Skip to main content

Fluorescence Emission from the Photosynthetic Apparatus

  • Chapter
  • First Online:
Book cover Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

Summary

Oxygenic photosynthetic organisms (plants, algae and cyanobacteria) use the energy of visible light to drive a highly complex and elaborate enzymic mechanism that decomposes water to oxygen, protons and electrons and reduces carbon dioxide to carbohydrate. Three classes of colored molecules, all complexed to protein, serve as entry points of visible light in the mechanism of photosynthesis: chlorophylls (Chls), carotenoids (Cars) and phycobilins (PBs). The most important is Chl a, not only because it is ubiquitous and the most abundant of all, but mainly because it is capable of donating a valence electron to an acceptor when it is electronically excited. As a matter of fact only few Chls a are photoactive, those in the reaction centers of photosystems (PS) I and II. The majority of them, and all the other pigments, are not photoactive. These non-photoactive pigments serve as light-harvesting antennae, absorbing photons and transferring excitation energy (EE) to reaction center Chls a and, also, in light protection by dissipating excessive EE as heat. While absorbed light energy is used almost quantitatively for photosynthesis, about 3% of it is re-emitted as fluorescence and even smaller fractions as delayed fluorescence and phosphorescence. The emitted fluorescence, particularly that by Chl a, is very rich in information about the physical states and the interactions of emitter and sensitizer molecules. Information resides not only in their stationary absorption and fluorescence signals but more so in their time variations which reflect corresponding variations in the populations of excited chromophores and their quantum efficiencies as fluorescence emitters. The key reporter molecule is, of course, Chl a. Its fluorescence emission has been exploited extensively as a diagnostic tool for the mechanism of oxygenic photosynthesis from the moment of photon capture to that of dioxygen release from water; and also as a tool for assessing the productivity of individual plants, of plant communities and of ecosystems. The present chapter addresses these themes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANTM :

– Mobile peripheral antenna elements;

APC:

– Allophycocyanin;

Car:

– Carotenoid;

Chl:

– Chlorophyll;

EE:

– Excitation energy;

EET:

– Excitation energy transfer;

FCP:

– Fuc-Chl protein complex;

FI:

– Fluorescence induction;

FRAP:

– Fluorescence recovery after photobleaching;

Fuc:

– Fucoxanthin;

HSPCP:

– High-salt PCP;

PSI :

– Light absorbed more by PS I;

PSII :

– Light absorbed more by PS II;

LHC:

– Peripheral light-harvesting Chl – protein;

LHCI:

– LHCs of PS I;

LHCII:

– LHCs of PS II;

MFPCP:

– Main form PCP;

OCP:

– Orange Car protein;

PB:

– Phycobilin;

PBP:

– Phycobiliprotein;

PBS:

– Phycobilisome;

PC:

– Phycocyanin;

Pcb:

– Prochlorophyte Chl a/b-binding protein;

PCB:

– Phycocyanobilin;

PCP:

– Per–Chl a protein;

PE:

– Phycoerythrin;

PEB:

– Phycoerythrobilin;

PEC:

– Phycoerythrocyanin;

Per:

– Peridinin;

Pheo:

– Pheophytin;

PQ:

– Plastoquinone;

PSET:

– Photosynthetic electron transport;

PS I, PS II:

– Photosystem I, Photosystem II;

PSICAC :

– Core antenna complex of PS I;

PSICC :

– Core complex of PS I;

PSIICAC :

– Core antenna complex of PS II;

PSIICC :

– Core complex of PS II;

PSIIPAC :

– Peripheral antenna complex of PS II;

PSIIRC :

– Reaction center complex of PS II;

PSIPAC :

– Peripheral antenna complex of PS I;

PSIRC :

– Reaction center complex of PS I;

it also contains core antenna chlorophylls PUB:

– Phycourobilin;

PVB:

– Phycoviolobilin;

TMH:

– Transmembrane α–helix

References

  • Adachi Η, Umena Υ, Enami Ι, Henmi Τ, Kamiya Ν and Shen JR (2009) Towards structural elucidation of eukaryotic photosystem II: Purification, crystallization and preliminary X-ray diffraction analysis of photosystem II from a red alga. Biochim Biophys Acta 1787: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85: 15–32

    Article  PubMed  CAS  Google Scholar 

  • Alfonso M, Montoya G, Cases R, Rodriguez R and Picorel R (1994) Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33: 10494–10500

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2002) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynth Res 73: 139–148

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2004) Cytochrome b 6 f: structure for signalling and vectorial metabolism. Trends Plant Sci 9: 130–137

    Article  PubMed  CAS  Google Scholar 

  • Allen JF and Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6: 317–326

    Article  CAS  Google Scholar 

  • Allen JF and Mullineaux CW (2004) Probing the mechanisms of state transitions in oxygenic photosynthess by chlorophyll fluorescence spectroscopy, kinetics and imaging. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 447–461. Springer, Dordrecht

    Chapter  Google Scholar 

  • Amunts A, Drory O and Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4  Å resolution. Nature 447: 58–63

    Article  PubMed  CAS  Google Scholar 

  • Andrizhiyevskaya EG, Schwab TME, Germano M, D’Haene S, Kruip J, Van Grondelle R and Dekker JP (2002) Spectroscopic properties of PSI–IsiA supercomplexes from the cyanobacterium Synechococcus PCC 7942. Biochim Biophys Acta 1556: 265–272

    Article  PubMed  CAS  Google Scholar 

  • Andrizhiyevskaya EG, Frolov D, Van Grondelle R and Dekker JP (2004) Energy transfer and trapping in the photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA. Biochim Biophys Acta 1656: 104–113

    Article  PubMed  CAS  Google Scholar 

  • Arteni AA, Ajlani G and Boekema EJ (2009) Structural organisation of phycobilisomes from Synechocystis sp. strain PCC 6803 and their interaction with the membrane. Biochim Biophys Acta 1787: 272–279

