Skip to main content

Autotrophic Carbon Dioxide Fixation

  • Chapter
  • First Online:
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

Summary

Carbon dioxide fixation is overwhelmingly carried out by reactions of the Calvin-Benson cycle of plants, green algae, and cyanobacteria. Three other carbon dioxide reduction pathways are known to allow autotrophic growth, but these are mainly limited to anaerobic organisms. In this chapter the anaerobic autotrophic carbon reduction pathways are briefly described followed by a more detailed look at the Calvin-Benson cycle and its regulation. The Calvin-Benson cycle reaction sequence is similar to the non-oxidative branch of the pentose phosphate pathway although the enzyme transaldolase of the pentose phosphate pathway is not used and a novel enzymatic activity, sedoheptulose 1,7-bisphosphatase is substituted. The carbon fixation enzyme of the Calvin-Benson cycle, Rubisco, varies in its properties and is currently the subject of much research aimed at improving the efficiency of photosynthesis. Rubisco exists in three different conformations and there is also a gene coding for a related protein that does not have Rubisco activity but could be the evolutionary progenitor. The Calvin-Benson cycle is often referred to as the dark reactions of photosynthesis but it does not proceed in darkness for several reasons. In addition to providing reducing power and ATP, photosynthetic electron transport causes increased pH and magnesium in the stroma plus reducing power for thioredoxin to activate Calvin-Benson cycle enzymes and inactivate enzymes that would lead to futile cycles when Calvin-Benson cycle enzymes are active. There is a surprising regulation of phosphoglucose isomerase that can shift the regulation of the rate of starch synthesis from ADPglucose pyrophosphorylase to phosphoglucose isomerase. This may control the amount of carbon that leaves the Calvin-Benson cycle, since excessive loss of carbon from the Calvin-Benson cycle intermediates can lead to a collapse of the cycle. Finally, a recently discovered regulation mechanism based on a small protein called CP12 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6PG –:

6-phosphogluconate;

AGPase –:

ADPglucose pyrophosphorylase;

CA1P –:

2-carboxyarabinitol 1-phosphate;

CABP –:

2-carboxyarabinitol 1, 5-bisphosphate;

DHAP –:

Dihydroxyacetone phosphate;

E4P –:

Erythritol 4-phosphate;

F6P –:

Fructose 6-phosphate;

FBP –:

Fructose 1,6-bisphosphate;

FBPase –:

Fructose-1,6-bisphosphatase;

G1,6BP –:

Glucose 1,6-bisphosphate;

G6P –:

Glucose 6-phosphate;

GAP –:

Glyceraldehyde 3-phosphate;

PEP –:

Phosphoenolpyruvate;

PG –:

Phosphoglycolate;

PGA –:

3-phosphoglycerate;

PGI –:

Phosphoglucose isomerase;

PGM –:

Phosphoglucomutase;

PRK –:

Phosphor­ibulokinase;

R5P –:

Ribose 5-phosphate;

Ru5P –:

Ribulose 5-phosphate;

RuBP –:

Ribulose 1,5-bisphosphate;

S7P –:

Sedo­heptulose 7-phosphate;

SBP –:

Sedoheptulose 1,7-bisphosphate;

SBPase –:

Sedoheptulose-1,7-bisphosphatase;

Xu5P –:

Xylulose 5-phosphate

References

  • Altekar W and Rajagopalan R (1990) Ribulose bisphosphate carboxylase activity in halophilic Archaebacteria. Arch Microbiol 153: 169–174

    Article  CAS  Google Scholar 

  • Anderson LE (1981) Light inactivation of transaldolase in pea leaf chloroplasts. Biochem Biophys Res Commun 99: 1199–1202

    Article  PubMed  CAS  Google Scholar 

  • Andersson I and Taylor TC (2003) Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 414: 130–140

    Article  PubMed  CAS  Google Scholar 

  • Andrews TJ and Kane HJ (1991) Pyruvate is a by-product of catalysis by ribulosebisphosphate carboxylase/oxygenase. J Biol Chem 266: 9447–9452

    PubMed  CAS  Google Scholar 

  • Ashida H, Saito Y, Kojima C, Kobayashi K, Ogasawara N and Yokota, A (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302: 286–290

