Skip to main content

Origin, Evolution and Division of Plastids

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

Summary

All living eukaryotic cells with mitochondria, and plastids if any, within their cytoplasm, are the result of two billion years of evolution. Both organelles are the result of two distinct endosymbioses. The increase in oxygen in the atmosphere supports the origin for mitochondria about 2.2 billion years ago, an origin probably due to a single invasion of a host cell by an α-proteobacterium-like organism. Plastids originated between 1.6 and 0.6 billion years ago as a result of a symbiotic association between a cyanobacterium and a mitochondriate eukaryote. This endosymbiotic event generated the green, red and blue algal lineages, which subsequently spread their chloroplasts when the new photosynthetic eukaryotes were, in their turn, engulfed by nonphotosynthetic eukaryotes (between, 1.2 and 0.55 billion years ago) generating more algal divisions. These symbiotic events would have been vain if the continuity of the newly acquired organelles had not been maintained. Since the first observations of chloroplast in the mid ninetieth century, progress made in microscopy techniques, during the first half of the twentieth century, demonstrated without ambiguity that this continuity is the result of division of pre-existing chloroplasts. Moreover, thanks to the completion of sequencing projects and the use of classical and reverse genetic approaches, it was then possible to show that the chloroplast division machinery is an evolutionary hybrid, which has retained the activity of several prokaryotically-derived proteins together with components that have evolved from proteins present in the eukaryotic ancestor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ARC:

– Accumulation and replication of chloroplasts;

BDLP:

– Bacterial dynamin-like protein;

CFP:

– Cyan fluorescent protein;

DRP:

– Dynamin related protein;

Fts:

– Filamentous temperature sensitive;

LCA:

– Last common ancestor;

LGT:

– Lateral gene transfer;

LUCA:

– Last universal common ancestor;

MORN:

– Membrane occupation and recognition nexus;

PD ring:

– Plastid division ring;

TEM:

– Transmission electron microscopy;

YFP:

– Yellow fluorescent protein

References

  • Abdallah F, Salamini F and Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5: 141–142

    PubMed  CAS  Google Scholar 

  • Aldridge C and Moller SG (2005) The plastid division protein AtMinD1 is a Ca2+−ATPase stimulated by AtMinE1. J Biol Chem 280: 31673–31678

    PubMed  CAS  Google Scholar 

  • Archibald JM and Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18: 577–584

    PubMed  CAS  Google Scholar 

  • Asano T, Yoshioka Y, Kurei S, Sakamoto W and Machida Y (2004) A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis. Plant J 38: 448–459

    PubMed  CAS  Google Scholar 

  • Beech PL and Gilson PR (2000) FtsZ and organelle division in Protists. Protist 151: 11–16

    PubMed  CAS  Google Scholar 

  • Bhattacharya D, Yoon HS and Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26: 50–60

    PubMed  Google Scholar 

  • Bhattacharya D, Archibald JM, Weber AP and Reyes-Prieto A (2007) How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29: 1239–1246

    PubMed  CAS  Google Scholar 

  • Block MA, Douce R, Joyard J and Rolland N (2007) Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92: 225–244

    PubMed  CAS  Google Scholar 

  • Boasson R and Laetsch WM (1969) Chloroplast replication and growth in tobacco. Science 166: 749–751

    PubMed  CAS  Google Scholar 

  • Bouck BJ (1962) Chromatophore development, pits, and other fine structure in the red alga, Lomentaria baileyana (Harv.) Farlow. J Cell Biol 12: 553–569

    PubMed  CAS  Google Scholar 

  • Brocks JJ, Logan GA, Buick R and Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2006) Cell evolution and earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 361: 969–1006

    PubMed  CAS  Google Scholar 

  • Chaly N and Possingham JV (1981) Structure of constricted proplastids in meristematic plant tissues. Biol Cell 41: 203–210

    Google Scholar 

  • Chaly N, Possingham JV and Thomson WW (1980) Chloroplast division in spinach leaves examined by scanning electron microscopy and freeze-etching. J Cell Sci 46: 87–96

    PubMed  CAS  Google Scholar 

  • Chida Y and Ueda K (1991) Division of chloroplasts in a green alga, Trebouxia potteri. Ann Bot 67: 435–442

    Google Scholar 

  • Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD and Osteryoung KW (2000) A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol 10: 507–516

    PubMed  CAS  Google Scholar 

  • Dangeard P (1947) Cytologie Végétale et Cytologie Générale. Paul Lechevalier, Paris

    Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154: S164–S177

    PubMed  Google Scholar 

  • Din N, Quardokus EM, Sackett MJ and Brun YV (1998) Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol Microbiol 27: 1051–1063

    PubMed  CAS  Google Scholar 

  • Dinkins R, Reddy MS, Leng M and Collins GB (2001) Overexpression of the Arabidopsis thaliana MinD1 gene alters chloroplast size and number in transgenic tobacco plants. Planta 214: 180–188

    PubMed  CAS  Google Scholar 

  • Doolittle WF (2000) The nature of the universal ancestor and the evolution of the proteome. Curr Opin Struct Biol 10: 355–358

    PubMed  CAS  Google Scholar 

  • Douglas SE (1998) Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev 8: 655–661

    PubMed  CAS  Google Scholar 

  • Douglas SE and Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–244

    PubMed  CAS  Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF and Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350: 148–151