    Article  PubMed  CAS  Google Scholar 

  • Ashby MK and Mullineaux CW (1999) The role of ApcD and ApcE in energy transfer from phycobilisomes to PSI in a cyanobacterium. Photosynth Res 61: 169–179

    Article  CAS  Google Scholar 

  • Baker NR and Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 65–82. Springer, Dordrecht

    Chapter  Google Scholar 

  • Bald D, Kruip J and Rögner M (1996) Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? Photosynth Res 49: 103–118

    Article  CAS  Google Scholar 

  • Bannister TT and Rice G (1968) Parallel time courses of oxygen evolution and chlorophyll fluorescence. Biochim Biophys Acta 162: 555–580

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Mills J and Nicolson J (1974a) Studies with cation specific ionophores show that within intact chloroplast Mg2+ acts as main exchange cation for H+ pumping. FEBS Lett 49: 106–110

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Telfer A and Nicolson J (1974b) Evidence for divalent-cation movement within isolated whole chloroplasts from studies with ionophore A23187. Biochim Biophtys Acta 357: 161–165

    Article  CAS  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79: 4352–4356

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Yoon HS and Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26: 50–60

    Article  Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AWD and Barber J (2003) Structure of photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100: 9050–9054

    Article  PubMed  CAS  Google Scholar 

  • Björn LO and Govindjee (2009) The evolution of photosynthesis and chloroplasts. Current Sci 96: 1466–1474

    Google Scholar 

  • Björn LO, Papageorgiou GC, Blankenship RE and Govindjee (2009) A viewpoint: Why chlorophyll a? Photosynth Res 99: 85–98

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  • Boichenko VA, Klimov VV, Miyashita H and Miyachi S (2000) Functional characteristics of chlorophyll d-predominating photosynthetic apparatus in intact cells of Acaryochloris marina. Photosynth Res 65: 269–277

    Article  PubMed  CAS  Google Scholar 

  • Bonaventura C and Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189: 366–383

    Article  PubMed  CAS  Google Scholar 

  • Bradbury M and Baker NE (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystems I and II. Biochim Biophys Acta 635: 542–551

    Article  PubMed  CAS  Google Scholar 

  • Brakemann T, Schloermann W, Marquardt J, Nolte M and Rhiel E (2006) Association of fucoxanthin chlorophyll a/c-binding polypeptides with photosystems and phosphorylation in the centric diatom Cyclotella cryptica. Protist 157: 463–475

    Article  PubMed  CAS  Google Scholar 

  • Braun P, Greenberg BM and Scherz A (1990) D1-D2-cytochrome b559 complex from the aquatic plant Spirodela oligorrhiza: Correlation between complex integrity, spectroscopic properties, photochemical activity, and pigment composition. Biochemistry 29: 10376–10387

    Article  PubMed  CAS  Google Scholar 

  • Briantais JM, Vernotte C, Picaud M and Krause GH (1979) Quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts 548: 128–138

    Google Scholar 

  • Briantais JM, Vernotte C, Krause GH and Weis E (1986) Chlorophyll a flurescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, pp 539–583. Academic Press, New York

    Google Scholar 

  • Brody SS (2002) Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950–1960. Photosynth Res 73: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Bruce D and Vasil’ev S (2004) Excess light stress: Multiple dissipative processes of excess excitation. In: Papa­georgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 497–523. Springer, Dordrecht

    Chapter  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42: 13027–13034

    Article  PubMed  CAS  Google Scholar 

  • Bumba L, Havelkova-Dousova H, Husak M and Vacha F (2004) Structural characterization of photosystem II complex from red alga Porphyridium cruentum retaining extrinsic subunits of the oxygen-evolving complex. Eur J Biochem 271: 2967–2975

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Troyan T and Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43’) is encoded by the isiA gene. Plant Physiol 103: 893–902

    Article  PubMed  CAS  Google Scholar 

  • Chang HC, Jankowiak R, Yocum CF, Picorel R, Alfonso M, Seibert M and Small GJ (1994) Exciton level structure and dynamics in the CP47 antenna complex of photosystem II. J Phys Chem 98: 7717–7724

    Article  CAS  Google Scholar 

  • Chen M, Quinnell RG and Larkum AWD (2002) The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett 514: 149–152

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD and Barber J (2005a) Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett 579: 1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J and Blankenship RE (2005b) The nature of the photosystem II rection centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 4: 1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Chitnis VP and Chitnis PR (1993) PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 336: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Damjanovic A, Ritz T and Schulten K (2000) Excitation transfer in the peridinin-chlorophyl-protein of Amphidinium carterae. Biophys J 79: 1695–1705

    Article  PubMed  CAS  Google Scholar 

  • DeEll JD and Toivonen PMA (eds) (2003) Practical Applications of Chlorophyll Fluorescence in Plant Biology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dekker JP and Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706: 12–39

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, Hassoldt A, Pettersson A, Van Roon H, Groot ML and Van Grondelle R (1995) On the nature of the F695 and F685 emissions of photosystem II. P. Mathis (ed) Photosynthesis: From Light to Biosphere 1: 53–56

    Google Scholar 

  • De Martino A, Douady D, Quinet-Szely M, Rousseau B, Crepineau F, Apt K and Caron L (2000) The light-harvesting antenna of brown algae. Highly homologous proteins encoded by a multigene family. Eur J Biochem 267: 5540–5549

    Article  PubMed  Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ and Chisholm DA (2001) Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry 40: 9265–9281

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Tang A, Zhao, Mullineaux CW, Shen G and Bryant DA (2009) ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002. Biochim Biophys Acta 1787: 1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Durrand JR, Klug DR, Kwa SLS, Van Grondelle R, Porter G and Dekker JP (1995) A multimer model for P680, the primary electron donor of photosystem II. Proc Natl Acad Sci USA 92: 4798–4802

    Article  Google Scholar 

  • Duysens LNM and Sweers H E (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (eds) Studies on Microalgae and Photosynthetic Bacteria, pp 353–372. University of Tokyo Press, Tokyo

    Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G and Forti G (2004) Metabolic flexibility of the green alga Chlamydomonas reinhardtii as revealed by the link between state transitions and cyclic electron flow. Photosynth Res 82: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P and Krauss N (2001) Structure of photosystem I. Biochim Biophys Acta 1507: 5–31

    Article  PubMed  CAS  Google Scholar 

  • Fromme P and Grotjohann I (2007) Structure of photosystems I and II. Results Probl Cell Differ 45: 33–72

    Article  CAS  Google Scholar 

  • Gantt E (1980) Structure and function of phycobilisomes: Light harvesting pigment complexes in red and blue-green algae. Int Rev Cytol 66: 45–80

    Article  CAS  Google Scholar 

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327–347

    Article  CAS  Google Scholar 

  • Gantt E, Edwards MR and Provasoli L (1971) Chloroplast structure of the Cryptophyceae. Evidence for phycobiliproteins within intrathylakoid spaces. J Cell. Biol 48: 280–290

    Article  PubMed  CAS  Google Scholar 

  • Gantt E, Grabowski B and Cunningham FX Jr (2003) Antenna systems of red algae: Phycobilisomes with photosystem II and chlorophyll complexes with photosystem I. In: Green B and Parson W (eds) Light-Harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13, pp 307–322. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gardian Z, Bumba L, Schrofel A, Herbstova M, Nebesarova J and Vacha F (2007) Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: Encounter of cyanobacterial and higher plant concepts. Biochim Biophys Acta 1767: 725–731

    Article  PubMed  CAS  Google Scholar 

  • Gilmore A, Shinkarev VP, Hazlett TL and Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and the xanthophyll cycle pigments on chlorophyll a fluorescence distributions and intensity in thylakoids. Biochemistry 37: 13582–13593

    Google Scholar 

  • Gitelson AA, Buschmann C and Lichtenthaler HK (1999) The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sens Environ 69: 296–302

    Article  Google Scholar 

  • Giuffra E, Cugini D, Croce R and Bassi R (1996) Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem 238: 112–120

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1982) Phycobilisomes: Structure and dynamics. Annu Rev Microbiol 36: 173–198

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1984) Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51

    Article  CAS  Google Scholar 

  • Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Bioph Biophys Chem 14: 47–77

    Article  CAS  Google Scholar 

  • Glazer AN (1989) Light guides: Directional energy transfer in a photosynthetic antenna. J Biol Chem 264: 1–4

    PubMed  CAS  Google Scholar 

  • Golan T, Li X-P, Müller-Moulé P and Niyogi KK (2004) Using mutants to understand light stress acclimation in plants. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosyn­thesis, Advances in Photosynthesis and Respiration, Vol 19, pp 525–554. Springer, Dordrecht

    Chapter  Google Scholar 

  • Golbeck JH (ed) (2006) Photosystem I: The Light-driven Plastocyanin: Ferredoxin Oxidoreductase, Advances in Photosynthesis and Respiration, Vol 24. Springer, Dordrecht

    Google Scholar 

  • Govindjee (ed) (1975) Bioenergetics of Photosynthesis, pp. 319–372. Academic Press, New York

    Google Scholar 

  • Govindjee (ed) (1982) Photosynthesis: Vol 1 Energy Conversion by Plants and Bacteria. Vol 2: Development, Carbon Metabolism, and Productivity. Academic Press, New York

    Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust J Plant Physiol 22: 131–160

    Article  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: A bit of basics and history. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 1–42. Springer, Dordrecht

    Chapter  Google Scholar 

  • Govindjee, Amesz J and Fork DC (eds) (1986) Light Emission by Plants and Bacteria, Academic Press, Orlando

    Google Scholar 

  • Govindjee, Kern JF, Messinger J and Whitmarssh J (2010) Photosystem II. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0000669.pub2

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    Article  PubMed  CAS  Google Scholar 

  • Green BR and Parson W (eds) (2003) Light-Harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Groot ML, Peterman EJG, Van Stokkum IHM, Dekker JP and Van Grondelle R (1995) Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature. Biophys J 68: 281–290

    Article  PubMed  CAS  Google Scholar 

  • Groot ML, Frese RN, de Weerd FL, Bromek K, Pettersson A, Peterman EJG, Van Stokkum IHM, Van Grondelle R and Dekker JP (1999) Spectroscopic properties of the CP43 core antenna protein of photosystem II. Biophys J 77: 3328–3340

    Article  PubMed  CAS  Google Scholar 

  • Guglielmi G, Lavaud J, Rousseau B, Etienne AL, Houmard J, and Ruban AV (2005) The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. FEBS J 272: 4339–4348

    Article  PubMed  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A and Saenger W (2009) Cyanobacterial photosystem II and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16: 334–342

    Article  PubMed  CAS  Google Scholar 

  • Gysi J and Zuber H (1974) Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS Lett 48: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Haldimann P and Tsimilli-Michael M (2005) Non-photochemical quenching of chlorophyll a fluorescence by oxidised plastoquinone: new evidences based on modulation of the redox state of the endogenous plastoquinone pool in broken spinach chloroplasts. Biochim Biophys Acta 1706: 239–249

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C and Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6: 301–306

    Article  PubMed  CAS  Google Scholar 

  • Hirano M, Satoh K and Katoh S (1980) Plastoquinone as a common link between photosynthesis and respiration in a blue green alga. Photosynth Res 1: 149–162

    Article  CAS  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–179

    Article  PubMed  CAS  Google Scholar 

  • Hohmann-Marriott MF, Takizawa K, Eaton-Rye JJ, Mets L and Minagawa J (2010) The redox state of the plastoquinone pool directly modulates minimum chlorophyll fluorescence yield in Chlamydomonas reinhardtii. FEBS Lett 584: 1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Holub O, Seufferheld MJ, Gohlke C, Govindjee, Hiss GJ and Clegg RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: nonphotochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microscopy 30: 1–31

    Google Scholar 

  • Holt NE, Fleming GR and Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43: 8281–8289

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth, AR (1991) Structure-function relationships and energy transfer in phycobilisome antennae. Physiol Plant 83: 518–528