    Article  PubMed  CAS  Google Scholar 

  • Ashida H, Saito Y, Nakano T, Tandeau de Marsac N, Sekowska A, Danchin A and Yokota A (2008) RuBisCO-like proteins as the enolase enzyme in the methionine salvage pathway: Functional and evolutionary relationships between rubisco-like proteins and photosynthetic RuBisCO. J Exp Bot 59: 1543–1554

    Article  PubMed  CAS  Google Scholar 

  • Baalmann E, Backhausen JE, Rak C, Vetter S and Scheibe R (1995) Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys 324: 201–208

    Article  PubMed  CAS  Google Scholar 

  • Backhausen JE, Jöstingmeyer P and Scheibe R (1997) Competitive inhibition of spinach leaf phosphoglucose isomerase isoenzymes by erythrose 4-phosphate. Plant Sci 130: 121–131

    Article  CAS  Google Scholar 

  • Badger MR and Bek EJ (2008) Multiple rubisco forms in proteobacteria: Their functional significance in relation to CO2 acquisition by the CBB cycle J Exp Bot 59: 1525–1541

    Article  PubMed  CAS  Google Scholar 

  • Bassham JA and Calvin M (1957) The Path of Carbon in Photosynthesis. 1–104

    Google Scholar 

  • Beck E, Scheibe R and Reiner J (1989) An assessment of the rubisco inhibitor. Plant Physiol 90: 13–16

    Article  PubMed  CAS  Google Scholar 

  • Beitner R (1985) Glucose-1,6-bisphosphate — the regulator of carbohydrate metabolism. In: Biggins, J (ed) Regulation of Carbohydrate Metabolism, pp 1–27. CRC Press, Boca Raton

    Google Scholar 

  • Benson AA (2002) Following the path of carbon in photosynthesis: a personal story. Photosyn Res 73: 31–49

    Article  Google Scholar 

  • Blackman FF (1905) Optima and limiting factors. Ann Bot 19: 281–295

    Google Scholar 

  • Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ and Doolittle WF (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37: 283–328

    Article  PubMed  CAS  Google Scholar 

  • Bowes G, Ogren WL and Hageman RH (1971) Phosphogly­colate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Comm 45: 716–722

    Article  PubMed  CAS  Google Scholar 

  • Brandes HK, Larimer FW and Hartman FC (1996) The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f.  J Biol Chem 271: 3333–3335

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31: 341–374

    Article  CAS  Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: The ferredoxin/thioredoxin system: Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB and Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 24: 47–53

    Article  PubMed  CAS  Google Scholar 

  • Butz ND and Sharkey TD (1989) Activity ratios of ribulose-1,5-bisphosphate carboxylase accurately reflect carbamylation ratios. Plant Physiol 89: 735–739

    Article  PubMed  CAS  Google Scholar 

  • Calvin M and Bassham JA (1962) Photosynthesis of carbon compounds. Benjamin, New York

    Google Scholar 

  • Chen C and Gibbs M (1992) Some enzymes and properties of the reductive carboxylic acid cycle are present in the green alga Chlamydomonas reinhardtii F-60. Plant Physiol 98: 535–539

    Article  PubMed  CAS  Google Scholar 

  • Chow WS, Hope AB and Anderson JM (1989) Oxygen per flash from leaf disks quantifies photosystem II. Biochim Biophys Acta 973: 105–108

    Article  CAS  Google Scholar 

  • Chung SY, Yaguchi T, Nishihara, H, Igarashi Y and Kodama T (1993) Purification of form L2 RubisCO from a marine obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus strain MH-110. FEMS Microbiol Lett 109: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Clasper S, Easterby JS and Powls R (1991) Properties of two high molecular mass forms of glyceraldehyde-3-phosphate dehydrogenase from spinach leaf, one of which also possesses latent phophoribulokinase activity. Plant Physiol 202: 1239–1246

    CAS  Google Scholar 

  • Cleland WW, Andrews TJ, Gutteridge S, Hartman FC and Lorimer GH (1998) Mechanism of Rubisco: The carbamate as general base. Chem Rev 98: 549–562

    Article  PubMed  CAS  Google Scholar 

  • D’Imperio S, Lehr CR, Oduro H, Druschel G, Kuhl M and McDermott TR (2008) The relative importance of H2 and H2S as energy sources for primary production in geothermal springs. Appl Environ Microbiol, AEM.00852–00808

