scholar 

  • McKenney D, Hubner J, Muller E et al (1998) The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immunol 66:4711–4720

    CAS  Google Scholar 

  • McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708

    Article  CAS  Google Scholar 

  • McNeill K, Hamilton IR (2003) Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 221:25–30

    Article  CAS  Google Scholar 

  • Meng-Ying LI, Ji Z, Peng LU et al (2009) Evaluation of Biological Characteristics of Bacteria Contributing to Biofilm Formation. Pedosphere 19(5):554–561

    Article  Google Scholar 

  • Michael T, Smith CM (1995) Lectins probe molecular films in biofouling : characterization of early films on non-living and living surfaces. Mar Ecol Progr Ser 119:229–236

    Article  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101(1):1–8

    Article  CAS  Google Scholar 

  • Morris CE, Monier JM, Jacques MA (1998) A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. App Environ Microbiol 64:4789–4795

    CAS  Google Scholar 

  • Morrow JB, Stratton R, Yang HH et al (2005) Macro- and nanoscale observations of adhesive behavior for several E. coli strains (O157:H7 and environmental isolates) on mineral surfaces. Environ Sci Technol 39:6395–6404

    Article  CAS  Google Scholar 

  • Müh U, Schuster M, Heim R et al (2006) Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother 50:3674–3679

    Article  CAS  Google Scholar 

  • Nakamura S, Higashiyama Y, Izumikawa K et al (2008) The roles of quorum-sensing system in the release of extracellular DNA, lipopolysaccharide, and membrane vesicles from Pseudomonas aeruginosa. Jpn J Infect Dis 61:375–378

    CAS  Google Scholar 

  • Neu TR (2000) In situ cell and glycoconjugate distribution of river snow as studied by confocal laser scanning microscopy. Aquat Microb Ecol 21:85–95

    Article  Google Scholar 

  • Neu TR, Lawrence JR (1997) Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol Ecol 24:11–25

    Article  CAS  Google Scholar 

  • Neu TR, Lawrence JR (1999) Lectin-binding analysis in biofilm systems. Methods Enzymol 310:145–152

    Google Scholar 

  • Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques forassessmentof structure, compositionand function in bio¢lm systems. FEMS Microbiol Ecol 72:1–21

    Article  CAS  Google Scholar 

  • Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiol 147:299–313

    CAS  Google Scholar 

  • Njoroge J, Sperandio J (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Molec Med 1:201–210

    Article  CAS  Google Scholar 

  • Novick RP, Ross HF, Projan SJ et al (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975

    CAS  Google Scholar 

  • O’Toole GA, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  Google Scholar 

  • Ojha AK, Baughn AD, Sambandan D et al. (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug tolerant bacteria. Mol Microbiol 69:164–174

    Article  CAS  Google Scholar 

  • Pamp SJ, Gjermansen M, Johansen HK (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the prm and mexAB-oprM genes. Mol Microbiol 68:223–240

    Article  CAS  Google Scholar 

  • Persson T, Hansen TH, Rasmussen TB et al (2005) Rational design and synthesis of new quorumsensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 3:253–262

    Article  CAS  Google Scholar 

  • Pesci EC, Bilbank JBJ, Pearson JP et al (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc National Acad Sci USA 96:11229–11234

    Article  CAS  Google Scholar 

  • Potera C (1999) Forging a link between biofilms and disease. Sci 283:1837–1839

    Article  CAS  Google Scholar 

  • Prakash B, Krishnappa G, Muniyappa L, Reddy MK (2005) In vitro phase variation studies of Salmonella Gallinarum in biofilm formation. Curr Sci 89(4):657–659

    CAS  Google Scholar 

  • Prakash B, Veeregowda BM, Krishnappa G (2003) Biofilms: A survival strategy of bacteria Curr Sci 85(9):1299–1307

    Google Scholar 

  • Pratt LA Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: defining the roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–294

    Article  CAS  Google Scholar 

  • Pratten J, Foster SJ, Chan PF et al (2001) Staphylococcus aureus accessory regulators: expression within biofilms and effect on adhesion. Microbes Infect 3:633–637

    Article  CAS  Google Scholar 

  • Pringle JH Fletcher M (1983) Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol 45:811–817

    CAS  Google Scholar 

  • Puigagut J, Salvado H, Garcia D et al (2007) Comparison of microfauna communities in full scale subsurface flow constructed wetlands used as secondary and tertiary treatment. Water Res 41:1645–1652

    Article  CAS  Google Scholar 

  • Pulcini E (2001) The effects of initial adhesion events on the physiology of Pseudomonas aeruginosa, Ph D dissertation, Montana State University, Bozeman

    Google Scholar 

  • Qu Y, Daley AJ, Istivan TS et al (2010) Densely adherent growth mode, rather than extracellular polymer substance matrix build-up ability, contributes to high resistance of Staphylococcus epidermidis biofilms to antibiotics. J Antimicrob Chemother 65(7):1405–1411

    Article  CAS  Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC et al (2005) Biofilm reactors for industrial bioconversion processes: Employing potential of enhanced reaction rates. Microb Cell Fact 4:24. doi:10.1186/1475-2859-4-24