    Article  CAS  Google Scholar 

  • Holzwarth AR, Mueller MG, Reus M, Nowaczyk M, Sander J, and Rögner M (2006) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103: 6895–6900

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Mörschel E and Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chloropjyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta 1412: 250–261

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T and Iwaki M (2007) Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. Biochemistry 46: 12473–12481

    Article  PubMed  CAS  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    Article  PubMed  Google Scholar 

  • Jeffrey SW (1972) Preparation and some properties of crystalline chlorophyll c1 and c2 from marine algae. Biochim Biophys Acta 279: 15–33

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5  Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Nat Acad Sci USA 100: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Kana R, Prasil O and Mullineaux CW (2009a) Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted. FEBS Lett 583: 670–674

    Article  PubMed  CAS  Google Scholar 

  • Kana R, Prásil O, Komárek O, Papageorgiou GC and Govindjee (2009b) Spectral characteristic of fluorescence induction in a model cyanobacterium, Synecho­coccus sp. (PCC 7942). Biochim Biophys Acta 178: 1170–1178

    Google Scholar 

  • Kaňa R, Komárek O, Kotabová E, Papageorgiou GC, Govindjee and Prášil O (2011) The Slow S to M fluorescence rise is missing in the RpaC mutant of Synechocystis sp. (PCC 6803), Proceedings of the 15th Intern. Congress of Photosynthesis, Beijing, China (2010), in press.

    Google Scholar 

  • Karapetyan NV (2008) Protective dissipation of excess absorbed energy by photosynthetic apparatus of cyanobacteria: role of antenna terminal emitters. Photosynth Res 97: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Kargul J, Turkina MV, Nield J, Benson S, Vener AV and Barber J (2005) Light-harvesting complex II protein CP29 binds to photosystem I of Chlamydomonas reinhardtii under state 2 conditions. FEBS J 272: 4797–4806

    Article  PubMed  CAS  Google Scholar 

  • Karukstis KK and Sauer K (1983) Fluorescence decay kinetics of chlorophyll in photosynthetic membranes. J Cellular Biochem 23: 131–158

    Article  CAS  Google Scholar 

  • Kautsky H and Hirsch A (1931) Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 19: 964

    Article  CAS  Google Scholar 

  • Kereïche S, Kouřil R, Oostergetel GT, Fusetti F, Boekema EJ, Doust AB, Van der Weij-de Wit CD and Dekker JP (2008) Association of chlorophyll a/c2 complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24. Biochim Biophys Acta 1777: 1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related ­nonphotochemical quenching mechanism. Photosynth Res 93: 7–16

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohashi S, Iwamoto K, Shirai Y, Kato Y and Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767: 596–602

    Article  PubMed  CAS  Google Scholar 

  • Koblızek M, Komenda J and Masojıdek J (1998) State transitions in the cyanobacterium Synechococcus PCC 7942. Mobile antenna or spillover? In G. Garab (ed) Photo­synthesis: Mechanisms and Effects, Vol 1, pp 213–216. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Konermann L and Holzwarth AR (1996) Analysis of the absorption spectrum of photosystem II reaction centers: Temperature dependence, pigment assignment, and inhomogeneous broadening. Biochemistry 35: 829–842

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Avenson TJ, Kanazawa A and Cruz JA (2004) The relationship between photosynthetic electron transfer and its regulation. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 251–278. Springer, Dordrecht

    Chapter  Google Scholar 

  • Krause GH (1974) Changes in chlorophyll fluorescence in relation to light-dependent cation transfer across thylakoid membranes. Biochim Biophys Acta 333: 301–313

    Article  PubMed  CAS  Google Scholar 

  • Krause GH, Vernotte C and Briantais JM (1982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae: Resolution into two components. Biochim Biophys Acta 679: 116–124

    Article  CAS  Google Scholar 

  • Krause GH and Jahns P (2004) Nonphotochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 463–495. Springer, Dordrecht

    Chapter  Google Scholar 

  • Krikunova M, Voigt B and Lokstein H (2002) Direct evidence for excitonically coupled chlorophylls a and b in LHC II of higher plants by nonlinear polarization spectroscopy in the frequency domain. Biochim Biophys Acta 1556: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Kruse O (2001) Light-induced short-term adaptation mechanisms under redox control in the PSII-LHCII supercomplex: LHC II state transitions and PSII repair cycle. Naturwissenschaften 88: 284–292

    Article  PubMed  CAS  Google Scholar 

  • Kühl M, Chen M, Ralf PJ, Schreiber U and Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433: 820

    Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Ladas NP and Papageorgiou GC (2000a) Cell turgor: A critical factor for the proliferation of cyanobacteria at unfavorable salinity. Photosynth Res 65: 155–164

    Article  PubMed  CAS  Google Scholar 

  • Ladas NP and Papageorgiou GC (2000b) The salinity tolerance of freshwater cyanobacterium Synechococcus sp. PCC 7942 is determined by its ability for osmotic adjustment and presence of osmolyte sucrose. Photosynthetica 38: 343–348

    Article  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer, New York

    Book  Google Scholar 

  • La Roche J, Van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD and Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvetsing proteins. Proc Natl Acad Sci USA 93: 15244–15248

    Article  PubMed  Google Scholar 

  • Larkum WD, Douglas SE and Raven JA (eds) (2003) Photosynthesis in Algae, Advances in Photosynthesis and Respiration, Vol 14. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lavorel J (1959) Induction of fluorescence in quinone-poisoned Chlorella cells. Plant Physiol 34: 204–209

    Article  PubMed  Google Scholar 

  • Lazár D and Schansker G (2009) Models of Chl a fluorescence transients. In: Laisk A, Nedbal L and Govindjee (eds) Photosynthesis in Silico. Understanding Complexity from Molecules to Ecosystems, Advances in Photo­synthesis and Respiration, Vol 29, pp 85–123. Springer, Dordrecht

