Skip to main content

The Characteristics of Specific Chlorophylls and Their Roles in Biogenesis of the Photosynthetic Apparatus

  • Chapter
  • First Online:
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

  • 6725 Accesses

Summary

This chapter promotes a concept that provides insight into unique biological functions of the accessory chlorophylls b and c. The basis for the concept is the nature of atoms and molecules as malleable clouds of electrons. The distribution of electron density in the chlorophyll macrocycle, which is readily probed by absorption of light energy, is affected by functional groups on the periphery of the structure. Spectroscopic and molecular orbital data support the proposal that the central Mg ion in chlorophylls b and c is less shielded by the molecular electron cloud than in chlorophylls a and d. Consequently, the extent to which the Mg ion is exposed causes it to interact differently with ligands. Chlorophylls a and d are versatile Lewis acids and form coordination bonds with a range of Lewis bases, from electron-rich neutral structures such as the imidazole group of histidine and the charge-compensated ion-pair of the carboxyl group of glutamate with the guanidinium group of arginine, to those with a strong dipole moment such as amide groups and water. In contrast, chlorophyll b (and probably chlorophyll c) is found only with “hard” Lewis bases that have a strongly electronegative, oxygen-containing dipole moment. For a coordination bond to form between chlorophyll b and a protein, the potential ligand apparently must have a sufficiently strong dipole to displace a strongly bound water molecule. Chlorophyll b is required for accumulation of light-harvesting complexes in chloroplasts, a role that is attributed to interaction with a backbone peptide bond carbonyl group near the N-terminus of the apoproteins. Experiments on chloroplast development with the alga Chlamydomonas reinhardtii show that synthesis of chlorophyll b in the chloroplast envelope inner membrane is required to retain the proteins in this membrane during import into the organelle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BChl –:

Bacteriochlorophyll;

Chl –:

Chlorophyll;

Chlide –:

Chlorophyllide;

D –:

Debye;

DCMU –:

3-(3,4-dichlorophenyl)-1,1-dimethylurea;

LHCI –:

Light-harvesting complex associated with photosystem I;

LHCII –:

Light-harvesting complex associated with photosystem II;

LHCP –:

Light-harvesting complex (apo)protein;

Pchlide –:

Protochlorophyllide a;

PS I –:

Photosystem I;

PS II –:

Photosystem II

References

  • Adra AN and Rebeiz CA (1998) Chloroplast biogenesis 81. Transient formation of divinyl chlorophyll a following a 2.5 millisecond light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68: 852–856

    Article  CAS  Google Scholar 

  • Albertsson P-Ǻ (1995) The structure and function of the chloroplast photosynthetic membrane—a model for the domain organization. Photosynth Res 46: 141–149

    Article  CAS  Google Scholar 

  • Allen JF and Mullineaux CW (2004) Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy, kinetics and imaging. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 447–461. Springer, Dordrecht

    Chapter  Google Scholar 

  • Andersson MX and Stina A (2004) A chloroplast-localized vesicular transport system: a bio-informatics approach. BMC Genomics 5:40

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–813

    Article  Google Scholar 

  • Aseeva E, Ossenbühl F, Eichacker LA, Wanner G, Soll J and Vothknecht U (2004) Complex formation of Vipp1 depends on its α-helical PspA-like domain. J Biol Chem 279: 35535–35541

    Article  PubMed  CAS  Google Scholar 

  • Balaban TS (2005) Relevance of the diastereotopic ligation of magnesium atoms of chlorophylls in the major light-harvesting complex II (LHC II) of green plants. Photosynth Res 86: 215–262

    Article  CAS  Google Scholar 

  • Balaban TS, Fromme P, Holzwarth AR, Krauss N and Prokhorenko VI (2002) Relevance of the diasterotopic ligation of magnesium atoms of chlorophylls in photosystem I. Biochim Biophys Acta 1556: 197–207