    Google Scholar 

  • Debnam P and Emes M (1999) Subcellular distribution of enzymes of the oxidative pentose phosphate pathway in root and leaf tissues. J Exp Bot 50: 1653–1661

    CAS  Google Scholar 

  • Delwiche CF and Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13: 873–882

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ (1985) A possible rate limiting function of chloroplast hexosemonophosphate isomerase in starch synthesis of leaves. Biochim Biophys Acta 839: 240–248

    Article  CAS  Google Scholar 

  • Dietz KJ (1987) Control function of hexosemonophosphate isomerase and phosphoglucomutase in starch synthesis in leaves Proc VIIth Internat Cong Photosynth, 3: 329–332

    Google Scholar 

  • Dyson JED and Noltmann EA (1968) The effect of pH and temperature on the kinetic parameters of phosphoglucose isomerase. J Biol Chem 243: 1401–1414

    PubMed  CAS  Google Scholar 

  • Edmondson DL, Kane HJ and Andrews TJ (1990) Substrate isomerization inhibits ribulosebisphosphate carboxylase-oxygenase during catalysis. FEBS Lett 260: 62–66

    Article  CAS  Google Scholar 

  • Eicks M, Maurino V, Knappe S, Flugge UI and Fischer K (2002) The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol 128: 512–522

    Article  PubMed  CAS  Google Scholar 

  • Evans MCW, Buchanan BB and Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Nat Acad Sci USA 55: 928–934

    Article  PubMed  CAS  Google Scholar 

  • Ezaki S, Maeda N, Kishimoto T, Atomi H and Imanaka T (1999) Presence of a structurally novel type ribulose-bisphosphate carboxylase/oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. J Biol Chem 274: 5078–5082

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD (1979) Models describing the kinetics of ribulose bisphosphate carboxylase-oxygenase. Arch Biochem Biophys 193: 456–468

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S and Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    Article  CAS  Google Scholar 

  • Finn MW and Tabita FR (2004) Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic archaea. J Bacteriol 186: 6360–6366

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Häusler RE and Flügge U-I (1997) A new class of plastidic phosphate translocators: A putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9: 453–462

    PubMed  CAS  Google Scholar 

  • Flügge U-I and Heldt HW (1991) Metabolite translocators of the chloroplast envelope. Annu Rev Plant Physiol Plant Mol Biol 42: 129–144

    Article  Google Scholar 

  • Fondy BR, Geiger DR and Servaites JC (1989) Photosynthesis, carbohydrate metabolism, and export in Beta vulgaris L. during square and sinusoidal light regimes. Plant Physiol 89: 396–402

    Article  PubMed  CAS  Google Scholar 

  • Gardemann A, Stitt M and Heldt HW (1983) Control of CO2 fixation. Regulation of spinach RuBPkinase by stromal metabolite levels. Biochim Biophys Acta 722: 51–60

    Article  CAS  Google Scholar 

  • Gerhardt R, Stitt M and Heldt HW (1987) Subcellular metabolite levels in spinach leaves. Regulation of sucrose synthesis during diurnal alterations in photosynthetic partitioning. Plant Physiol 83: 399–407

    Article  PubMed  CAS  Google Scholar 

  • Gold T (1992) The deep, hot biosphere. Proc Nat Acad Sci USA 89: 6045–6049

    Article  PubMed  CAS  Google Scholar 

  • Graciet E, Gans P, Wedel N, Lebreton S, Camadro JM and Gontero B (2003) The small protein CP12: A protein linker for supramolecular complex assembly. Biochemistry 42: 8163–8170

    Article  PubMed  CAS  Google Scholar 

  • Hanson TE and Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98: 4397–4402

    Article  PubMed  CAS  Google Scholar 

  • Harrison EP, Willingham NM, Lloyd JC and Raines CA (1998) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204: 27–36

    Article  CAS  Google Scholar 

  • Harrison EP, Olcer H, Lloyd JC, Long SP and Raines CA (2001) Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity. J Exp Bot 52: 1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Hattenbach A and Heineke D (1999) On the role of choroplastic phosphoglucomutase in the regulation of starch turnover. Planta 207: 527–532