    PubMed  CAS  Google Scholar 

  • Doutreligne J (1935) Note sur la structure des chloroplastes. Porc Akad Wetensch Amsterd 38: 886–896

    Google Scholar 

  • Duckett JG and Ligrone R (1993a) Plastid-dividing rings in ferns. Ann Bot 72: 619–627

    Google Scholar 

  • Duckett JG and Ligrone R (1993b) Plastid-dividing rings in the liverwort Odontoschisma denudatum (Mart) Dum. (Jungermanniales, Hepaticae). Gio Bot Ital 127: 318–319

    Google Scholar 

  • Dyall SD, Brown MT and Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304: 253–257

    PubMed  CAS  Google Scholar 

  • El-Kafafi S, Mukherjee S, El-Shami M, Putaux JL, Block MA, Pignot-Paintrand I, Lerbs-Mache S and Falconet D (2005) The plastid division proteins, FtsZ1 and FtsZ2, differ in their biochemical properties and sub-plastidial localization. Biochem J 387: 669–676

    CAS  Google Scholar 

  • El-Kafafi S, Karamoko M, Pignot-Paintrand I, Grunwald D, Mandaron P, Lerbs-Mache S and Falconet D (2008) Developmentally regulated association of plastid division protein FtsZ1 with thylakoid membranes in Arabidopsis thaliana. Biochem J 409: 87–94

    CAS  Google Scholar 

  • El-Shami M, El-Kafafi S, Falconet D and Lerbs-Mache S (2002) Cell cycle-dependent modulation of FtsZ expression in synchronized tobacco BY2 cells. Mol Genet Genomics 267: 254–261

    PubMed  CAS  Google Scholar 

  • Esser C and Martin W (2007) Supertrees and symbiosis in eukaryote genome evolution. Trends Microbiol 15: 435–437

    PubMed  CAS  Google Scholar 

  • Fasse-Franzisket (1955) Die Teilung der Proplastiden und Choroplasten by Agapanthus umbellatus l’hérit. Protoplasma 45: 194–227

    Google Scholar 

  • Fischer WW (2008) Biogeochemistry: Life before the rise of oxygen. Nature 455: 1051–1052

    PubMed  CAS  Google Scholar 

  • Forterre P and Gribaldo S (2007) The origin of modern terrestrial life. HFSP Journal 1: 156–168

    PubMed  CAS  Google Scholar 

  • Forterre P and Philippe H (1999) Where is the root of the universal tree of life? Bioessays 21: 871–879

    PubMed  CAS  Google Scholar 

  • Fujiwara MT, Nakamura A, Itoh R, Shimada Y, Yoshida S and Moller SG (2004) Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. J Cell Sci 117: 2399–2410

    PubMed  CAS  Google Scholar 

  • Gaikwad A, Babbarwal V, Pant V and Mukherjee SK (2000) Pea chloroplast FtsZ can form multimers and correct the thermosensitive defect of an Escherichia coli ftsZ mutant. Mol Gen Genet 263: 213–221

    PubMed  CAS  Google Scholar 

  • Gantt E and Arnott HJ (1963) Chloroplast division in the gametophyte of the fern Matteucia struthiopteris (L.) Todaro. J Cell Biol 19: 446–448

    PubMed  CAS  Google Scholar 

  • Gao H, Kadirjan-Kalbach D, Froehlich JE and Osteryoung KW (2003) ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci USA 100: 4328–4333

    PubMed  CAS  Google Scholar 

  • Gao H, Sage TL and Osteryoung KW (2006) FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology. Proc Natl Acad Sci USA 103: 6759–6764

    PubMed  CAS  Google Scholar 

  • Garton S, Knight H, Warren GJ, Knight MR and Thorlby GJ (2007) crinkled leaves 8 – a mutation in the large subunit of ribonucleotide reductase – leads to defects in leaf development and chloroplast division in Arabidopsis thaliana. Plant J 50: 118–127

    PubMed  CAS  Google Scholar 

  • Gibbs SP (1978) The chloroplast of Euglena may have evolved from symbiotic green algae. Can J Bot 56: 2883–2889

    Google Scholar 

  • Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW and Vitha S (2007) Chloroplast division. Traffic 8: 451–461

    PubMed  CAS  Google Scholar 

  • Glynn JM, Froehlich JE and Osteryoung KW (2008) Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20: 2460–2470

    PubMed  CAS  Google Scholar 

  • Glynn JM, Yang Y, Vitha S, Schmitz AJ, Hemmes M, Miyagishima SY and Osteryoung KW (2009) PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant J 59: 700–711

    Google Scholar 

  • Gray MW, Burger G and Lang BF (1999) Mitochondrial evolution. Science 283: 1476–1481

    PubMed  CAS  Google Scholar 

  • Green PB (1964) Cinematic observations on the growth and division of chloroplasts in Nitella. Am J Bot 51: 334–342

    Google Scholar 

  • Gremillon L, Kiessling J, Hause B, Decker EL, Reski R and Sarnighausen E (2007) Filamentous temperature-sensitive Z (FtsZ) isoforms specifically interact in the chloroplasts and in the cytosol of Physcomitrella patens. New Phytol 176: 299–310

