Skip to main content

Assembly of Light Harvesting Pigment-Protein Complexes in Photosynthetic Eukaryotes

  • Chapter
  • First Online:
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

Summary

In photosynthetic eukaryotes, the antenna system includes members of a protein family of Light-harvesting complexes encoded by the Lhc genes. These proteins bind 8–14 chlorophylls (Chls) and 2–4 carotenoid molecules per 22–28 kDa polypeptide; further, the pigments are needed for the assembly of monomeric proteins. Some members form dimers (LHCI) or trimers (LHCII). Chl a is needed for the assembly of all the Lhc proteins, while two members, Lhca1 and Lhca3, can refold in vitro without Chl b. Among carotenoids, lutein is bound to site L1 in all the Lhc proteins, whose occupancy is essential for protein assembly. Violaxanthin and zeaxanthin can also drive protein folding, although with a lower efficiency with respect to lutein. Current knowledge on the assembly mechanisms is also reviewed in this chapter: in vitro experiments have shown how Lhc folding is triggered by the binding of Chl a and of lutein; in contrast Chl b is only bound in a second phase and functions to stabilize the pigment-protein complexes. Together with the reaction centers, antenna complexes are organized as supercomplexes in the thylakoid membranes. The structural organization of the antenna of Photosystem I (PS I) is quite different from that of Photosystem II (PS II): the PS II antenna system is flexible and its size is modulated according to environmental conditions, while in PS I antenna protein content is maintained constant with respect to the reaction center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Chl nomenclature has changed with the availability of protein structures with higher resolution. Previously the most widely used nomenclature was from (Kühlbrandt et al., 1994); more recently new binding sites were identified in the structure from (Liu et al., 2004). Nowadays the latter is preferable also because it does not suggest the occupancy of the sites by Chl a or b which might be misleading for proteins different from Lhcb1. The correspondence between the two nomenclatures is reported in (Liu et al., 2004)

Abbreviations

Chl –:

Chlorophyll;

Lhca (b) –:

Light-harvesting complex of Photosystem I (II);

LHCI (II) –:

Antenna complex of Photosystem I (II);

PQ –:

Plastoquinone;

PS I (II) –:

Photosystem I (II)

References

  • Alboresi A, Caffarri S, Nogue F, Bassi R and Morosinotto T (2008) In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS ONE 3:e2033

    Google Scholar 

  • Amunts A, Drory O and Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4  Å resolution. Nature 447: 58–63

    Article  PubMed  CAS  Google Scholar 

  • Amunts A, Toporik H, Borovikova A and Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285: 3478–3486

    Google Scholar 

  • Bailey S, Walters RG, Jansson S and Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213: 794–801

    Article  PubMed  CAS  Google Scholar 

  • Ballottari M, Dall’Osto L, Morosinotto T and Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282: 8947–8958

    Article  PubMed  CAS  Google Scholar 

  • Ballottari M, Govoni C, Caffarri S and Morosinotto T (2004) Stoichiometry of LHCI antenna polypeptides and characterisation of gap and linker pigments in higher plants photosystem I. Eur J Biochem 271: 4659–4665

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandona D (1999) Mutational analysis of a higher plant antenna protein provides ­identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    Article  PubMed  CAS  Google Scholar 

  • Betterle N, Ballottari M, Hienerwadel R, Dall’Osto L and Bassi R (2010) Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Arch Biochem Biophys 504: 67–77

    Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, De Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T and Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284: 15255–15266

    Google Scholar 

  • Ben Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Van Roon H, Calkoen F, Bassi R and Dekker JP (1999a) Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38: 2233–2239

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Van Roon H, Van Breemen JF and Dekker JP (1999b) Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Eur J Biochem 266: 444–452

    Article  PubMed  CAS  Google Scholar 

  • Booth PJ and Paulsen H (1996) Assembly of light-harvesting chlorophyll a/b complex in vitro. Time- resolved fluorescence measurements. Biochemistry 35: 5103–5108

    Article  PubMed  CAS  Google Scholar 

  • Caffarri S, Croce R, Breton J and Bassi R (2001) The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J Biol Chem 276: 35924–35933

    Article  PubMed  CAS  Google Scholar 

  • Caffarri S, Passarini F, Bassi R and Croce R (2007) A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of photosystem II. FEBS Lett 581: 4704–4710

    Article  PubMed  CAS  Google Scholar 

  • Castelletti S, Morosinotto T, Robert B, Caffarri S, Bassi R and Croce R (2003) Recombinant Lhca2 and Lhca3 subunits of the photosystem I antenna system. Biochemistry 42: 4226–4234

    Article  PubMed  CAS  Google Scholar 

  • Chitnis PR (2001) PHOTOSYSTEM I: Function and physiology. Annu Rev Plant Physiol Plant Mol Biol 52: 593–626