    Article  PubMed  CAS  Google Scholar 

  • Ballschmitter K, Cotton TM and Katz JJ (1969) Chlorophyll-water interactions. Hydration, dehydration and hydrates of chlorophyll. Biochim Biophys Acta 180: 347–359

    Article  Google Scholar 

  • Barber J (2003) Photosystem II: the engine of life. Quart Rev Biophys 36: 71–89

    Article  CAS  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandonà D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    Article  PubMed  CAS  Google Scholar 

  • Belanger FC and Rebeiz CA (1984) Chlorophyll biogenesis. Spectroscopic study of net spectral shifts induced by axial coordination in metalated tetrapyrrole. Spectrochim Acta 40A: 807–827

    CAS  Google Scholar 

  • Bellafiore S, Ferris P, Naver H, Göhre V and Rochaix JD (2002) Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 14: 2303–2314

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Scientific, Oxford

    Book  Google Scholar 

  • Block MA, Douce R, Joyard J and Rolland N (2007) Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92: 225–244

    Article  PubMed  CAS  Google Scholar 

  • Brotosudarmo THP, Mackowski S, Hofmann E, Hiller RG and Scheer H (2008) Relative binding affinities of chlorophylls in peridinin-chlorophyll-protein reconstituted with heterochlorophyllous mixtures. Photosynth Res 95: 247–252

    Article  PubMed  CAS  Google Scholar 

  • Chen M and Cai ZL (2007) Theoretical study on the thermodynamic properties of chlorophyll d-peptides coordinating ligand. Biochim Biophys Acta 1767: 603–609

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Eggink LL, Hoober JK and Larkin AWD (2005) Influence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127: 2052–2053

    Article  PubMed  CAS  Google Scholar 

  • Chow HC, Serlin R and Strouse CE (1975) The crystal and molecular structure and absolute configuration of ethyl chlorophyllide a dehydrate. A model for the different spectral forms of chlorophyll a. J Am Chem Soc 97: 7230–7237

    Article  CAS  Google Scholar 

  • Clayton RK (1973) Primary processes in bacterial photosynthesis. Annu Rev Biophys Bioengin 2: 131–156

    Article  CAS  Google Scholar 

  • Clegg RM (2004) Nuts and bolts of excitation energy migration and energy transfer. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 83–105. Springer, Dordrecht

    Chapter  Google Scholar 

  • Cox PA (2000) Inorganic Chemistry, BIOS Scientific Publ, Oxford

    Google Scholar 

  • Croce R, Weiss S and Bassi R (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274: 29613–29623

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Canino G, Ros F and Bassi R (2002) Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry 41: 7334–7343

    Article  PubMed  CAS  Google Scholar 

  • Cuttriss AJ, Mimica JL, Howitt CA and Pogson BJ (2006) Carotenoids. In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23, pp 315–334. Springer, Dordrecht

    Chapter  Google Scholar 

  • De Martino A, Douady D, Quinet-Szely M, Rousseau B, Crépineau F, Apt K and Caron L (2000) The light-harvesting antenna of brown algae. Highly homologous proteins encoded by a multigene family. Eur J Biochem 267: 5540–5549

    Article  PubMed  Google Scholar 

  • Depège N, Bellafiore S and Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299: 1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Dolganov NAM, Bhaya D and Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92: 636–640

    Article  PubMed  CAS  Google Scholar 

  • Dougherty RC, Strain HH, Svec WA, Uphaus RA and Katz JJ (1970) The structure, properties, and distribution of chlorophyll c. J Am Chem Soc 92: 2826–2833

    Article  PubMed  CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting proteins, with implications for plastid evolution. J Mol Evol 48: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL and Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275: 9087–9090

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL, Park HS and Hoober JK (1999) The role of the envelope in assembly of light-harvesting complexes in the chloroplast: distribution of LHCP between chloroplast and vacuoles during chloroplast development in Chlamydomonas reinhardtii. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology, pp 161–166. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Eggink LL, Park HS and Hoober JK (2001) The role of chlorophyll b in photosynthesis: hypothesis. BMC Plant Biol 1: 2