    PubMed  Google Scholar 

  • Gris JBA (1857) Recherches microscopiques sur la chlorophylle. Ann Sci Nat Bot Ser IV 7: 179–219

    Google Scholar 

  • Gunning B, Koenig F and Govindjee (2006) A dedication to pionners of research on chloroplast structure. In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23, pp xxiii–xxxi. Springer, Dordrecht

    Google Scholar 

  • Hale CA, Rhee AC and de Boer PA (2000) ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J Bacteriol 182: 5153–5166

    PubMed  CAS  Google Scholar 

  • Hashimoto H (1986) Double ring structure around the constricting neck of dividing plastids of Avena sativa. Protoplasma 135: 166–172

    Google Scholar 

  • Hashimoto H (1992) Involvement of actin filaments in chloroplast division of the alga closterium ehrengergii. Protoplasma 167: 88–96

    CAS  Google Scholar 

  • Hashimoto H (1997) Electron-opaque annular structure girdling the constriction isthmus of the dividing chloroplasts of Heterosigma akashiwo (Raphidophyceae, Chromophyta). Protoplasma 197: 210–216

    Google Scholar 

  • Hashimoto H (2003) Plastid division: its origins and evolution. Int Rev Cytol 222: 63–98

    PubMed  Google Scholar 

  • Hashimoto H (2005) The ultrastructural features and division of secondary plastids. J Plant Res 118: 163–172

    PubMed  Google Scholar 

  • Hashimoto H and Possingham JV (1989) Division and DNA distribution in ribosome-deficient plastids of the barley mutant “albostrians”. Protoplasma 149: 20–23

    Google Scholar 

  • Haswell ES and Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16: 1–11

    PubMed  CAS  Google Scholar 

  • Hayashida A, Takechi K, Sugiyama M, Kubo M, Itoh RD, Takio S, Fujita T, Hiwatashi Y, Hasebe M and Takano H (2005) Isolation of mutant lines with decreased numbers of chloroplasts per cell from a tagged mutant library of the moss Physcomitrella patens. Plant Biol (Stuttg) 7: 300–306

    CAS  Google Scholar 

  • Heitz E (1936) Untersuchungen über den Bau der Plastiden. I. Die Gerichteten Chlorophyllscheiben der Chloroplasten. Planta 26: 134–163

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci 361: 903–915

    PubMed  CAS  Google Scholar 

  • Hollande AC and Hollande G (1941) La structure des chloroplastes. Cell and Tissue Res 31: 648–652

    Google Scholar 

  • Hong Z, Bednarek SY, Blumwald E, Hwang I, Jurgens G, Menzel D, Osteryoung KW, Raikhel NV, Shinozaki K, Tsutsumi N and Verma DP (2003) A unified nomenclature for Arabidopsis dynamin-related large GTPases based on homology and possible functions. Plant Mol Biol 53: 261–265

    PubMed  CAS  Google Scholar 

  • Hu Z, Mukherjee A, Pichoff S and Lutkenhaus J (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 96: 14819–14824

    PubMed  CAS  Google Scholar 

  • Iino M and Hashimoto H (2003) Intermediate features of cyanelle division of Cyanophora paradoxa (Glaucocystophyta) between cyanobacterial and chloroplast division. J Phycol 39: 561–569

    Google Scholar 

  • Itoh R, Fujiwara M, Nagata N and Yoshida S (2001) A chloroplast protein homologous to the eubacterial topological specificity factor minE plays a role in chloroplast division. Plant Physiol 127: 1644–1655

    PubMed  CAS  Google Scholar 

  • Kameya T and Takahashi N (1971) Division of chloroplast in vitro. Jap J Genet 46: 153–157

    Google Scholar 

  • Kanamaru K, Fujiwara M, Kim M, Nagashima A, Nakazato E, Tanaka K and Takahashi H (2000) Chloroplast targeting, distribution and transcriptional fluctuation of AtMinD1, a Eubacteria-type factor critical for chloroplast division. Plant Cell Physiol 41: 1119–1128

    PubMed  CAS  Google Scholar 

  • Kausche GA and Ruska H (1940) Zur Frage der Chloroplas­tenstruktur. Naturwiss 28: 303–304

    CAS  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91: 1481–1493

    PubMed  Google Scholar 

  • Kiessling J, Kruse S, Rensing SA, Harter K, Decker EL and Reski R (2000) Visualization of a cytoskeleton-like FtsZ network in chloroplasts. J Cell Biol 151: 945–950

    PubMed  CAS  Google Scholar 

  • Kiessling J, Martin A, Gremillon L, Rensing SA, Nick P, Sarnighausen E, Decker EL and Reski R (2004) Dual targeting of plastid division protein FtsZ to chloroplasts and the cytoplasm. EMBO Rep 5: 889–894

    PubMed  CAS  Google Scholar 

  • Kirk JTO and Tilney-Bassett RAE (1978) The plastids: Their Chemistry, Structure, Growth and Inheritance. Elsevier/North Holland Biochemical Press, Amsterdam

    Google Scholar 

  • Klint J, Rasmussen U and Bergman B (2007) FtsZ may have dual roles in the filamentous cyanobacterium Nostoc/Anabaena sp. strain PCC 7120. J Plant Physiol 164: 11–18