    Google Scholar 

  • Lemeille S and Rochaix J-D (2010) State transitions at the crossroad of thylakoid signalling pathways. Photosynth Res 106: 33–46

    Google Scholar 

  • Lichtenthaler HK (ed) (1988) Applications of Chlorophyll Fluorescence in Photosynthesis Research. Stress Physiology, Hydrobiology and Remote Sensing. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Liu LN, Chen XL, Zhang YZ and Zhou BC (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. Biochim Biophys Acta 1708: 133–142

    Article  PubMed  CAS  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gul LL, An XM and Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72  Å resolution. Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern JF, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0  Å resolution structure of photosystem II. Nature 438: 1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoetzel J and Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408: 613–615

    Article  PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124: 311–334

    Article  PubMed  CAS  Google Scholar 

  • MacColl R (2004) Allophycocyanin and energy transfer. Biochim Biophys Acta 1657: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Malkin S and Kok B (1966) Fluorescence induction studies in isolated chloroplasts. I. Number of components involved in the reaction and quantum yields. Biochim Biophys Acta 126: 413–432

    Article  PubMed  CAS  Google Scholar 

  • Malkin S, Wong D, Govindjee and Merkelo H (1980) Parallel measurements on fluorescence lifetime and intensity from leaves during fluorescence induction. Photobiochem Photobiophys 1: 83–89

    CAS  Google Scholar 

  • Manodori A and Melis A (1985) Phycobilisome – photosystem II association in Synechococcus 6301 (Cyanophyceae) FEBS Lett 181: 79–82

    Article  CAS  Google Scholar 

  • Marquardt J, Senger H, Miyashita H, Miyachi S and Mörschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410: 428–432

    Article  PubMed  CAS  Google Scholar 

  • Martin CD and Hiller RG (1987) Subunits and chromophores of a type I phycoerythrin from a Chroomonas sp. (Cryptophyceae). Biochim Biophys Acta 923: 88–97

    Article  CAS  Google Scholar 

  • Matsubara S, Chen Y-C, Caliandro R, Govindjee and Clegg RM (2011) Photosystem II fluo­rescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violax­anthin cycles to fluorescence quenching. J Photochem Photobiol. B: Biol 104: 271–284

    Google Scholar 

  • McConnell MD, Koop R, Vasil’ev S and Bruce D (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130: 1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Metz JG and Seibert M (1984) Presence in photosystem II core complexes of a 34-kilodalton polypeptide required for water photolysis. Plant Physiol 76: 829–832

    Article  PubMed  CAS  Google Scholar 

  • Michel KP and Pistorius EK (2004) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: The function of IdiA and IsiA. Physiol Plant 120: 36–50

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J and Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102: 850–855

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M (2004) Photon capture, exciton migration and trapping and fluorescence ermission in cyanobacteria and red algae. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosyn­thesis, Advances in Photosynthesis and Respiration, Vol 19, pp 173–195. Springer, Dordrecht

    Chapter  Google Scholar 

  • Mimuro M and Akimoto S (2003) Carotenoids of light harvesting systems: Energy transfer processes from fucoxanthin and peridinin to chlorophyll. In: Larkum AWD, Douglas SE and Raven JA (eds) Photosynthesis in Algae, Advances in Photosynthesis and Respiration, Vol 14, pp 335–349. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Mimuro M, Murakami A and Fujita Y (1982) Studies on spectral characteristics of allophycocyanin isolated from Anabaena cylidrica: Curve fitting analysis. Arch Biochem Biophys 215: 266–273

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Tamai N, Ishimaru T and Yamazaki I (1990) Excitation energy flow in the marine dinoflagellate Protogonyalux tamarensis. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 2, pp 309–312. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mimuro Μ, Tamai Ν, Murakami A, Watanabe Μ, Erata Μ, Watanabe ΜΜ, Tokutomi M and Yamazaki I (1998) Multiple pathways of excitation energy flow in the photosynthetic pigment system of a cryptophyte, Cryptomonas sp. (CR-1). Phycological Res 46: 155–164

    Article  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Yamazaki I, Miyashita H and Miyachi S (1999) Fluorescence prioperties of chlorophyll d-containing prokaryotic alga Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Hirayama K, Yamazaki I, Uezono K, Miyashita H and Miyachi S (2000) Uphill energy transfer in a chlorophyll d-containing oxygenic photosynthetic prokaryote, Acaryochloris marina. Biochim Biophys Acta 1456: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, Kobayashi M and Yamazaki I (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Lett 556: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Minagawa J (2011) State transitions – the molecular remodelling of photosynthetic super­complexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807: 897–905

    Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383: 402

    Article  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274–281

    Article  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S and Chihara M (2003) Acaryochloris marina gen. et sp. nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39: 1247–1253

    Article  CAS  Google Scholar 

  • Mirkovic T, Wilk KE, Curmi PMG and Scholes G (2009) Phycobiliprotein diffusion in chloroplasts of cryptophyte Rhodomonas CS24. Photosynth Res 100: 7–17

    Article  PubMed  CAS  Google Scholar 

  • Mohanty P and Govindjee (1974) The slow decline and the subsequent rise of chlorophyll fluorescence transients in intact algal cells. Plant Biochem J 1: 78–106

    CAS  Google Scholar 

  • Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175–182

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW, Tobin MJ and Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390: 421–424

    Article  CAS  Google Scholar 

  • Munday JCM Jr and Govindjee (1969) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9:1–21

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. Light-induced change of chlorophyll a fluorescence in Porhyridium cruentum. Biochim Biophys Acta 172: 242–251

    Article  PubMed  CAS  Google Scholar 

  • Murata N (2009) The discovery of state transitions in photosynthesis 40 years ago. Photosynth Res 99: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Nishimura M and Takamiya A (1966) Fluorescence of chlorophyll in photosynthetic systems. II. Induction of fluorescence in isolated spinach chloroplasts. Biochim Biophys Acta 120: 23–33

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Morris EP, Bibby TS and Barber J (2003) Structural analysis of the photosystem I supercomplex of cyanobacteria induced by iron deficiency. Biochemistry 42: 3180–3188