    Article  PubMed  CAS  Google Scholar 

  • Eggink LL, LoBrutto R, Brune DC, Brusslan J, Yamasato A, Tanaka A and Hoober JK (2004) Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biol 4: 5

    Article  PubMed  Google Scholar 

  • Eichacker LA and Henry A (2001) Function of a chloroplast SRP in thylakoid protein export. Biochim Biophys Acta 1541: 120–134

    Article  PubMed  CAS  Google Scholar 

  • Elrad D and Grossman AR (2004) A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii. Curr Genet 45: 61–75

    Article  PubMed  CAS  Google Scholar 

  • Ferris T (1988) Coming of Age in the Milky Way, Doubleday, New York

    Google Scholar 

  • Frackowiak D, Bauman D, Manikowski H, Browett WR and Stillman MJ (1987) Circular dichroism and magnetic circular dichroism spectra of chlorophylls a and b in nematic liquid crystals. Biophys Chem 28: 101–114

    Article  PubMed  CAS  Google Scholar 

  • Fragata M, Nordén B and Kurucsev T (1988) Linear dichroism (250-700 nm) of chlorophyll a oriented in a lamellar phase of glycerylmonooctanoate/H2O. Characterization of electronic transitions. Photochem Photobiol 47: 133–143

    Article  CAS  Google Scholar 

  • Funk C and Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 9397–9404

    Article  PubMed  CAS  Google Scholar 

  • Gadella TWJ Jr, Van der Krogt GNM and Bisseling T (1999) GFP-based FRET microscopy in living plant cells. Trends Plant Sci 4: 287–291

    Article  PubMed  Google Scholar 

  • Goss R, Wilhelm C and Garab G (2000) Organization of the pigment molecules in the chlorophyll a/b/c containing alga Mantoniella squamata (Prasinophyceae) studied by means of absorption, circular and linear dichroism spectroscopy. Biochim Biophys Acta 1457: 190–199

    Article  PubMed  CAS  Google Scholar 

  • Grabowski B, Cunningham FX and Gantt E (2001) Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines. Proc Natl Acad Sci USA 98: 2911–2916

    Article  PubMed  CAS  Google Scholar 

  • Gregory JK, Clary DC, Liu K, Brown MG and Saykally RJ (1997) The water dipole moments in water clusters Science 275: 814–817

    CAS  Google Scholar 

  • Grimm B, Porra RJ, Rüdiger W and Scheer H (eds) (2006) Chlorophylls and Bacteriochlorophylls. Biochemistry, Biophysics, Functions and Applications, Advances in Photosynthesis and Respiration, Vol 25. Springer, Dordrecht

    Google Scholar 

  • Gunner MR, Saleh MA, Cross E, ud-Doula A and Wise M (2000) Backbone dipoles generate positive potentials in all proteins: origins and implications of the effect. Biophys J 78: 1126–1144

    Article  PubMed  CAS  Google Scholar 

  • Hanson LK (1991) Molecular orbital theory of monomer pigments. In: Scheer H (ed) Chlorophylls, pp 993–1014. CRC Press, Boca Raton

    Google Scholar 

  • Harris EH, Boynton JE and Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58: 700–754

    PubMed  CAS  Google Scholar 

  • Helfrich M, Bommer B, Oster U, Klement H, Mayer K, Larkum AWD and Rüdiger W (2003) Chlorophylls of the c family: absolute configuration and inhibition of NADPH:protochlorophyllide oxidoreductase. Biochim Biophys Acta 1605: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J and Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70: 53–71

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Klein J, Fink A, Allinger T and Hoerth P (2001) Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. Plant J 28: 595–606

    Article  PubMed  CAS  Google Scholar 

  • Hoff AJ and Amesz J (1991) Visible absorption spectroscopy of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 723–738. CRC Press, Boca Raton

    Google Scholar 

  • Hoober JK (1984) Chloroplasts. Plenum Press, New York

    Book  Google Scholar 

  • Hoober JK (2006) Chloroplast development: whence and wither. In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23, pp 27–51. Springer, Dordrecht