    Article  CAS  Google Scholar 

  • Herter S, Fuchs G, Bacher A and Eisenreich W (2002) A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. J Biol Chem 277: 20277–20283

    Article  PubMed  CAS  Google Scholar 

  • Howard TP, Metodiev M, Lloyd JC and Raines CA (2008) Thioredoxin-mediated reversible dissociation of a stromal multiprotein complex in response to changes in light availability. Proc Nat Acad Sci USA 105: 4056–4061

    Article  PubMed  CAS  Google Scholar 

  • Hudson GS, Evans JR, von Caemmerer S, Arvidsson YBC and Andrews TJ (1992) Reduction of ribulose-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant Physiol 98: 294–302

    Article  PubMed  CAS  Google Scholar 

  • Hügler M, Huber H, Stetter KO and Fuchs G (2003a) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179: 160–173

    PubMed  Google Scholar 

  • Hügler M, Krieger RS, Jahn M and Fuchs G (2003b) Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula: Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation. Eur J Biochem 270: 736–744

    Article  PubMed  CAS  Google Scholar 

  • Jacquot JP, Rouhier N and Glhaye E (2002) Redox control by dithiol-disulfide exchange in plants: I. The chloroplastic systems. Ann NY Acad Sci 973: 508–519

    Article  CAS  Google Scholar 

  • Jannasch HW and Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717–725

    Article  PubMed  CAS  Google Scholar 

  • Jordan DB and Chollet R (1983) Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J Biol Chem 258: 13752–13758

    PubMed  CAS  Google Scholar 

  • Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A and Flügge UI (1998) Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: The glucose 6-phosphate phosphate antiporter. Plant Cell 10: 105–117

    PubMed  CAS  Google Scholar 

  • Kitano K, Maeda N, Fukui T, Atomi H, Imanaka T and Miki K (2001) Crystal structure of a novel-type archaeal Rubisco with pentagonal symmetry. Struct Fold Des 9: 473–481

    Article  CAS  Google Scholar 

  • Leegood RC, Kobayashi Y, Neimanis S, Walker DA and Heber U (1982) Co-operative activation of chloroplast fructose-1,6-bisphosphatase by reductant, pH, and substrate. Biochim Biophys Acta 682: 168–178

    Article  CAS  Google Scholar 

  • Li H, Sawaya MR, Tabita FR and Eisenberg D (2005) Crystal structure of a RuBisCO-like protein from the green sulfur bacterium Chlorobium tepidum. Structure 13: 779–789

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28: 785–789

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40: 415–450

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH, Badger MR and Andrews TJ (1976) The ­activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism and physiological implications. Biochemistry 15: 529–536

    Article  PubMed  CAS  Google Scholar 

  • Macioszek J and Anderson LE (1987) Changing kinetic-properties of the 2-enzyme phosphoglycerate kinase NADP-linked glyceraldehyde-3-phosphate dehydrogenase couple from pea-chloroplasts during photosynthetic induction. Biochim Biophys Acta 892: 185–190

    Article  CAS  Google Scholar 

  • Macioszek J, Anderson JB and Anderson LE (1990) Isolation of chloroplastic phophoglycerate kinase - kinetics of the 2-enzyme phosphoglycerate kinase glyceraldehyde-3-phosphate dehydrogenase couple. Plant Physiol 94: 291–296

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Kitano K, Fukui T, Ezaki S, Atomi H, Miki K and Imanaka T (1999) Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure. J Mol Biol 293: 57–66

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Kanai T, Atomi H and Imanaka T (2002) The unique pentaugonal structure of an archaeal Rubisco is essential for its high thermostability. J Biol Chem 277: 31656–31662

    Article  PubMed  CAS  Google Scholar 

  • Malhotra OP, Kumar A and Tikoo K (1987) Isolation and quaternary structure of a complex of glyceraldehydre-3-phosphate dehydrogenase and phosphoglycerate kinase. Indian J Biochem Biophys 24: 16–20

    PubMed  CAS  Google Scholar 

  • Margulis L (1981) Symbiosis in Cell Evolution. W. H. Freeman, New York

    Google Scholar 

  • Marri L, Sparla F, Pupillo P and Trost P (2005) Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J Exp Bot 56: 73–80