    Article  PubMed  CAS  Google Scholar 

  • Palacios MA, de Weerd FL, Ihalainen JA, Van Grondelle R and Van Amerongen H (2002) Superradiance and exciton (de)localization in light-harvesting complex II from green plants. J Phys Chem 106: 5782–5787

    CAS  Google Scholar 

  • Papageorgiou GC (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of Photosynthesis, pp 319–372. Academic Press, New York

    Google Scholar 

  • Papageorgiou GC and Alygizaki-Zorba A (1997) A sensitive method for the estimation of the cytoplasmic osmolality of cyanobacterial cells using chlorophyll a fluorescence. Biochim Biophys Acta 1335: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC and Govindjee (1967) Changes in intensity and spectral distribution of fluorescence effect of light treatment on normal and DCMU-poisoned Anacystis nidulans. Biophys J 7: 375–389

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC and Govindjee (1968a) Light-induced changes in the fluorescence yield of chlorophyll a in vivo I. Anacystis nidulans. Biophys J 8: 1299–1315

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC and Govindjee (1968b) Light-induced changes in the fluorescence yield of chlorophyll a in vivo II. Chlorella pyrenoidosa. Biophys J 8: 1299–1315

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC and Govindjee (eds) (2004) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19. Springer, Dordrecht

    Google Scholar 

  • Papageorgiou GC and Govindjee (2011) Photosystem II fluorescence: Slow changes – scaling from the past. J Photochem Photobiol B: Biol 104: 258–270

    Google Scholar 

  • Papageorgiou GC and Stamatakis K (2004) Water and solute transport in cyanobacteria as probed by chlorophyll fluorescence. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosyn­thesis, Advances in Photosynthesis and Respiration, Vol 19, pp 663–678. Springer, Dordrecht

    Chapter  Google Scholar 

  • Papageorgiou GC, Isaakidou J and Argoudelis C (1972) Structure dependent control of chlorophyll a excitation density. The role of oxygen. FEBS Lett 25: 130–142

    Article  Google Scholar 

  • Papageorgiou GC, Alygizaki-Zorba A, Ladas N and Murata N (1998) A method to probe the cytoplasmic osmolality and water and solute fluxes across the cell membrane of cyano­bacteria with chlorophyll a fluorescence: Experiments with Synechococcus sp. PCC 7942. Physiol Plant 103: 215–224

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Tsimilli-Michael M and Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94: 275–290

    Article  PubMed  CAS  Google Scholar 

  • Partensky F and Garczarek L (2003) The photosynthetic apparaus of chlorophyll b– and d–containing oxyphotobacteria. In: Larkum, AWD, Douglas SE and Raven JA (eds) Photosynthesis in Algae, Advances in Photosynthesis and Respiration, Vol 14, pp 29–62. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Partensky F, Hess WR and Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106–127

    PubMed  CAS  Google Scholar 

  • Passaquet C, Thomas JC, Carlon L, Hauswirth N, Puel F and Berkaloff C (1991) Light-harvesting complexes of brown algae: Biochemical characterization and immunological relationships. FEBS Lett 280: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Peterson RB, Oja V and Laisk A (2001) Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth Res 56:185–195

    Article  Google Scholar 

  • Polivka T, Hiller RG and Frank HA (2007) Spectroscopy of the peridinin-chlorophyll a protein: Insight into light-harvesting strategy of marine algae. Arch Biochem Biophys 458: 111–120

    Article  PubMed  CAS  Google Scholar 

  • Pfündel E (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56: 185–195

    Article  Google Scholar 

  • Pursiheimo S, Rintamaki E, Baena-Gonzalez E and Aro E-M 1998) Thylakoid protein phosphorylation in evolutionally divergent species with oxygenic photosynthesis. FEBS Lett 423: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Kebin Z, Chen X, Qu Y, Li L and Kuang T (2006) Rapid purification of photosystem I chlorophyll-binding proteins by differential centrifugation and vertical rotor. Photosynth Res 90: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitch E and Govindjee (1969) Photosynthesis. John Wiley & Sons, New York [Available free at: http://www.life.illinois.edu/govindjee/photosynBook.html]

  • Rochaix J-D (2007) Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581: 2758–2775

    Article  CAS  Google Scholar 

  • Rubin A and Riznichenko G (2009) Modeling of the primatry processes in photosynthesis. In: Laisk A, Nedbal L and Govindjee (eds) Photosynthesis in Silico, Advances in Photosynthesis and Respiration, Vol 29, pp 151–176. Springer, Dordrecht –

    Chapter  Google Scholar 

  • Samson G, Prasil O and Yaakoubd B (1999) Photochemical and thermal phases of chlorophyll a fluorescence. Photosynthetica 37: 163–182

    Google Scholar 

  • Savard F, Richard C, and Guertin M (1996) The Chlamydomonas reinhardtii L1818 gene represents a distant relative of the Cab I/II gene that is regulated during the cell cycle and in response to illumination. Plant Mol Biol 32: 461–473

    Article  PubMed  CAS  Google Scholar 

  • Scheer H (1981) Biliproteins. Angew Chem Int Ed Engl 20: 241–261

    Article  Google Scholar 

  • Scheer H (2003) The pigments. In: Green BR and Parson WW (eds) Light-harvesting Antennas in Photosynthesis, Advances in Photosynthesis and Respiration, Vol 13, pp 29–81. Kluwer Aademic Publishers, Dordrecht

    Google Scholar 

  • Scheer H and Zhao KH (2008) Biliprotein maturation: the chromophore attachment. Mol Microbiol 68: 263–276

    Article  PubMed  CAS  Google Scholar 

  • Schiller H, Senger H, Miyashita H, Miyachi S and Dau H (1997) Light-harvesting in Acaryochloris marina – spectroscopic characterization of a chlorophjyll d-dominated photosynthetic antenna system. FEBS Lett 410: 433–436

    Article  PubMed  CAS  Google Scholar 

  • Schmid VHR (2008) Light-harvesting complexes of vascular plants. Cell Mol Life Sci 65: 3619–3639