    Chapter  Google Scholar 

  • Hoober JK and Arygroudi-Akoyunoglou JH (2004) Assembly of light-harvesting complexes of photosystem II and the role of chlorophyll b. In: Papageorgiou G and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 679–712. Springer, Dordrecht

    Google Scholar 

  • Hoober JK and Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. Photosynth Res 61: 197–215

    Article  CAS  Google Scholar 

  • Hoober JK and Eggink LL (2001) A potential role of chlorophylls b and c in assembly of light-harvesting complexes. FEBS Lett 489: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK and Stegeman WJ (1976) Kinetics and regulation of synthesis of the major polypeptides of thylakoid membranes in Chlamydomonas reinhardtii y-1 at elevated temperatures. J Cell Biol 70: 326–337

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Marks DB, Keller BJ and Margulies MM (1982) Regulation of accumulation of the major thylakoid polypeptides in Chlamydomonas reinhardtii y-1 at 25°C and 38°C. J Cell Biol 95: 552–558

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Boyd CO and Paavola LG (1991) Origin of thylakoid membranes in Chlamydomonas reinhardtii y-1 at 38°C. Plant Physiol 96: 1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Hoober JK, Eggink LL and Chen M (2007) Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth Res 94: 387–400

    Article  PubMed  CAS  Google Scholar 

  • Houssier C and Sauer K (1970) Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments. J Am Chem Soc 92: 779–791

    Article  CAS  Google Scholar 

  • Hutin C, Havaux M, Carde JP, Kloppstech K, Meiherhoff K, Hoffman N and Nussaume L (2002) Double mutation cpSRP43-/cpSRP54- is necessary to abolish the cpSRP pathway required for thylakoid targeting of the light-harvesting chlorophyll proteins. Plant J 29: 531–543

    Article  PubMed  CAS  Google Scholar 

  • IUPAC Compendium of Chemical Technology, 2nd Edition (1997) http://www.iupac.org/goldbook/O04339.pdf (August 15, 2005)

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    Article  PubMed  Google Scholar 

  • Jeffrey SW (1969) Properties of two spectrally different components in chlorophyll c preparations. Biochim Biophys Acta 177: 456–467

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey SW and Wright SW (1987) A new spectrally distinct component in preparations of chlorophyll c from the micro-alga Emiliania huxleyi (Prymnesiophyceae). Biochim Biophys Acta 894: 189–188

    Article  Google Scholar 

  • Joyard J, Teyssier E, Miège C, Berny-Seigneurin D, Maréchal E, Block MA, Dorne A-J, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715–723

    Article  PubMed  CAS  Google Scholar 

  • Karukstis KK (1991) Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus. In: Scheer H (ed) Chlorophylls, pp 769–795. CRC Press, Boca Raton

    Google Scholar 

  • Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, Van Grondelle R, Paulsen H and Van Amerongen H (1999) Decreasing the chlorophyll a/b ratio in reconstituted LHCII: structural and functional consequences. Biochemistry 38: 6587–6596

    Article  PubMed  CAS  Google Scholar 

  • Knox RS and Spring BQ (2003) Dipole strengths in the chlorophylls. Photochem Photobiol 77: 497–501

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD (1990) Replacement of histidines of light harvesting chlorophyll a/b binding protein II disrupts chlorophyll-protein complex assembly. Plant Physiol 93: 339–342

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL and Rebeiz CA (2001) Chloroplast biogenesis 84: solubilization and partial purification of membrane-bound [4-vinyl] chlorophyllide a reductase from etiolated barley leaves. Anal Biochem 295: 214–219

    Article  PubMed  CAS  Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J and Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98: 4238–4242

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Ledford HK and Niyogi KK (2005) Singlet oxygen and photo-oxidative stress management in plants and algae. Plant Cell Environ 28: 1037–1045