    PubMed  CAS  Google Scholar 

  • Koksharova OA and Wolk CP (2002) A novel gene that bears a DnaJ motif influences cyanobacterial cell division. J Bacteriol 184: 5524–5528

    PubMed  CAS  Google Scholar 

  • Kulandaivelu G and Gnanam A (1985) Scanning electron microscope evidence for a budding mode of chloroplast multiplication in higher plants. Physiol Plant 63: 299–302

    Google Scholar 

  • Kuroiwa T (1989) The nuclei of cellular organelles and the formation of daughter organelles by the “plastid dividing ring”. Bot Mag 102: 291–329

    Google Scholar 

  • Kuroiwa T (2000) The discovery of the division apparatus of plastids and mitochondria. J Electron Microsc (Tokyo) 49: 123–134

    CAS  Google Scholar 

  • Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K and Itoh R (1998) The division apparatus of plastids and mitochondria. Int Rev Cytol 181: 1–41

    PubMed  CAS  Google Scholar 

  • Kuroiwa H, Mori T, Takahara M, Miyagishima SY and Kuroiwa T (2002) Chloroplast division machinery as revealed by immunofluorescence and electron microscopy. Planta 215: 185–190

    PubMed  CAS  Google Scholar 

  • Kusunoki S and Kawasaki Y (1936) Beobachtungen über die Chloroplastenteilung by Einigen Blutenpflanzen. Cytologia 7: 530–534

    Google Scholar 

  • Larkum AW, Lockhart PJ and Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12: 189–195

    PubMed  CAS  Google Scholar 

  • Leech RM and Pyke K (1988) Chloroplast division in higher plants with particular reference to wheat. In: Boffey SA and Lloyd D (eds) The division and Segregation of Organelles, pp 31–62. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Leech RM, Thomson WW and Platt-Aloia KA (1981) Observations of the mechanisms of chloroplast division in higher plants. New Phytol 87: 1–9

    Google Scholar 

  • Lemieux C, Otis C and Turmel M (2000) Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403: 649–652

    PubMed  CAS  Google Scholar 

  • Lemieux C, Otis C and Turmel M (2007) A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biol 5: 1–17

    Google Scholar 

  • Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK, Forde RJ and Fuerst JA (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175: 413–429

    PubMed  CAS  Google Scholar 

  • Liu WZ, Hu Y, Zhang RJ, Zhou WW, Zhu JY, Liu XL and He YK (2007) Transfer of a eubacteria-type cell division site-determining factor CrMinD gene to the nucleus from the chloroplast genome in Chlamydomonas reinhardtii. Chin. Sci. Bull. 52: 2514–2521

    CAS  Google Scholar 

  • Liu Z, Mukherjee A and Lutkenhaus J (1999) Recruitment of ZipA to the division site by interaction with FtsZ. Mol Microbiol 31: 1853–1861

    PubMed  CAS  Google Scholar 

  • Low HH and Lowe J (2006) A bacterial dynamin-like protein. Nature 444: 766–769

    PubMed  CAS  Google Scholar 

  • Luck BT and Jordan EG (1980) The mitochondria and plastids during microsporogenesis in Hyacinthoides non-scripta (L.) Chouard. Ann Bot (Lond) 45: 511–514

    Google Scholar 

  • Lumière A (1919) Le Mythe des Symbiotes. Masson & Cie, Paris

    Google Scholar 

  • Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76: 539–562

    PubMed  CAS  Google Scholar 

  • Lutkenhaus J and Addinall SG (1997) Bacterial cell division and the Z ring. Ann Rev Biochem 66: 93–116

    PubMed  CAS  Google Scholar 

  • Ma X and Margolin W (1999) Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181: 7531–7544

    PubMed  CAS  Google Scholar 

  • Maple J and Moller SG (2007a) Plastid division: evolution, mechanism and complexity. Ann Bot (Lond) 99: 565–579

    CAS  Google Scholar 

  • Maple J and Moller SG (2007b) Interdependency of formation and localisation of the Min complex controls symmetric plastid division. J Cell Sci 120: 3446–3456

    PubMed  CAS  Google Scholar 

  • Maple J and Moller SG (2007c) Plastid division coordination across a double-membraned structure. FEBS Lett 581: 2162–2167

    PubMed  CAS  Google Scholar 

  • Maple J, Chua NH and Moller SG (2002) The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J 31: 269–277

    PubMed  CAS  Google Scholar 

  • Maple J, Fujiwara MT, Kitahata N, Lawson T, Baker NR, Yoshida S and Moller SG (2004) GIANT CHLOROPLAST 1 is essential for correct plastid division in Arabidopsis. Curr Biol 14: 776–781

    PubMed  CAS  Google Scholar 

  • Maple J, Aldridge C and Moller SG (2005) Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J 43: 811–823

    PubMed  CAS  Google Scholar 

  • Maple J, Vojta L, Soll J and Moller SG (2007) ARC3 is a stromal Z-ring accessory protein essential for plastid division. EMBO Rep 8: 293–299

    PubMed  CAS  Google Scholar 

  • Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6: 862–871

    PubMed  CAS  Google Scholar 

  • Marin B, Nowack EC and Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156: 425–432

    PubMed  CAS  Google Scholar 

  • Marrison JL, Rutherford SM, Robertson EJ, Lister C, Dean C and Leech RM (1999) The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis. Plant J 18: 651–662