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) and saturation pulse method: an overview. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 279–319. Springer, Dordrecht

    Chapter  Google Scholar 

  • Schreiber U, Bauer R and Franck UF (1971) Chlorophyll fluorescence induction in Scenedesmus at oxygen deficiency. Z Naturforsch 26b: 1195–1196

    Google Scholar 

  • Schulte T, Sharples FP, Frank P, Hiller RG and Hofman E (2009) X-ray structure of the high-salt form of the peridinin-chlorophyll a-protein from the dinoflagellate Amphidinium carterae: Modulation of the spectral properties of pigments by the protein environment. Biochemistry 48: 4466–4475

    Article  PubMed  CAS  Google Scholar 

  • Shan J, Wang J, Ruan X, Li L, Gong Y, Zhao N and Kuang T (2001) Changes of absorption spectra during heat-induced denaturation of photosystem II core antenna complexes CP43 and CP47: revealing the binding states of chlorophyll molecules in these two complexes. Biochim Biophys Acta 1504: 396–408

    Article  PubMed  CAS  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, Advances in Photosynthesis, Vol 1, pp 139–216. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Stadnichuk IN, Lukashev EP and Elanskaya IV (2009) Fluorescence changes accompanying short-term light adaptations in photosystem I and photosystem II of the cyanobacterium Synechocystis sp. PCC 6803 and phycobiliprotein-impaired mutants: State 1/State 2 transitions and carotenoid-induced quenching of phycobilisomes. Photosynth Res 99: 227–241

    Article  PubMed  CAS  Google Scholar 

  • Stauber EJ, Busch A, Naumann B, Svatos A and Hippler M (2009) Proteotypic profiling of LHCI from Chlamydomonas reinhardtii provides new insights into structure and function of the complex. Proteomics 9: 398–408

    Article  PubMed  CAS  Google Scholar 

  • Steffen R, Eckert HJ, Kelly AA, Doermann P and Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis. Biochemistry 44: 3123–3133

    Article  PubMed  CAS  Google Scholar 

  • Stewart DH, Nixon PJ, Diner BA and Brudvig GW (2000) Assignment of the Qy absorbance bands of photosystem II chromophores by low-temperature optical spectroscopy of wild-type and mutant reaction centers. Biochemistry 39: 14583–14594

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A and Govindjee (2011) On the relation between the Kautsky Effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B: Biol 104: 236–257

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M and Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 321–362. Springer, Dordrecht

    Chapter  Google Scholar 

  • Su X, Fraenkel PG and Bogorad L (1992) Excitation energy transfer from phycocyanin to chlorophyll in an apcA-defective mutant of Synechocystis sp. PCC 6803. J Biol Chem 267: 22944–22950

    PubMed  CAS  Google Scholar 

  • Suggett DJ, Prášil O and Borowitzka A (2011) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Springer, Dortrecht

    Google Scholar 

  • Suter GW and Holzwarth AR (1987) A kinetic method for the energy transfer in phycobilisomes. Biophys J 52: 673–683

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y and Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103: 477–482

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Ducret A, Aebersold R and Gantt E (1997a) Red algal LHC I genes have similarities with both Chl a/b- and a/c-binding proteins: A 21 kDa polypeptide encoded by LhcaR2 is one of the six LHC I polypeptides. Photosynth Res 53: 129–140

    Article  CAS  Google Scholar 

  • Tan S, Cunningham FX, Jr. and Elisabeth Gantt E (1997b) LhcaR1 of the red alga Porphyridium cruentum encodes a polypeptide of the LHCI complex with seven potential chlorophyll a-binding residues that are conserved in most LHCs. Plant Mol Biol 33: 157–167

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: The early observations. Photosynth Res 76: 193–205

    Article  PubMed  Google Scholar 

  • Tetenkin VI, Gulyaev BA, Seibert M and Rubin AB (1989) Spectral properties of stabilized D 1/D2/cytochrome b-559 photosystem II reaction center complex. Effects of Triton X-100, the redox state of pheophytin, and β–carotene. FEBS Lett 250: 459–463

    Article  CAS  Google Scholar 

  • Tikkanen M, Grieco M and Aro EM (2011) Novel insights into plant light-harvesting com­plex II phosphorylation and “state transitions”. Trends Plant Sci 16: 126–131

    Google Scholar 

  • Tokutsu R, Teramoto H, Takahashi Y, Ono TA and Minagawa J (2004) The light-harvesting complex of photosystem I in Chlamydomonas reinhardtii: Protein composition, gene structure and phylogenic implications. Plant Cell Physiol 45: 138–145

    Article  PubMed  CAS  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Tomo T, Seiji Akimoto S, Tsuchiya T, Fukuya M, Tanaka K and Mimuro M (2008) Isolation and spectral characterization of photosystem II reaction center from Synechocystis sp. PCC 6803. Photosynth Res 98: 293–302

    Article  PubMed  CAS  Google Scholar 

  • Toole CA and Allnut FCT (2003) Red, cryptomonad and glaucocystophyte algal phycobiliproteins. In: Larkum WD, Douglas SE and Raven JA (eds) Photosynthesis in Algae, Advances in Photosynthesis and Respiration, Vol 14, pp 305–334. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Tsimilli-Michael M, Stamatakis K and Papageorgiou GC (2009) Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition. Photosynth Res 99: 243–255

    Article  PubMed  CAS  Google Scholar 

  • Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J and Vener AV (2007) Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 5: 1412–1425

    Google Scholar 

  • Umena Y, Kawakami K, Shen J-R and Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473: 55–60

    Google Scholar 

  • Van der Weij-De Wit CD, Doust AB, Van Stokkum IHM, Dekker JP, Wilk KE, Curmi PMG, Scholes GD and Van Grondelle R (2006) How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 Cells. J Phys Chem B 110: 25066–25073