    Article  PubMed  CAS  Google Scholar 

  • Corbet D, Schweikardt T, Paulsen H and Schmid VH (2007) Amino acids in the second transmembrane helix of the Lhca4 subunit are important for formation of stable heterodimeric light-harvesting complex LHCI-730. J Mol Biol 370: 170–182

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Canino g, Ros F and Bassi R (2002a) Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry 41: 7334–7343

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Morosinotto T and Bassi,R (2006) LHCI: The antenna complex of photosystem I in plants and green algae. In: Golbeck JH (ed) Photosystem I The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, Advances in Photosynthesis and Respiration, Vol 24, pp 119–137. Springer, Dordrecht

    Google Scholar 

  • Croce R, Morosinotto T, Castelletti S, Breton J and Bassi R (2002b) The Lhca antenna complexes of higher plants photosystem I. Biochim Biophys Acta 1556: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Remelli R, Varotto C, Breton J and Bassi R (1999a) The neoxanthin binding site of the major light-harvesting complex (LHC II) from higher plants. FEBS Lett 456: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Weiss S and Bassi R (1999b) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274: 29613–29623

    Article  PubMed  CAS  Google Scholar 

  • Dall’Osto L, Cazzaniga S, North H, Marion-Poll A and Bassi R (2007a) The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell 19: 1048–1064

    Article  PubMed  Google Scholar 

  • Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G and Bassi R (2007b) Different roles of α- and β-branch xanthophylls in photosystem assembly and photoprotection. J Biol Chem 282: 35056–35068

    Article  PubMed  Google Scholar 

  • Dall’Osto L, Lico C, Alric J, Giuliano G, Havaux M and Bassi R (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol 6: 32

    Article  PubMed  Google Scholar 

  • Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M and Bassi R (2002) Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem 277: 22750–22758

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL and Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275: 9087–9090

    Article  PubMed  CAS  Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10241

    Article  PubMed  CAS  Google Scholar 

  • Flachmann R and Kuhlbrandt W (1996) Crystallization and identification of an assembly defect of recombinant antenna complexes produced in transgenic tobacco plants. Proc Natl Acad Sci USA 93: 14966–14971

    Article  PubMed  CAS  Google Scholar 

  • Formaggio E, Cinque G and Bassi R (2001) Functional architecture of the major light-harvesting complex from higher plants. J Mol Biol 314: 1157–1166

    Article  PubMed  CAS  Google Scholar 

  • Frigerio S, Campoli C, Zorzan S, Fantoni LI, Crosatti C, Drepper F, Haehnel W, Cattivelli L, Morosinotto T and Bassi R (2007) Photosynthetic antenna size in higher plants is controlled by the plastoquinone redox state at the post-transcriptional rather than transcriptional level. J Biol Chem 282: 29457–29469

    Article  PubMed  CAS  Google Scholar 

  • Funk C, Adamska I, Green BR, Andersson B and Renger G (1995) The nuclear-encoded chlorophyll-binding photosystem II-S protein is stable in the absence of pigments. J Biol Chem 270: 30141–30147

    Article  PubMed  CAS  Google Scholar 

  • Funk C and Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 9397–9404

    Article  PubMed  CAS  Google Scholar 

  • Giuffra E, Cugini D, Croce R and Bassi R (1996) Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem 238: 112–120

    Article  PubMed  CAS  Google Scholar 

  • Green BR (2003) The evolution of light harvesting antennas. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13, pp 129–168. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-­carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Dall’Osto L and Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145: 1506–1520

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Dall’Osto L, Cuine S, Giuliano G and Bassi R (2004) The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J Biol Chem 279: 13878–13888

    Article  PubMed  CAS  Google Scholar 

  • Hiller RG (1996) Carotenoids as components of the light-harvesting proteins of green algae. In: Frank HA, Young DA, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, Advances in Photosynthesis, Vol 8, pp 81–98. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Hobe S, Förster R, Klingler J and Paulsen H (1995) N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light- harvesting chlorophyll a/b complex. Biochemistry 34: 10224–10228

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Niemeier H, Bender A and Paulsen H (2000) Carotenoid binding sites in LHCIIb – Relative affinities towards major xanthophylls of higher plants. Eur J Biochem 267: 616–624

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK and Eggink LL (2001) A potential role of chlorophylls b and c in assembly of light-harvesting complexes. FEBS Lett 489: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Grundmann G and Paulsen H (2007) Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb). J Mol Biol 366: 1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Horn R and Paulsen H (2004) Early steps in the assembly of light-harvesting chlorophyll a/b complex: Time-resolved fluorescence measurements. J Biol Chem 279: 44400–44406