    PubMed  CAS  Google Scholar 

  • Martin W and Kowallik KV (1999) Annotated English translation of Mereschkowsky’s 1905 paper ‘Über Natur und Ursprung der Chromatophoren im Pflanzenreiche’. Eur J Phycol 34: 287–295

    Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246–12251

    PubMed  CAS  Google Scholar 

  • Matsuzaki M, Kikuchi T, Kita K, Kojima S and Kuroiwa T (2001) Large amounts of apicoplast nucleoid DNA and its segregation in Toxoplasma gondii. Protoplasma 218: 180–191

    PubMed  CAS  Google Scholar 

  • McAndrew RS, Olson BJ, Kadirjan-Kalbach DK, Chi-Ham CL, Vitha S, Froehlich JE and Osteryoung KW (2008) In vivo quantitative relationship between plastid division proteins FtsZ1 and FtsZ2 and identification of ARC6 and ARC3 in a native FtsZ complex. Biochem J 412: 367–378

    PubMed  CAS  Google Scholar 

  • McFadden GI and Van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14: R514–516

    PubMed  CAS  Google Scholar 

  • McFadden GI, Gilson PR and Waller RF (1995) Molecular phylogeny of chlorarachniophytes based on plastid rRNA and rbcL sequences. Archiv Protistenk 145: 231–239

    Google Scholar 

  • Menke W (1940) Untersuchungen über den Feinbau des Protoplasmas mit dem Universal-Elektronenmikroskop. Protoplasma 35: 115–130

    CAS  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. centralblatt 25: 593–604. English translation in Martin W, Kowallik KV (1999) Annotated English translation of Mereschkowsky’s 1905 paper ‘Über Natur und Ursprung der Chromatophoren im Pflanzenreiche’. Eur J Phycol 1934: 1287–1295

    Google Scholar 

  • Meyer A (1883) Das Chlorophyllkorn in Chemischer, Morphologischer und Biologischer Beziehung. Felix S, Leipzig

    Google Scholar 

  • Misumi O, Yoshida Y, Nishida K, Fujiwara T, Sakajiri T, Hirooka S, Nishimura Y and Kuroiwa T (2008) Genome analysis and its significance in four unicellular algae, Cyanidioshyzon merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana. J Plant Res 121: 3–17

    PubMed  CAS  Google Scholar 

  • Mita T and Kuroiwa T (1988) Division of plastids by a plastid-dividing ring in Cyanidium caldarium. Protoplasma Suppl 1: 133–152

    Google Scholar 

  • Mita T, Kanbe T, Tanaka T and Kuroiwa T (1986) A ring structure around the dividing plane of the Cyanidium calderium chloroplast. Protoplasma 130: 211–213

    Google Scholar 

  • Miyagishima SY and Kuroiwa T (2006) The mechanism of plastid division: the structure and origin of the plastid division apparatus. In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23, pp 103–121. Springer, Dordrecht

    Google Scholar 

  • Miyagishima SY, Ito M, Toda K, Takabayashi A, Kuroiwa H and Kuroiwa T (1998) Identification of a triple ring structure involve in plastid division in the primitive red alga Cyanidioschyzon merolae. J Electron Microsc 47: 269–272

    Google Scholar 

  • Miyagishima SY, Itoh R, Toda K, Kuroiwa H and Kuroiwa T (1999) Real-time analyses of chloroplast and mitochondrial division and differences in the behavior of their dividing rings during contraction. Planta 207: 343–353

    CAS  Google Scholar 

  • Miyagishima SY, Kuroiwa H and Kuroiwa T (2001a) The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanidioschyzon merolae. Planta 212: 517–528

    PubMed  CAS  Google Scholar 

  • Miyagishima SY, Takahara M and Kuroiwa T (2001b) Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 13: 707–721

    PubMed  CAS  Google Scholar 

  • Miyagishima SY, Takahara M, Mori T, Kuroiwa H, Higashiyama T and Kuroiwa T (2001c) Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13: 2257–2268

    CAS  Google Scholar 

  • Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H and Kuroiwa T (2003) A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15: 655–665

    PubMed  CAS  Google Scholar 

  • Miyagishima SY, Nozaki H, Nishida K, Nishida K, Matsuzaki M and Kuroiwa T (2004) Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. J Mol Evol 58: 291–303

    PubMed  CAS  Google Scholar 

  • Miyagishima SY, Froehlich JE and Osteryoung KW (2006) PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site. Plant Cell 18: 2517–2530

    PubMed  CAS  Google Scholar 

  • Miyagishima SY, Kuwayama H, Urushihara H and Nakanishi H (2008) Evolutionary linkage between eukaryotic cytokinesis and chloroplast division by dynamin proteins. Proc Natl Acad Sci U S A 105: 15202–15207

    PubMed  CAS  Google Scholar 

  • Miyake NH and Taniguchi T (1995) Ultrastructural changes of chloroplasts in peanut mesophyll protoplasts treated with electric fields. Jpn J Crop Sci 64: 131–138

    Google Scholar 

  • Modrusan Z and Wrischer M (1990) Studies on chloroplast division in young leaf tissues of some higher plants. Protoplasma 154: 1–7

    Google Scholar 

  • Moehs CP, Tian L, Osteryoung KW and Dellapenna D (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45: 281–293