    Article  CAS  Google Scholar 

  • Linnanto J and Korppi-Tommola J (2001) Spectroscopic properties of Mg-chlorin, Mg-bacteriochlorin, and bacteriochlorophylls a, b, c, d, e, f, g, and h studied by semiempirical and ab initio MO/CI methods. J Phys Chem A 105: 3855–3866

    Article  CAS  Google Scholar 

  • Linnanto J and Korppi-Tommola J (2004) Semiempirical PM5 molecular orbital study on chlorophylls and bacteriochlorophylls: comparison of semiempirical, ab initio, and density functional results. J Comput Chem 25: 123–137

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Maloney MA, Hoober JK and Marks DB (1989) Kinetics of chlorophyll accumulation and formation of chlorophyll-protein complexes during greening of Chlamydomonas reinhardtii y-1 at 38°C. Plant Physiol 91: 1100–1106

    Article  PubMed  CAS  Google Scholar 

  • Marks DB, Keller BJ and Hoober JK (1985) In vitro processing of precursors of thylakoid membrane proteins of Chlamydomonas reinhardtii y-1. Plant Physiol 79: 108–113

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37: 951–959

    Article  Google Scholar 

  • Miller DJ, Catmull J, Puskeiler R, Tweedale H, Sharples FP and Hiller RG (2005) Reconstitution of the peridinin-chlorophyll a protein (PCP): evidence for functional flexibility in chlorophyll binding. Photosynth Res 86: 229–240

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274–281

    Article  CAS  Google Scholar 

  • Morré DJ, Selldén G, Sundqvist C and Sandelius AS (1991) Stromal low temperature compartment derived from the inner membrane of the chloroplast envelope. Plant Physiol 97: 1558–1564

    Article  PubMed  Google Scholar 

  • Nagata N, Tanaka R, Satoh S and Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Nishigaki A, Ohshima S, Nakayama K, Okada M and Nagashima U (2001) Application of molecular orbital calculations to interpret the chlorophyll spectral forms of pea photosystem II. Photochem Photobiol 73: 245–248

    Article  PubMed  CAS  Google Scholar 

  • Noy D, Yerushalmi R, Brumfeld V, Ashur I, Scheer H, Baldridge KK and Scherz A (2000) Optical absorption and computational studies of [Ni]-bacteriochlorophyll-a. New insight into charge distribution between metal and ligands. J Am Chem Soc 122: 3937–3944

    Article  CAS  Google Scholar 

  • Oba T and Tamiaki H (2002) Which side of the π-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Photosynth Res 74: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC and Govindjee (eds) (2004) Chlorophyll a Fluorescence. A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19. Springer, Dordrecht

    Google Scholar 

  • Park H and Hoober JK (1997) Chlorophyll synthesis modulates retention of apoproteins of light-harvesting complex II by the chloroplast in Chlamydomonas reinhardtii. Physiol Plant 101: 135–142

    Article  CAS  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D and Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14: 321–332

    Article  PubMed  CAS  Google Scholar 

  • Pascal A, Caffarri S, Croce R, Sandonà D, Bassi R and Robert B (2002) A structural investigation of the central chlorophyll a binding sites in the minor photosystem II antenna protein, Lhcb4. Biochemistry 41: 2305–2310

    Article  PubMed  CAS  Google Scholar 

  • Phillips JN (1963) Physico-chemical properties of porphyrins. In: Florkin M and Stotz EH (eds) Comprehensive Biochemistry, Vol 9, pp 34–72. Elsevier, Amsterdam

    Google Scholar 

  • Porra RJ (1991) Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic, and marine organisms, including recalcitrant algae. In: Scheer H (ed) Chlorophylls, pp 31–57. CRC Press, Boca Raton

    Google Scholar 

  • Porra RJ (1997) Recent progress in porphyrin and chlorophyll biosynthesis. Photochem Photobiol 65: 492–516

    Article  CAS  Google Scholar 

  • Rabinowitch E and Govindjee (1969) Photosynthesis. John Wiley & Sons, New York

    Google Scholar 

  • Reinbothe C, Bartsch S, Eggink LL, Hoober JK, Brusslan J, Andrade-Paz R, Monnet J and Reinbothe S (2006) A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc Natl Acad Sci USA 103: 4777–4782