    Article  PubMed  CAS  Google Scholar 

  • Hutin C, Havaux M, Carde JP, Kloppstech K, Meiherhoff K, Hoffman N and Nussaume L (2002) Double mutation cpSRP43--/cpSRP54-- is necessary to abolish the cpSRP pathway required for thylakoid targeting of the light-harvesting chlorophyll proteins. Plant J 29: 531–543

    Article  PubMed  CAS  Google Scholar 

  • Jahns P, Wehner A, Paulsen H and Hobe S (2001) De-epoxidation of violaxanthin after reconstitution into different carotenoid binding sites of light-harvesting complex II. J Biol Chem 276: 22154–22159

    Article  PubMed  CAS  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    Article  PubMed  Google Scholar 

  • Johnson MP, Goral TK, Duffy CD, Brain AP, Mullineaux CW, and Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23: 1468–1479

    Google Scholar 

  • Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, Van Grondelle R, Paulsen H and Van Amerongen H (1999) Decreasing the chlorophyll a/b ratio in reconstituted LHCII: Structural and functional consequences. Biochemistry 38: 6587–6596

    Article  PubMed  CAS  Google Scholar 

  • Klimmek F, Ganeteg U, Ihalainen JA, Van Roon H, Jensen PE, Scheller HV, Dekker JP and Jansson S (2005) Structure of the higher plant light-harvesting complex I: in vivo characterization and structural interdependence of the Lhca proteins. Biochemistry 44: 3065–3073

    Article  PubMed  CAS  Google Scholar 

  • Klimmek F, Sjodin A, Noutsos C, Leister D and Jansson S (2006) Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol 140: 793–804

    Article  PubMed  CAS  Google Scholar 

  • Kovacs L, Damkjaer J, Kereiche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S and Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18: 3106–3120

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kuttkat A, Edhofer I, Eichacker LA and Paulsen H (1997) Light-harvesting chlorophyll a/b-binding protein stably inserts into etioplast membranes supplemented with Zn-pheophytin a/b. J Biol Chem 272: 20451–20455

    Article  PubMed  CAS  Google Scholar 

  • Kuttkat A, Hartmann A, Hobe S and Paulsen H (1996) The C-terminal domain of light-harvesting chlorophyll-a/b-binding protein is involved in the stabilisation of trimeric light- harvesting complex. Eur J Biochem 242: 288–292

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72  Å resolution. Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Lokstein H, Tian L, Polle JE and DellaPenna D (2002) Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in photosystem II antenna size and stability. Biochim Biophys Acta 1553: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoetzel J and Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408: 613–615

    Article  PubMed  CAS  Google Scholar 

  • Morosinotto T, Ballottari M, Klimmek F, Jansson S and Bassi R (2005a) The association of the antenna system to photosystem I in higher plants. Cooperative interactions stabilize the supramolecular complex and enhance red-shifted spectral forms. J Biol Chem 280: 3105–31058

    Google Scholar 

  • Morosinotto T, Baronio R and Bassi R (2002a) Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. J Biol Chem 277: 36913–36920

    Article  PubMed  CAS  Google Scholar 

  • Morosinotto T, Bassi R, Frigerio S, Finazzi G, Morris E and Barber J (2006) Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley. FEBS J 273: 4616–4630

    Article  PubMed  CAS  Google Scholar 

  • Morosinotto T, Caffarri S, Dall’Osto L and Bassi R (2003) Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiol Plant 119: 347–354

    Article  CAS  Google Scholar 

  • Morosinotto T, Castelletti S, Breton J, Bassi R and Croce R (2002b) Mutation analysis of Lhca1 antenna complex. Low energy absorption forms originate from pigment-pigment interactions. J Biol Chem 277: 36253–36261

    Article  PubMed  CAS  Google Scholar 

  • Morosinotto T, Mozzo M, Bassi R and Croce R (2005b) Pigment-pigment interactions in Lhca4 antenna complex of higher plants photosystem I. J Biol Chem 280: 20612–20619

    Article  PubMed  CAS  Google Scholar 

  • Mozzo M, Morosinotto T, Bassi R and Croce R (2006) Probing the structure of Lhca3 by mutation analysis. Biochim Biophys Acta 1757: 1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Nelson N and Ben Shem A (2005) The structure of photosystem I and evolution of photosynthesis. Bioessays 27: 914–922

    Article  PubMed  CAS  Google Scholar 

  • Nussberger S, Dekker JP, Kühlbrandt W, Van Bolhuis BM, Van Grondelle R and Van Amerongen H (1994) Spectroscopic characterization of three different monomeric forms of the main chlorophyll a/b-binding protein from chloroplast membranes. Biochemistry 33: 14775–14783

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, and Chang W (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 18: 309–315