    Article  CAS  Google Scholar 

  • Qureshi N, Karcher P, Cotta M et al (2004) High-productivity continuous biofilm reactor for butanol production: Effect of acetate, butyrate, and corn steep liquor on bioreactor performance. Appl Biochem Biotechnol 114:713–721

    Article  Google Scholar 

  • Ramirez M, Hernandez-Marine M, Novelo E et al (2010) Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico. Biofouling 26:399–409

    Article  CAS  Google Scholar 

  • Rashid MH, Rumbaugh K, Passador L et al (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:9636–9641

    Article  CAS  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T et al (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiol 151:1325–1340

    Article  CAS  Google Scholar 

  • Rasmussen, B (2000) Filamentous microfossils in a 3,235-millionyear-old volcanogenic massive sulphide deposit. Nature 405:676–679

    Article  CAS  Google Scholar 

  • Reardon CL, Cummings DE, Petzke LM et al (2004) Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer. Appl Environ Microbiol 70:6037–6046

    Article  CAS  Google Scholar 

  • Ren D, Bedzyk LA, Setlow P et al (2004) Differential gene expression to investigate the effect of (5Z)-4-bromo-5-(bromomethylene)-3- butyl-2(5H)-furanone on Bacillus subtilis. Appl Environ Microbiol 70:4941–4949

    Article  CAS  Google Scholar 

  • Reysenbach AL Cady SL (2001) Microbiology of ancient and modern hydrothermal systems Trends Microbiol 9:79–86

    Article  CAS  Google Scholar 

  • Reysenbach AL, Ehringer M Hershberger K (2000) Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and ‘Korarchaeota’ coexist. Extremophiles 4:61–67

    CAS  Google Scholar 

  • Richards JJ, Ballard TE, Huigens RW et al (2008) Synthesis and screening of an oroidin library against Pseudomonas aeruginosa biofilms. Chem Biochem 9:1267–1279

    CAS  Google Scholar 

  • Rinaudi LV, González JE (2009) The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. J Bacteriol 191(23):7216–7224

    Article  CAS  Google Scholar 

  • Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W (2006) Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 157(9):867–875

    Google Scholar 

  • Rivardo F, Turner RJ, Allegrone G et al (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553

    Article  CAS  Google Scholar 

  • Rivas M, Seeger M, Holmes DS et al (2005) A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. Biol Res 38:283–297

    Article  CAS  Google Scholar 

  • Roberts ME, Stewart PS (2005) Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiol 151:75–80

    Google Scholar 

  • Roeder RS, Lenz J, Tarne P et al (2010) Long-term effects of disinfectants on the community composition of drinking water biofilms. Int J Hyg Environ Health 213:183–189

    Article  CAS  Google Scholar 

  • Ruiz LM, Valenzuela S, Castro M et al (2008) AHL communication is a widespread phenomenon in biomining bacteria and seems to be involved in mineral-adhesion efficiency. Hydrometallurgy 94:133–137

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  CAS  Google Scholar 

  • Sani RK, Peyton BM, Dohnalkova A (2008) Comparison of uranium(VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors. Water Res 42:2993–3002

    Article  CAS  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  CAS  Google Scholar 

  • Schneider RP, Morano SC, Gigena MAC et al. (2006) Contamination levels and preliminary assessment of the technical feasibility of employing natural attenuation in 5 priority areas of Presidente Bernardes Refinery in Cubatao, Sao Paulo, Brazil. Environ Monit Assess 116:21–52

    Article  CAS  Google Scholar 

  • Schupp JM, Travis SE, Price LB et al (1995) Rapid bacterial permeabilization reagent useful for enzyme assays. Biotechniques 19:18–20

    CAS  Google Scholar 

  • Shih HY, Lin YE (2010) Efficacy of copper-silver ionization in controlling biofilm- and plankton-associated waterborne pathogens. Appl Environ Microbiol 76:2032–2035

    Article  CAS  Google Scholar 

  • Shikuma NJ, Hadfield MG (2010) Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26:39–46

    Article  CAS  Google Scholar 

  • Simm R, Morr M, Kader A et al (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134

    Article  CAS  Google Scholar 

  • Singh R, Ray P, Das A et al (2009) Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 58(8):1067–1073

    Article  CAS  Google Scholar 

  • Sivakumar PM, Prabhawathi V, Doble M (2010) Antibacterial activity and QSAR of chalcones against biofilm-producing bacteria isolated from marine waters. SAR QSAR Environ Res 21(3):247–263

    Article  CAS  Google Scholar 

  • Smith KM, Bu Y, Suga H (2003) Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol 10:81–89

    Article  CAS  Google Scholar 

  • Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112:1460–1465

    CAS  Google Scholar 

  • Spettmann D, Eppmann S, Flemming HC et al (2007) Simultaneous visualisation of biofouling, organic and inorganic particle fouling on separation membranes. Water Sci Technol 55:207–210

    CAS  Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  CAS  Google Scholar 

  • Spormann AM (2008) Physiology of microbes in biofilms. Curr Top Microbiol Immunol 322:17–36

    Article  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Google Scholar 

  • Stoodley P, Dodds I, Boyle JD et al (1999) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28S