    Article  PubMed  CAS  Google Scholar 

  • Reinsberg D, Ottmann K, Booth PJ and Paulsen H (2001) Effects of chlorophyll a, chlorophyll b, and xanthophylls on the in vitro assembly kinetics of the major light-harvesting chlorophyll a/b complex, LHCIIb. J Mol Biol 308: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Remelli R, Varotto C, Sandonà D. Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex: a mutational analysis of chromophore-binding residues. J Biol Chem 274: 33510–33521

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD, Goldschmidt-Clermont M and Merchant S (eds) (1998) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, Advances in Photosynthesis, Vol 7. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sauer K (1975) Primary events and the trapping of energy. In: Govindjee (ed) Bioenergetics of Photosynthesis, pp 115–181. Academic Press, New York

    Google Scholar 

  • Sauer K, Smith JRL and Schultz AJ (1966) The dimerization of chlorophyll a, chlorophyll b and bacteriochlorophyll in solution. J Am Chem Soc 88: 2681–2688

    Article  CAS  Google Scholar 

  • Scheer H (1991) Structure and occurrence of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 3–30. CRC Press, Boca Raton

    Google Scholar 

  • Schreiber U, Bilger W, Hormann H and Neubauer C (1998) Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: Raghavendra AS (ed) Photosynthesis: A Comprehensive Treatise, pp 320–336. Cambridge University Press, Cambridge

    Google Scholar 

  • Schünemann D (2003) Structure and function of the chloroplast signal recognition particle. Curr Genet 44: 295–304

    Article  PubMed  CAS  Google Scholar 

  • Serlin R, Chow HC and Strouse CE (1975) The crystal and molecular structure of ethyl chlorophyllide b dihydrate at -153. J Am Chem Soc 97: 7237–7242

    Article  CAS  Google Scholar 

  • Simonetto R, Crimi M, Sandonà, Croce R, Cinque G, Breton J and Bassi R (1999) Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Biochemistry 38: 12974–12983

    Article  PubMed  CAS  Google Scholar 

  • Smith KM (1975) General features of the structure and chemistry of porphyrin compounds. In: Smith KM (ed) Porphyrins and Metalloporphyrins, pp 1–28. Elsevier Scientific, Amsterdam

    Google Scholar 

  • Snow CD, Sorin EJ, Rhee YM and Pande VS (2005) How well can simulation predict protein folding kinetics and thermodynamics? Annu Rev Biophys Biomol Struct 34: 43–69

    Article  PubMed  CAS  Google Scholar 

  • Soll J and Schleiff E (2004) Protein import into chloroplasts. Nature Rev Mol Cell Biol 5: 198–208

    Article  CAS  Google Scholar 

  • Spackman MA (1992) Molecular electric moments from X-ray diffraction data. Chem Rev 92: 1769–1797

    Article  CAS  Google Scholar 

  • Srivastava A, Strasser RJ and Govindjee (1999) Greening of peas: Parallel measurements of 77K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37: 365–392

    Article  CAS  Google Scholar 

  • Stauber EJ and Hippler M (2004) Chlamydomonas reinhardtii proteomics. Plant Physiol Biochem 42: 989–1001

    Article  PubMed  CAS  Google Scholar 

  • Stauber EJ, Fink A, Markert C, Kruse O, Johanningmeier U and Hippler M (2003) Proteomics of Chlamydomonas reinhardtii light-harvesting proteins. Eukaryot Cell 2: 978–994

    Article  PubMed  CAS  Google Scholar 

  • Stoebe B and Maier UG (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219: 123–130

    Article  PubMed  Google Scholar 

  • Strasser RJ, Srivastava A and Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61: 32–42

    Article  CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M and Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 321–362. Springer, Dordrecht

    Chapter  Google Scholar 

  • Sulli C, Fang ZW, Muchhal U and Schwartzbach SD (1999) Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem 274: 457–463