    PubMed  CAS  Google Scholar 

  • Moreira D, Le Guyader H and Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405: 69–72

    PubMed  CAS  Google Scholar 

  • Morlot C, Noirclerc-Savoye M, Zapun A, Dideberg O and Vernet T (2004) The D,D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol Microbiol 51: 1641–1648

    PubMed  CAS  Google Scholar 

  • Mosyak L, Zhang Y, Glasfeld E, Haney S, Stahl M, Seehra J and Somers WS (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19: 3179–3191

    PubMed  CAS  Google Scholar 

  • Mühlethaler K (1960) Die Struktur der Grana- und Stroma-Lamellen in Chloroplasten. Z Wissensch Mikroskopie 8: 444–452

    Google Scholar 

  • Nakanishi H, Suzuki K, Kabeya Y and Miyagishima SY (2009) Plant-specific protein MCD1 determines the site of chloroplast division in concert with bacteria-derived MinD. Curr Biol 19: 151–156

    Google Scholar 

  • Nass S and Nass MMK (1963) Intramitochondrial fibers with DNA characteristics. J Cell Biol 19: 613–628

    PubMed  CAS  Google Scholar 

  • Nisbet EG and Sleep NH (2001) The habitat and nature of early life. Science 409: 1083–1091

    CAS  Google Scholar 

  • Nogales E, Wolf SG and Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391: 199–203

    PubMed  CAS  Google Scholar 

  • Nägeli C (1846) Bläschenförmige Gebilde im Inhalte der Pflanzenzelle. Z Wiss Bot 3/4: 94–128

    Google Scholar 

  • Ogawa S, Ueda K and Noguchi T (1995) Division apparatus of the chloroplast in Nannochloris Bacillaris (Chlorophyta). J Phycol 31: 132–137

    Google Scholar 

  • Oross JW and Possingham JV (1989) Ultrastructural features of the constricted region of dividing plastids. Protoplasma 150: 131–138

    Google Scholar 

  • Osteryoung KW and Vierling E (1995) Conserved cell and organelle division. Nature 376: 473–474

    PubMed  CAS  Google Scholar 

  • Osteryoung KW and McAndrew RS (2001) The plastid division machine. Annu Rev Plant Physiol Plant Mol Biol 52: 315–333

    PubMed  CAS  Google Scholar 

  • Osteryoung KW, Stokes KD, Rutherford SM, Percival AL and Lee WY (1998) Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell 10: 1991–2004

    PubMed  CAS  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39: 4–11

    CAS  Google Scholar 

  • Poole AM and Penny D (2007a) Evaluating hypotheses for the origin of eukaryotes. Bioessays 29: 74–84

    PubMed  Google Scholar 

  • Poole AM and Penny D (2007b) Eukaryote evolution: engulfed by speculation. Nature 447: 913

    PubMed  CAS  Google Scholar 

  • Portier P (1918) Les Symbiotes. Masson et Cie, Paris

    Google Scholar 

  • Possingham JV and Lawrence ME (1983) Controls to plastid division. Int Rev Cytol 84: 1–56

    CAS  Google Scholar 

  • Possingham JV and Rose RJ (1976) Chloroplast replication and chloroplast DNA synthesis in spinach leaves. Proc. Roy. Soc. London B 193: 295–305

    CAS  Google Scholar 

  • Possingham JV and Saurer W (1969) Change in chloroplast number per cell during leaf development in spinach. Planta 86: 186–194

    Google Scholar 

  • Praefcke GJ and McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133–147

    PubMed  CAS  Google Scholar 

  • Pyke KA (1999) Plastid division and development. Plant Cell 11: 549–556

    PubMed  CAS  Google Scholar 

  • Pyke KA and Leech RM (1991) Rapid image analysis screening procedure for identifying chloroplast number mutants in mesophyll cells of Arabidopsis thaliana (L.) Heynh. Plant Physiol 96: 1193–1195

    PubMed  CAS  Google Scholar 

  • Pyke KA and Leech RM (1992) Chloroplast division and expansion is radically altered by nuclear mutations in Arabidopsis thaliana. Plant Physiol 99: 1005–1008

    PubMed  CAS  Google Scholar 

  • Pyke KA and Leech RM (1994) A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol 104: 201–207

    PubMed  CAS  Google Scholar 

  • Pyke KA and Page AM (1998) Plastid ontogeny during petal development in Arabidopsis. Plant Physiol 116: 797–803

    PubMed  CAS  Google Scholar 

  • Pyke KA, Rutherford SM, Robertson EJ and Leech RM (1994) arc6, a fertile Arabidopsis mutant with only two mesophyll cell chloroplasts. Plant Physiol 106: 1169–1177

    PubMed  CAS  Google Scholar 

  • Randolf LF (1922) Cytology of chlorophyll type of maize. Bot Gaz 73: 337–375

    Google Scholar 

  • Raskin DM and de Boer PA (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA 96: 4971–4976

    PubMed  CAS  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ and Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455: 1101–1104

    PubMed  CAS  Google Scholar 

  • RayChaudhuri D (1999) ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J 18: 2372–2383