    Article  Google Scholar 

  • Sublette K, Peacock A, White D et al (2006) Monitoring subsurface microbial ecology in a sulfate-amended, gasoline-contaminated aquifer. Ground Water Monitor Remed 26:70–78

    Article  CAS  Google Scholar 

  • Suci PA, Tyler BJ (2003) A method for discrimination of subpopulations of Candida albicans biofilm cells that exhibit relative levels of phenotypic resistance to chlorhexidine. J Microbiol Methods 53:313–325

    Article  CAS  Google Scholar 

  • Sudarsan N, Lee ER, Weinberg Z et al (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Sci 321:411–413

    Article  CAS  Google Scholar 

  • Surette MG, Bassler BL (1998) Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci USA 95:7046–7050

    Article  CAS  Google Scholar 

  • Sutherland IW (2001a) Biofilm exopolysaccharides: a strong and sticky framework. Microbiol 147:3–9

    CAS  Google Scholar 

  • Sutherland IW (2001b) The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  CAS  Google Scholar 

  • Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148

    Article  CAS  Google Scholar 

  • Taylor CD, Wirsen CO, Gaill F (1999) Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl Environ Microbiol 65:2253–2255

    CAS  Google Scholar 

  • Teitzel GM Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  Google Scholar 

  • Tempe J, Petit A, Holsters M et al (1977) Thermosensitive step associated with transfer of Ti plasmid during conjugation: possible relation to transformation in crown gall. Proc Natl Acad Sci USA 74:2848–2849

    Article  CAS  Google Scholar 

  • Thien FCM, O’toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  Google Scholar 

  • Tsuneda S, Aikawa H, Hayashi H et al (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292

    Article  CAS  Google Scholar 

  • Tuomanen E, Durack DT, Tomasz A (1986) Antibiotic tolerance among clinical isolates of bacteria. Antimicrob Agents Chemother 30:521–527

    Article  CAS  Google Scholar 

  • Ueda A, Attila C, Whiteley M et al (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracilnis an antagonist. Microb Biotechnol 2:62–74

    Article  CAS  Google Scholar 

  • Ueda A, Wood TK (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483

    Google Scholar 

  • Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109(4):1117–1131

    Google Scholar 

  • van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol 2:9–33

    Article  CAS  Google Scholar 

  • Vlassov VV, Laktionov PP, Rykova EY (2007) Extracellular nucleic acids. Bioessays 29:654–667

    Article  CAS  Google Scholar 

  • von Bodman SB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci USA 95:7687–7692

    Article  Google Scholar 

  • Vu B, Chen M, Crawford RJ et al (2009) Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules 14:2535–2554

    Article  CAS  Google Scholar 

  • Vuong C, Gerke C, Somerville GA et al (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188:706–718

    Article  CAS  Google Scholar 

  • Walters MC, Roe F, Bugnicourt A et al (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323

    Article  CAS  Google Scholar 

  • Wang ZW, Chen S (2009) Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 83:1–18

    Article  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  Google Scholar 

  • Weber H, Pesavento C, Possling A et al (2006) Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62:1014–1034

    Article  CAS  Google Scholar 

  • Weinhouse H, Sapir S, Amikam D et al (1997) c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett 416:207–211

    Article  CAS  Google Scholar 

  • Wentland EJ Stewart PS, Huang CT et al (1996) Spatial variations in growth rate within Klebsiella pneumonia colonies and biofilms. Biotechnol Prog 12:316–321

    Article  CAS  Google Scholar 

  • Werner E, Roe F, Bugnicourt A et al (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196

    Article  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC et al (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  CAS  Google Scholar 

  • Wingender J, Strathmann M, Rode A et al (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol 336:302–314

    Article  CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD et al (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35:213–223

    Article  CAS  Google Scholar 

  • Wright CJ, Shah MK, Powell LC, Armstrong I (2010) Application of AFM from microbial cell to biofilm. Scanning Vol 31:1–16

    Google Scholar 

  • Wu J, Long Q, Xie J (2010) (p)ppGpp and drug resistance. J Cellular Physiol 224(2):300–304

    Article  CAS  Google Scholar 

  • Xu X, Stewart PS, Chen X (1996) Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads. Biotechnol Bioeng 49:93–100

    Article  CAS  Google Scholar 

  • Yang L, Rybtke MT, Jakobsen TH et al (2009) Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother 53:2432–2443

    Article  CAS  Google Scholar 

  • Yarwood JM, Bartels DJ, Volper EM et al (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850

    Article  CAS  Google Scholar 

  • Zeng Z, Qian L, Cao L et al (2008) Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 79:119–126

    Article  CAS  Google Scholar 

  • Zhu H, Kumar A, Ozkan J et al (2008) Fimbrolide-coated antimicrobial lenses: their in vitro and in vivo effects. Optom Vis Sci 85:292–300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Grohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ansari, M., Schiwon, K., Malik, A., Grohmann, E. (2012). Biofilm Formation by Environmental Bacteria. In: Malik, A., Grohmann, E. (eds) Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1591-2_11

Download citation

Publish with us

Policies and ethics