    Google Scholar 

  • Park H and Hoober JK (1997) Chlorophyll synthesis modulates retention of apoproteins of light-harvesting complex II by the chloroplast in Chlamydomonas reinhardtii. Physiol Plant 101: 135–142

    Article  CAS  Google Scholar 

  • Pascal A, Gastaldelli M, Ceoldo S, Bassi R and Robert B (2001) Pigment conformation and pigment-protein interactions in the reconstituted Lhcb4 antenna protein. FEBS Lett 492: 54–57

    Article  PubMed  CAS  Google Scholar 

  • Pesaresi P, Sandona D, Giuffra E and Bassi R (1997) A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Lett 402: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Phillip D, Hobe S, Paulsen H, Molnar P, Hashimoto H and Young AJ (2002) The binding of xanthophylls to the bulk light-harvesting complex of photosystem II of higher plants. A specific requirement for carotenoids with a 3-hydroxy-beta-end group. J Biol Chem 277: 25160–25169

    Article  PubMed  CAS  Google Scholar 

  • Pogson BJ, Niyogi KK, Björkman O, and DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95: 13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Polle JE, Niyogi KK and Melis A (2001) Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem- I in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol 42: 482–491

    Article  PubMed  CAS  Google Scholar 

  • Reinsberg D, Booth PJ, Jegerschold C, Khoo BJ and Paulsen H (2000) Folding, assembly, and stability of the major light-harvesting complex of higher plants, LHCII, in the presence of native lipids. Biochemistry 39: 14305–14313

    Article  PubMed  CAS  Google Scholar 

  • Remelli R, Varotto C, Sandona D, Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem 274: 33510–33521

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Lee PJ, Wentworth M, Young AJ and Horton P (1999) Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. J Biol Chem 274: 10458–10465

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Wentworth M, Yakushevska AE, Andersson J, Lee PJ, Keegstra W, Dekker JP, Boekema EJ, Jansson S and Horton P (2003) Plants lacking the main light-harvesting complex retain photosystem II macro-organization. Nature 421: 648–652

    Article  PubMed  CAS  Google Scholar 

  • Schmid VHR, Beutelmann P, Schmidt G and Paulsen H (1998) Ligand requirement for LHCI reconstitution. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 425–428. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Schmid VHR, Paulsen H and Rupprecht J (2002) Identification of N- and C-terminal amino acids of Lhca1 and Lhca4 required for formation of the heterodimeric peripheral photosystem I antenna LHCI-730. Biochemistry 41: 9126–9131

    Article  PubMed  CAS  Google Scholar 

  • Schuenemann D, Gupta S, Persello-Cartieaux F, Klimyuk VI, VI, Jones JDG, Nussaume L and Hoffman NE (1998) A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Proc Natl Acad Sci USA 95: 10312–10316

    Article  PubMed  CAS  Google Scholar 

  • Standfuss J, Terwisscha Van Scheltinga AC, Lamborghini M and Kuhlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5  Å resolution. EMBO J 24: 919–928

    Article  PubMed  CAS  Google Scholar 

  • Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall’Osto L, Carriere F, Bassi R, Grimm B, Nussaume L and Havaux M (2007a) The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant J 50: 795–809

    Article  PubMed  CAS  Google Scholar 

  • Tzvetkova-Chevolleau T, Hutin C, Noel LD, Goforth R, Carde JP, Caffarri S, Sinning I, Groves M, Teulon JM, Hoffman NE, Henry R, Havaux M and Nussaume L (2007b) Canonical signal recognition particle components can be bypassed for posttranslational protein targeting in chloroplasts. Plant Cell 19: 1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Van Amerongen, H and Dekker, J.P. (2003) Light harvesting in photosystem II. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13, pp 219–251. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Walters RG and Horton P (1994) Acclimation of Arabidopsis thaliana to the light environment: Changes in composition of the photosynthetic apparatus. Planta 195: 248–256

    Article  CAS  Google Scholar 

  • Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20: 3623–3630

    Article  PubMed  CAS  Google Scholar 

  • Yakushevska AE, Keegstra W, Boekema EJ, Dekker JP, Andersson J, Jansson S, Ruban AV and Horton P (2003) The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. Biochemistry 42: 608–613

    Article  PubMed  CAS  Google Scholar 

  • Zelisko A, Garcia-Lorenzo M, Jackowski G, Jansson S and Funk C (2005) AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci USA 102: 13699–13704

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank all present and past co-workers for useful discussions. R.B. acknowledges funding from FIRB RBLA0345SF002 (Solanacee) and RBIP06CPBR_006 (Parallelomics). R.B. would also like to thank the von Humbolt association for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Morosinotto, T., Bassi, R. (2012). Assembly of Light Harvesting Pigment-Protein Complexes in Photosynthetic Eukaryotes. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_5

Download citation

Publish with us

Policies and ethics