    PubMed  CAS  Google Scholar 

  • Raynaud C, Cassier-Chauvat C, Perennes C and Bergounioux C (2004) An Arabidopsis homolog of the bacterial cell division inhibitor SulA is involved in plastid division. Plant Cell 16: 1801–1811

    PubMed  CAS  Google Scholar 

  • Raynaud C, Perennes C, Reuzeau C, Catrice O, Brown S and Bergounioux C (2005) Cell and plastid division are coordinated through the prereplication factor AtCDT1. Proc Natl Acad Sci USA 102: 8216–8221

    PubMed  CAS  Google Scholar 

  • Reddy MS, Dinkins R and Collins GB (2002) Overexpression of the Arabidopsis thaliana MinE1 bacterial division inhibitor homologue gene alters chloroplast size and morphology in transgenic Arabidopsis and tobacco plants. Planta 215: 167–176

    PubMed  CAS  Google Scholar 

  • Reski R (2002) Rings and networks: the amazing complexity of FtsZ in chloroplasts. Trends Plant Sci 7: 103–105

    PubMed  CAS  Google Scholar 

  • Reumann S, Inoue K and Keegstra K (2005) Evolution of the general protein import pathway of plastids (review). Mol Membr Biol 22: 73–86

    PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Weber APM and Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41: 147–168

    PubMed  CAS  Google Scholar 

  • Ridley SM and Leech RM (1970) Division of chloroplasts in an artificial environment. Nature 227: 463–465

    PubMed  CAS  Google Scholar 

  • Ris H and Plaut W (1962) Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J Cell Biol 19: 383–391

    Google Scholar 

  • Ris H and Singh RN (1961) Electron microscope studies on blue-green algae. J Biophys Biochem Cytol 9: 63–80

    PubMed  CAS  Google Scholar 

  • Robertson EJ, Pyke KA and Leech RM (1995) arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplastid proliferation and morphology in shoot and root apices. J Cell Sci 108: 2937–2944

    PubMed  CAS  Google Scholar 

  • Robertson EJ, Rutherford SM and Leech RM (1996) Characterization of chloroplast division using the Arabidopsis mutant arc5. Plant Physiol 112: 149–159

    PubMed  CAS  Google Scholar 

  • Romberg L and Levin PA (2003) Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu Rev Microbiol 57: 125–154

    PubMed  CAS  Google Scholar 

  • Rutherford SM (1996) The genetic and physical analysis of mutants of chloroplast number and size in Arabidopsis thaliana. PhD Thesis. Department of biology, University of York, York, UK

    Google Scholar 

  • Sagan L (L Margulis) (1967) On the origin of mitosing cells. J Theor Biol 14: 225–275

    CAS  Google Scholar 

  • Sakr S, Jeanjean R, Zhang CC and Arcondeguy T (2006) Inhibition of cell division suppresses heterocyst development in Anabaena sp. strain PCC 7120. J Bacteriol 188: 1396–1404

    PubMed  CAS  Google Scholar 

  • Sapp J (1994) Evolution by Association: A History of Symbiosis. Oxford University Press, New York and Oxford

    Google Scholar 

  • Sato N (2006) Origin and evolution of plastids: genomic view on the unification and diversity of plastids. In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23, pp 75–102. Springer, Dordrecht

    Google Scholar 

  • Schimper AFW (1883) Über die Entwickelung der Chlorophyllkörner und Farbkörper. Bot Zeit 41: 105–112

    Google Scholar 

  • Schimper AFW (1885) Untersuchungen über die Chlorophyllkörner und die ihnen Homologen Gebilde. Jb Wiss Botan 16: 1–247

    Google Scholar 

  • Schmitz FKJ (1883) Die Chromatophoren der Algen. Verh Naturhist Ver preuß Rheinland und Westfalen 40: 1–180

    Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci 361: 869–885

    PubMed  CAS  Google Scholar 

  • Scott NS, Cain P and Possingham JV (1982) Plastid DNA levels in albino and green leaves of the “albostrians” mutant of Hordeum vulgare. Z Pflanzenphysiol 108: 187–191

    CAS  Google Scholar 

  • Sharp LW (1934) Introduction to Cytology. McGraw-Hill book company, New York

    Google Scholar 

  • Shimada H, Koizumi M, Kuroki K, Mochizuki M, Fujimoto H, Ohta H, Masuda T and Takamiya K (2004) ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. Plant Cell Physiol 45: 960–967

    PubMed  CAS  Google Scholar 

  • Simpson CL and Stern DB (2002) The treasure trove of algal chloroplast genomes. Surprises in architecture and gene content, and their functional implications. Plant Physiol 129: 957–966

    PubMed  CAS  Google Scholar 

  • Staff IA and Parthasarathy MV (1984) The possibility of cell plate-induced plastid division in a flowering plant. New Phytol 97: 77–82

    Google Scholar 

  • Steahelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76: 185–196

    Google Scholar 

  • Strepp R, Scholz S, Kruse S, Speth V and Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95: 4368–4373

    PubMed  CAS  Google Scholar 

  • Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F and Roos DS (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151: 1423–1434

    PubMed  CAS  Google Scholar 

  • Strugger S (1950) Über den Bau der Proplastiden und Chloroplasten. Naturwissenschaften 37: 166–167

    Google Scholar 

  • Strugger S (1957) Elektronenmikroskopische Beobachtungen über die Teilung der Proplastiden im Urmeristem der Wurzelspitze von Allium cepa. Z Naturforsch 12b: 280–283