    PubMed  CAS  Google Scholar 

  • Marri L, Trost P, Trivelli X, Gonnelli L, Pupillo P and Sparla F (2008) Spontaneous assembly of photosynthetic supramolecular complexes as mediated by the intrinsically unstructured protein CP12. J Biol Chem 283: 1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Scheibe R and Schnarrenberger C (2000) The Calvin Cycle and its regulation. In: Leegood RC, Sharkey TD and von Caemmerer S (eds) Photosynthesis: Physiology and Metabolism, Advances in Photosynthesis, Vol 9, pp 9–51. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Mate CJ, von Caemmerer S, Evans JR, Hudson GS and Andrews TJ (1996) The relationship between CO2-assimilation rate, rubisco carbamylation and rubisco activase content in activase-deficient transgenic tobacco suggests a simple model of activase action. Planta 198: 604–613

    Article  CAS  Google Scholar 

  • McFadden GI (2001) Chloroplast origin and integration. Plant Physiol 125: 50–53

    Article  PubMed  CAS  Google Scholar 

  • McGowan RE and Gibbs M (1974) Comparative enzymology of the glyceraldehyde 3-phosphate dehydrogenases from Pisum sativum. Plant Physiol 54: 312–319

    Article  PubMed  CAS  Google Scholar 

  • McNevin D, von Caemmerer S, Farquhar G (2006) Determining RuBisCO activation kinetics and other rate and equilibrium constants by simultaneous multiple non-linear regression of a kinetic model. J Exp Bot 57: 3883–3900

    Article  PubMed  CAS  Google Scholar 

  • Moore BD, Kobza J and Seemann JR (1991) Measurement of 2-carboxyarabinitol 1-phosphate in plant leaves by isotope dilution. Plant Physiol 96: 208–213

    Article  PubMed  CAS  Google Scholar 

  • Moore BD and Seemann JR (1994) Evidence that 2-carboxyarabinitol 1-phosphate binds to ribulose-1,5-bisphosphate carboxylase in vivo. Plant Physiol 105: 731–737

    PubMed  CAS  Google Scholar 

  • Mott KA, Jensen RG, O’Leary JW and Berry JA (1984) Photosynthesis and ribulose 1,5-bisphosphate concentrations in intact leaves of Xanthium strumarium L. Plant Physiol 76: 968–971

    Article  PubMed  CAS  Google Scholar 

  • Nicholson S, Easterby JS and Powls R (1987) Properties of a multimeric protein complex from chloroplasts possessing potential activities of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase. Eur J Biochem 162: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Ogren WL (1984) Photorespiration: Pathways, regulation, and modification. Annu Rev Plant Physiol 35: 415–442

    Article  CAS  Google Scholar 

  • Ogren WL (2003) Affixing the O to Rubisco: discovering the source of photorespiratory glycolate and its regulation. Photosynth Res 76: 53–63

    Article  PubMed  CAS  Google Scholar 

  • Ölcer H, Lloyd JC and Raines CA (2001) Photosynthetic capacity is differentially affected by reductions in sedoheptulose-1,7-bisphosphatase activity during leaf development in transgenic tobacco plants. Plant Physiol 125: 982–989

    Article  PubMed  Google Scholar 

  • Paul MJ, Kinght JS, Habash D, Parry MAJ, Lawlor DW, Barnes SA, Loynes A and Gray JC (1995) Reduction in phosphoribulokinase activity by antisense RNA in transgenic tobacco: effect on CO2 assimilation and growth in low irradiance. Plant J 7: 535–542

    Article  CAS  Google Scholar 

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41: 421–453

    Article  CAS  Google Scholar 

  • Periappuram C, Steinhauer L, Barton DL, Taylor DC, Chatson B and Zou J (2000) The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme reaction with an important role in metabolic control. Plant Physiol 122: 1193–1200

    Article  PubMed  CAS  Google Scholar 

  • Pohlmeyer K, Paap BK, Soll J and Wedel N (1996) CP12: A small nuclear-encoded chloroplast protein provides novel insights into higher-plant GAPDH evolution. Plant Mol Biol 32: 969–978

    Article  PubMed  CAS  Google Scholar 

  • Poolman MG, Fell DA and Raines CA (2003) Elementary modes analysis of photosynthate metabolism in the chloroplast stroma. Eur J Biochem 270: 430–439