    Article  PubMed  CAS  Google Scholar 

  • Van der Weij-De Wit CD, Doust AB, Van Stokkum IHM, Dekker JP, Wilk KE, Curmi PMG and Van Grondelle R (2008) Phycocyanin sensitizes both photosystem I and photosystem II in cryptophyte Chroomonas CCMP270 cells. Biophys J 94: 2423–2433

    Article  PubMed  CAS  Google Scholar 

  • Vanselow C, Weber APM, Krause K and Fromme P (2009) Genetic analysis of the photosystem I subunits from the red alga, Galdieria sulphuraria. Biochim Biophys Acta 1787: 46–59

    Article  PubMed  CAS  Google Scholar 

  • Veith T and Büchel C (2007) The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Biochim Biophys Acta 1767: 1428–1435

    Article  PubMed  CAS  Google Scholar 

  • Veith T, Brauns J, Weisheit W, Mittag M and Büchel C (2009) Identification of a specific fucoxanthin-chlorophyll protein in the light-harvesting complex of photosystem I in the diatom Cyclotella meneghiniana. Biochim Biophys Acta 1787: 905–912

    Article  PubMed  CAS  Google Scholar 

  • Vener AV, Van Kan PJM, Rich PR, Ohad I and Andersson B (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: Thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci USA 94: 1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Vener AV, Ohad I and Andersson B (1998) Protein phosphorylation and redox sensing in chloroplast thylakoids. Cur Opin Plant Biol 1: 217–223

    Article  CAS  Google Scholar 

  • Vernotte C, Etienne AL and Briantais J-M (1979) Quenching of the photosystem II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta 545: 519–527

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ (2004) System analysis and photoelectrochemical control of chlorophyll fluorescence in terms of trapping models of Photosystem II: A challenging view. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 133–172. Springer, Dordrecht

    Chapter  Google Scholar 

  • Vredenberg WJ (2008) Kinetic models of photosystem II should incorporate a role for QB-nonreducing reaction centers. Biophys J 95: 3113–3114

    Article  PubMed  CAS  Google Scholar 

  • Vredenberg WJ and Prasil O (2009) Modelling of chlorophyll a fluorescence in plant cells: Derivation of a descriptive algorithm. In: Laisk A, Nedbal N, Govindjee (eds) Photosynthesis in Silico, Advances in Photosynthesis and Respiration, Vol 29, pp 125–149. Springer, Dordrecht

    Chapter  Google Scholar 

  • Wedemayer GJ, Kidd DG, Wemmer DE and Glazer AN (1992) Phycobilins of cryptophycean algae – occurrence of dihydrobiliverdin and mesobiliverdin in cryptomonad biliproteins. J Biol Chem 267: 7315–7331

    PubMed  CAS  Google Scholar 

  • Wedemayer GJ, Kidd DG and Glazer AN (1996) Cryptomonad biliproteins: Bilin types and locations. Photosynth Res 48: 163–70

    Article  CAS  Google Scholar 

  • Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharples F, Hiller RG and Curmi PMG (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. Proc Natl Acad Sci USA 96: 8901–8906

    Article  PubMed  CAS  Google Scholar 

  • Wolfe GR, Cunningham FX, Grabowski B, Gantt E (1994) Isolation and characterization of photosystems I and II from the red alga Porphyridium cruentum. Biochim Biophys Acta 1188: 357–366

    Article  Google Scholar 

  • Wollman F-A (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20: 3633–3630

    Article  Google Scholar 

  • Wong D, Pellegrino F, Alfano RR and Zilinskas BA (1981) Fluorescence relaxation kinetics and quantum yield from the isolated phycobiliproteins of the blue-green alga Nostoc sp. measured as a function of single picosecond pulse intensity. Photochem Photobiol 33: 651–662

    Article  CAS  Google Scholar 

  • Wydrzynski TJ and Satoh K (eds) (2005) Photosystem II: The Light-Driven Water: Plastoquinone Oxidoreductase, Advances in Photosynthesis and Respiration, Vol 22. Springer, Dordrecht

    Google Scholar 

  • Yang S, Su Z, Li H, Feng J, Xie J, Xia A, Gong Y and Zhao J (2007) Demonstration of phycobilisome mobility by the time- and space-correlated fluorescence imaging of a cyanobacterial cell. Biochim Biophys Acta 1767: 15–21

    Article  PubMed  CAS  Google Scholar 

  • Zapata M, Garrido JL and Jeffrey SW (2006) Chlorophyll c pigments. Current status. In: Grimme B, Porra RJ, Ruediger W and Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Func­tions and Applications, Advances in Photosynthesis and Respiration, Vol 25, pp. 39–53. Springer, Dordrecht

    Chapter  Google Scholar 

  • Zer H and Ohad I (2003) Light, redox state, thylakoid-protein phosphorylation and signaling gene expression. Trends Biol Sci 28: 467–470

    Article  CAS  Google Scholar 

  • Zhao J, Zhou J and Bryant DA (1992) Energy transfer processes in phycobilisomes as deduced from analyses of mutants of Synechococcus sp. PCC 7002. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 25–32. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zheleva D, Sharma J, Panico M, Morris HR and Barber J (1998) Isolation and characterization of monomeric and dimeric CP47-reaction center photosystem II complexes. J Biol Chem 273: 16122–16127

    Article  PubMed  CAS  Google Scholar 

  • Zhu X-G, Govindjee, Baker NR, de Sturler E, Ort DR and Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. Planta 223: 114–133

    Article  PubMed  CAS  Google Scholar 

  • Zilinskas BA and Greenwald LS (1986) Phycobilisome structure and function. Photosynth Res 10: 7–35

    Article  CAS  Google Scholar 

  • Zouni, A., Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Julian J. Eaton-Rye for inviting this chapter and for editing it; Govindjee for eding it; Shigerou Itoh for a generous gift of Acaryochloris marina culture; and Kostas Stamatakis for providing fluorescence induction data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Papageorgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Papageorgiou, G.C. (2012). Fluorescence Emission from the Photosynthetic Apparatus. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_18

Download citation

Publish with us

Policies and ethics