    Article  PubMed  CAS  Google Scholar 

  • Sundholm D (2003) A density-functional-theory study of bacteriochlorophyll b. Phys Chem Chem Phys 5: 4265–4271

    Article  CAS  Google Scholar 

  • Tamiaki H, Yagai S and Miyatake T (1998) Synthetic zinc tetrapyrroles complex with pyridine as a single axial ligand. Bioorg Med Chem 6: 2171–2178

    Article  PubMed  CAS  Google Scholar 

  • Thiel C (1999) http://www.physics.montana.edu/students/thiel/docs/Osc.pdf (August 16, 2011)

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Trissl HW and Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18: 415–419

    Article  PubMed  CAS  Google Scholar 

  • Umetsu M, Wang ZY, Kobayashi M and Nozawa T (1999) Interaction of photosynthetic pigments with various organic solvents. Magnetic circular dichroism approach and application to chlorosomes. Biochim Biophys Acta 1410: 19–31

    Article  PubMed  CAS  Google Scholar 

  • Van Dooren GG, Schwartzbach SD, Osafune T and McFadden GI (2001) Translocation of proteins across the multiple membranes of complex plastids. Biochim Biophys Acta 1541: 34–53

    Article  PubMed  Google Scholar 

  • Van Grondelle R and Gobets B (2004) Transfer and trapping of excitation in plant photosystems. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Vol 19, pp 107–132. Springer, Dordrecht

    Chapter  Google Scholar 

  • Van Zandvoort MAM, Wróbel D, Lettinga P, Van Ginkel G and Levine YK (1995) The orientation of the transition dipole moments of chlorophyll a and pheophytin a in their molecular frame. Photochem Photobiol 62: 299–308

    Article  Google Scholar 

  • von Wettstein D (1959) The effect of genetic factors on the submicroscopic structures of the chloroplast. J Ultrastruct Res 3: 235–237

    Google Scholar 

  • von Wettstein D (2001) Discovery of a protein required for photosynthetic membrane assembly. Proc Natl Acad Sci USA 98: 3633–3635

    Article  Google Scholar 

  • Vothknecht U and Soll J (2006) Protein import into chloroplasts: who, when, and how? In: Wise RR and Hoober JK (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23, pp 53–74. Springer, Dordrecht

    Chapter  Google Scholar 

  • Westphal S, Soll J and Vothknecht UC (2001) A vesicle transport system inside of chloroplasts. FEBS Lett 506: 257–261

    Article  PubMed  CAS  Google Scholar 

  • Westphal S, Soll J and Vothknecht UC (2003) Evolution of chloroplast vesicle transport. Plant Cell Physiol 44: 217–222

    Article  PubMed  CAS  Google Scholar 

  • White RA and Hoober JK (1994) Biogenesis of thylakoid membranes in Chlamydomonas reinhardtii y1: a kinetic study of initial greening. Plant Physiol 106: 583–590

    Article  PubMed  CAS  Google Scholar 

  • White RA, Wolfe GR, Komine Y and Hoober JK (1996) Localization of light-harvesting complex apoproteins in the chloroplast and cytoplasm during greening of Chlamydomonas reinhardtii at 38°C. Photosynth Res 47: 267–280

    Article  CAS  Google Scholar 

  • Wise RR and Hoober JK (eds) (2006) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23. Springer, Dordrecht

    Google Scholar 

  • Wu P and Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Vavilin D and Vermaas W (2001) Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proc Natl Acad Sci USA 98: 14168–14173

    Article  PubMed  CAS  Google Scholar 

  • Zerges W (2000) Translation in chloroplasts. Biochimie 82: 583–601

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the inspiration and contributions to this chapter from Dr. Laura L. Eggink and the collaborators and students with whom I have had the pleasure to work during my academic career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kenneth Hoober .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hoober, J.K. (2012). The Characteristics of Specific Chlorophylls and Their Roles in Biogenesis of the Photosynthetic Apparatus. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_16

Download citation

Publish with us

Policies and ethics