    Article  PubMed  CAS  Google Scholar 

  • Portis AR, Jr and Heldt HW (1976) Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim Biophys Acta 449: 434–446

    Article  PubMed  CAS  Google Scholar 

  • Portis AR Jr, Lilley RM and Andrews TJ (1995) Subsatura­ting ribulose-1,5-bisphosphate concentration promotes inactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) - Studies using continuous substrate addition in the presence and absence of Rubisco activase. Plant Physiol 109: 1441–1451

    PubMed  CAS  Google Scholar 

  • Portis AR Jr, Salvucci ME and Ogren WL (1986) Activation of ribulose bisphosphate carboxylase/oxygenase at physiological CO2 and ribulose bisphosphate concentrations by rubisco activase. Plant Physiol 82: 967–971

    Article  PubMed  CAS  Google Scholar 

  • Preiss J (1984) Starch, sucrose biosynthesis and partition of carbon in plants are regulated by orthophosphate and triose-phosphates. Trends Biol Sci 9: 24–27

    Article  CAS  Google Scholar 

  • Quick WP, Schurr U, Scheibe R, Schulze E-D, Rodermel SR, Bogorad L and Stitt M (1991) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with “antisense” rbcS. I. Impact on photosynthesis in ambient growth conditions. Planta 183: 542–554

    CAS  Google Scholar 

  • Ragsdale SW (1997) The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won. Biofactors 6: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Raines CA, Lloyd JC and Dyer TA (1999) New insights into the structure and function of sedoheptulose-1,7-bisphosphatase; an important but neglected Calvin cycle enzyme. J Exp Bot 50: 1–8

    CAS  Google Scholar 

  • Raines CA, Harrison EP, Ölçer H and Lloyd JC (2000) Investigating the role of the thiol-regulated enzyme sedoheptulose-1,7-bisphosphatase in the control of photosynthesis. Physiol Plant 110: 303–308

    Article  CAS  Google Scholar 

  • Rajagopalan R and Altekar W (1994) Characterisation and purification of ribulose-bisphosphate carboxylase from heterotrophically grown halophilic archaebacterium, Haloferax mediterranei. Eur J Biochem 221: 863–869

    Article  PubMed  CAS  Google Scholar 

  • Robinson SP and Walker DA (1981) Photosynthetic carbon reduction cycle. In: Hatch, MD and Boardman NK (eds) The Biochemistry of Plants. A Comprehensive Treatise, pp 193–236. Academic Press, New York

    Google Scholar 

  • Roy H and Andrews TJ (2000) Rubisco: Assembly and mechanism. In: Leegood RC, Sharkey TD and von Caemmerer S (eds) Photosynthesis: Physiology and Metabolism, Advances in Photosynthesis, Vol 9, pp 53–83. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ruuska SA, Andrews TJ, Badger MR, Price GD and von Caemmerer S (2000) The role of chloroplast electron transport and metabolites in modulating rubisco activity in tobacco. Insights from transgenic plants with reduced amounts of cytochrome b/f complex or glyceraldehyde 3-phosphate dehydrogenase. Plant Physiol 122: 491–504

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME and Anderson JC (1987) Factors affecting the activation state and the level of total activity of ribulose bisphosphate carboxylase in tobacco protoplasts. Plant Physiol 85: 66–71

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R (1987) NADP+-malate dehydrogenase in C3 plants: Regulation and role of a light-activated enzyme. Physiol Plant 71: 393–400

    Article  CAS  Google Scholar 

  • Scheibe R, Geissler A and Fickenscher K (1989) Chloroplast glucose-6-phosphate dehydrogenase: K m shift upon light modulation and reduction. Arch Biochem Biophys 274: 290–297

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R, Wedel N, Vetter S, Emmerlich V and Sauermann SM (2002) Co-existence of two regulatory NADP-glyceraldehyde 3-P dehydrogenase complexes in higher plant chloroplasts. Eur J Biochem 269: 5617–5624

    Article  PubMed  CAS  Google Scholar 

  • Schleucher J, Vanderveer P, Markley JL and Sharkey TD (1999) Intramolecular deuterium distributions reveal disequilibrium of chloroplast phosphoglucose isomerase. Plant Cell Environ 22: 525–533

    Article  CAS  Google Scholar 

  • Schrader SM, Kleinbeck KR, and Sharkey TD (2007) Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant Cell Environ 30: 671–678