    Google Scholar 

  • Summons RE, Jahnke LL, Hope JM and Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554–557

    PubMed  CAS  Google Scholar 

  • Suzuki KI and Ueda R (1975) Electron microscope observations on plastid division in root meristematic cells of Pisum sativum L. Bot Mag Tokyo 88: 319–321

    Google Scholar 

  • Tavva VS, Collins GB and Dinkins RD (2006) Targeted overexpression of the Escherichia coli MinC protein in higher plants results in abnormal chloroplasts. Plant Cell Rep 25: 341–348

    PubMed  CAS  Google Scholar 

  • Tewinkel M and Volkmann D (1987) Observations on dividing plastids in the protonema of the moss Funaria hygrometrica. Planta 172: 309–320

    Google Scholar 

  • Trécul AAL (1858) Des formations vésiculaires dans les cellules végétales. Ann Sci Nat Bot Ser IV 8: 20 –163, 205–382

    Google Scholar 

  • Ueda R, Tominga S and Tanuma T (1970) Cinematographic observations on the chloroplast division in Mnium leaf cells. Science Report of the Tokyo Daigaku, Section B 14: 129–137

    Google Scholar 

  • Vaughan S, Wickstead B, Gull K and Addinall SG (2004) Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 58: 19–29

    PubMed  CAS  Google Scholar 

  • Ventura GT, Kenig F, Reddy CM, Schieber J, Frysinger GS, Nelson RK, Dinel E, Gaines RB and Schaeffer P (2007) Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. Proc Natl Acad Sci USA 104: 14260–14265

    PubMed  CAS  Google Scholar 

  • Vicente M, Rico AI, Martinez-Arteaga R and Mingorance J (2006) Septum enlightenment: assembly of bacterial division proteins. J Bacteriol 188: 19–27

    PubMed  CAS  Google Scholar 

  • Vitha S, Froehlich JE, Koksharova O, Pyke KA, Van Erp H and Osteryoung KW (2003) ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15: 1918–1933

    PubMed  CAS  Google Scholar 

  • von Wettstein D (1954) Formwechsel und Teilung der Chromatophoren von Fucus vesiculosus. Z Naturforsch 9B: 476–481

    Google Scholar 

  • Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K and Sugiura M (1997) Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94: 5967–5972

    PubMed  CAS  Google Scholar 

  • Wallin IE (1927) Symbionticism and the Origin of Species. Williams and Wilkins, Baltimore

    Google Scholar 

  • Wang X, Huang J, Mukherjee A, Cao C and Lutkenhaus J (1997) Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179: 5551–5559

    PubMed  CAS  Google Scholar 

  • Weatherill K, Lambiris I, Pickett-Heaps J, Deane JA and Beech PL (2007) Plastid division in Mallomonas (Synurophyceae, Heterokonta). J Phycol 43: 535–541

    Google Scholar 

  • Whatley JM (1988) Mechanism and morphology of plastid divison. In: Boffey SA and Lloyd D (eds) The Division and Segregation of Organelles, pp 63–83. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95: 6854–6859

    PubMed  CAS  Google Scholar 

  • Woese CR and Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74: 5088–5090

    PubMed  CAS  Google Scholar 

  • Yan K, Pearce KH and Payne DJ (2000) A conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus aureus. Biochem Biophys Res Commun 270: 387–392

    PubMed  CAS  Google Scholar 

  • Yang Y, Glynn JM, Olson BJ, Schmitz AJ and Osteryoung KW (2008) Plastid division: across time and space. Curr Opin Plant Biol 11: 577–584

    PubMed  CAS  Google Scholar 

  • Yoder DW, Kadirjan-Kalbach D, Olson BJ, Miyagishima SY, Deblasio SL, Hangarter RP and Osteryoung KW (2007) Effects of mutations in Arabidopsis FtsZ1 on plastid division, FtsZ ring formation and positioning, and FtsZ filament morphology in vivo. Plant Cell Physiol 48: 775–791

    PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G and Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21: 809–818

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Kuroiwa H, Misumi O, Nishida K, Yagisawa F, Fujiwara T, Nanamiya H, Kawamura F and Kuroiwa T (2006) Isolated chloroplast division machinery can actively constrict after stretching. Science 313: 1435–1438

    PubMed  CAS  Google Scholar 

  • Yuasa A (1949) Studies in the cytology of Pteridophyta. Jpn J Genet 24: 166–173

    Google Scholar 

  • Zhang M, Hu Y, Jia J, Li D, Zhang R, Gao H and He Y (2009) CDP1, A novel component of chloroplast division site positioning system in Arabidopsis. Cell Res 19: 877–886

    Google Scholar 

Download references

Acknowledgements

I acknowledge the support of the Centre National de la Recherche Scientifique (CNRS) and the Ministère de l’Education Nationale (MEN) for a research grant (ACI DRAB 03/41, N° 03 5 90). I am grateful to Stéphane Lobreaux, Gabrielle Tichtinsky and Dominique Scheffel-Dunand for critical reading of the manuscript. Special thanks to Romage for his inspiring comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Falconet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Falconet, D. (2012). Origin, Evolution and Division of Plastids. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_2

Download citation

Publish with us

Policies and ethics