    Article  PubMed  CAS  Google Scholar 

  • Schürmann P and Jacquot JP (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51: 371–400

    Article  PubMed  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB and Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432: 779–782

    Article  PubMed  CAS  Google Scholar 

  • Seemann JR, Berry JA, Freas SM and Krump MA (1985) Regulation of ribulose bisphosphate carboxylase activity in vivo by a light-modulated inhibitor of catalysis. Proc Natl Acad Sci USA 82: 8024–8028

    Article  PubMed  CAS  Google Scholar 

  • Selesi D, Schmid M and Hartmann A (2005) Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol 71: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Servaites JC (1985) Binding of a phosphorylated inhibitor to ribulose bisphosphate carboxylase/oxygenase during the night. Plant Physiol 78: 839–843

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. Bot Rev 51: 53–105

    Article  Google Scholar 

  • Sharkey TD (1990) Feedback limitation of photosynthesis and the physiological role of ribulose bisphosphate carboxylase carbamylation. Bot Mag Tokyo special issue 2: 87–105

    Google Scholar 

  • Sharkey TD and Vassey TL (1989) Low oxygen inhibition of photosynthesis is caused by inhibition of starch synthesis. Plant Physiol 90: 385–387

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Seemann JR and Pearcy RW (1986a) Contribution of metabolites of photosynthesis to postillumination CO2 assimilation in response to lightflecks. Plant Physiol 82: 1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Stitt M, Heineke D, Gerhardt R, Raschke K and Heldt HW (1986b) Limitation of photosynthesis by carbon metabolism. II O2 insensitive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiol 81: 1123–1129

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Laporte MM, Lu Y, Weise SE and Weber APM (2004) Engineering plants for elevated CO2: A relationship between sugar sensing and starch degradation. Plant Biol 6: 280–288

    Article  PubMed  CAS  Google Scholar 

  • Sicher RC (1989) Evidence for a light dependent increase of phosphoglucomutase activity in isolated, intact spinach chloroplasts. Plant Physiol 89: 557–563

    Article  PubMed  CAS  Google Scholar 

  • Sicher RC and Kremer DF (1990) Hexose and hexose-phosphate metabolism in barley leaves and roots. Role of glucose 1,6-bisphosphate. Plant Sci 67: 47–56

    Article  CAS  Google Scholar 

  • Somerville CR, Portis AR Jr, and Ogren WL (1982) A mutant of Arabidopsis thaliana which lacks activation of RuBP carboxylase in vivo. Plant Physiol 70: 381–387

    Article  PubMed  CAS  Google Scholar 

  • Spear JR, Walker JJ, McCollom TM and Pace NR (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Nat Acad Sci USA 102: 2555–2560

    Article  PubMed  CAS  Google Scholar 

  • Spreitzer RJ (2003) Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 414: 141–149

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1990) Application of control analysis to photosynthetic sucrose synthesis. In: Cornish-Bowden, A and Cardenas, ML (eds) Control of Metabolic Processes, pp 363–376 Plenum Press, New York

    Google Scholar 

  • Stitt M and ap Rees T (1979) Capacities of pea chloroplasts to catalyse the oxidative pentose phosphate pathway and glycolysis. Phytochemistry 18: 1905–1911

    Article  CAS  Google Scholar 

  • Stitt M and Heldt HW (1981) Simultaneous synthesis and degradation of starch in spinach chloroplasts in the light. Biochim Biophys Acta 638: 1–11

    Article  CAS  Google Scholar 

  • Stitt M, Quick WP, Schurr U, Schulze E-D, Rodermel SR and Bogorad L (1991) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. II. Flux-control coefficients for photosynthesis in varying light, CO2, and air humidity. Planta 183: 555–566

    CAS  Google Scholar 

  • Streusand VJ and Portis AR Jr (1987) Rubisco activase mediates ATP-dependent RuBPCase activation. Plant Physiol 85: 152–154

    Article  PubMed  CAS  Google Scholar 

  • Tabita FR, Satagopan S, Hanson TE, Kreel NE and Scott SS (2008). Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot 59: 1515–1524

    Article  PubMed  CAS  Google Scholar 

  • Tamoi M, Ishikawa T, Takeda T and Shigeoka S (1996) Molecular characterization and resistance to hydrogen peroxide of two fructose-1,6-bisphosphatases from Synechococcus PCC 7942. Arch Biochem Biophys 334: 27–36

    Article  PubMed  CAS  Google Scholar 

  • Tamoi M, Miyazaki T, Fukamizo T and Shigeoka S (2005) The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42: 504–513

    Article  PubMed  CAS  Google Scholar 

  • Tennessen DJ, Bula RJ and Sharkey TD (1995) Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth Res 44: 261–269

    Article  CAS  Google Scholar 

  • Turner JF and Turner DH (1980) The regulation of glycolysis and the pentose phosphate pathway. In: Davies, DP (ed) The Biochemistry of Plants, pp 279–316. Academic Press, New York

    Google Scholar 

  • von Caemmerer S and Edmondson DL (1986) The relationship between steady-state gas exchange, in vivo RuP2 carboxylase activity and some carbon reduction cycle intermediates in Raphanus sativus. Aust J Plant Physiol 13: 669–688

    Article  Google Scholar 

  • Walker DA and Herold A (1977) Can the chloroplast support photosynthesis unaided. Plant Cell Physiol SI: 295–310

    Google Scholar 

  • Ward DM, Ferris MJ, Nold SC and Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62: 1353–1370

    PubMed  CAS  Google Scholar 

  • Watson GM, Yu JP and Tabita FR (1999) Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic archaea. J Bacteriol 181: 1569–1575

    PubMed  CAS  Google Scholar 

  • Wedel N and Soll J (1998) Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/ glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc Nat Acad Sci USA 95: 9699–9704

    Article  PubMed  CAS  Google Scholar 

  • Wedel N, Soll J and Paap BK (1997) CP12 provides a new mode of light regulation of Calvin cycle activity in higher plants. Proc Nat Acad Sci USA 94: 10479–10484

    Article  PubMed  CAS  Google Scholar 

  • Weise SE, Schrader SM, Kleinbeck KR and Sharkey TD (2006) Carbon balance and circadian regulation of hydrolytic and phosphorolytic breakdown of transitory starch. Plant Physiol 141: 879–886

    Article  PubMed  CAS  Google Scholar 

  • Weise SE, Weber APM and Sharkey TD (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta, 218: 474–482

    Google Scholar 

  • Wenderoth I, Scheibe R and von Schaewen A (1997) Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J Biol Chem 272: 26985–26990

    Article  PubMed  CAS  Google Scholar 

  • Werdan K, Heldt HW and Milovancev M (1975) The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim Biophys Acta 396: 276–292

    Article  PubMed  CAS  Google Scholar 

  • Winter H, Robinson DG and Heldt HW (1994) Subcellular volumes and metabolite concentrations in spinach leaves. Planta 193: 530–535

    Article  CAS  Google Scholar 

  • Wolosiuk RA and Buchanan BB (1978) Activation of chloroplast NADP-linked glyceraldehyde-3-phosphate dehydrogenase by ferredoxin-thioredoxin system. Plant Physiol 61: 669–671

    Article  PubMed  CAS  Google Scholar 

  • Woodrow IE and Berry JA (1988) Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu Rev Plant Physiol 39: 533–594

    CAS  Google Scholar 

  • Woodrow IE and Walker DA (1983) Regulation of stromal sedoheptulose-1,7-bisphosphatase activity and its role in controlling the reductive pentose phosphate pathway of photosynthesis. Biochim Biophys Acta 722: 508–516

    Article  CAS  Google Scholar 

  • Zhang XV and Martin ST (2006) Driving parts of Krebs cycle in reverse through mineral photochemistry. J Amer Chem Soc 128: 16032–16033

    Article  CAS  Google Scholar 

  • Zhu X-G, de Sturler E and Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: A numerical simulation using an evolutionary algorithm Plant Physiol, 145: 513–526

    Google Scholar 

  • Ziegler H and Ziegler I (1965) The influence of light on the NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase. Planta 65: 369–380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research supported by the US Department of Energy under grant DE-FG02-04ER15565. We thank C.A. Raines for sharing unpublished information with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Sharkey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sharkey, T.D., Weise, S.E. (2012). Autotrophic Carbon Dioxide Fixation. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_26

Download citation

Publish with us

Policies and ethics