Skip to main content

Photosynthetic Responses of Plants to Excess Light: Mechanisms and Conditions for Photoinhibition, Excess Energy Dissipation and Repair

  • Chapter
  • First Online:
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

Summary

Plants as sessile organisms must be capable of rapidly coping with changes in environmental conditions. In nature light is the most variable environmental parameter. During the day, plants must deal with changes of several orders of magnitude in the light quantity but also changes in light quality take place. Light is an absolute prerequisite for photosynthesis as an energy source; however, excess light can also be harmful and lead to a destruction of the photosynthetic apparatus. Photoinhibition of photosynthesis has been defined as a light-dependent decline in photosynthetic efficiency as a result of absorption of light. However, a strong consensus is still missing concerning the term photoinhibition and whether it describes a decrease in photosynthetic efficiency due to photodamage and thereby a reduction in the population of functional photosystems or regulatory adjustments, like reduced energy transfer from the antenna to reaction centers or both of these processes. Diurnal photoinhibition is a common phenomenon in most plants exposed to direct sunlight. Depending on the season and also on the diurnal cycle, plants have developed various adaptation systems to cope with highly, as well as frequently, changing light intensity and quality. Although a number of mechanisms have evolved to dissipate excess absorbed light energy by harmless pathways, the photosynthetic apparatus still remains a fragile system and vulnerable to damage by light. This chapter describes briefly the mechanisms of photoinhibition and plant response to light stress. In this chapter, we have used the term photoinhibition to describe the process that finally leads to a photodamage and repair of the reaction centers, while the dissipative regulatory processes are regarded as sole photoprotective processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cyt –:

Cytochrome;

ELIP –:

Early light-induced protein;

LHCI –:

Light-harvesting complex of PS I;

LHCII –:

Light-harvesting complex of PS II;

NPQ –:

Non-photochemical quenching;

PAR –:

Photosynthetically active radiation;

PS I –:

Photosystem I;

PS II –:

Photosystem II;

ROS –:

Reactive ­oxygen species;

SOD –:

Superoxide dismutase; Viol – violaxanthin; Zea – zeaxanthin

References

  • Adams WW III, Hoehn A and Demmig-Adams B (1995) Chilling temperatures and the xanthophyll cycle. A comparison of warm-grown and overwintering spinach. Aust J Plant Physiol 22: 75–85

    Article  CAS  Google Scholar 

  • Adamska I (1997) ELIPs - light-induced stress proteins. Physiol Plant 100: 794–805

    Article  CAS  Google Scholar 

  • Adamska I, Kruse E and Kloppstech K (2001) Stable insertion of the early light-induced proteins into etioplast membranes requires chlorophyll-a. J Biol Chem 276: 8582–8587

    Article  PubMed  CAS  Google Scholar 

  • Adir N, Zer H, Shochat S and Ohad I (2003) Photoinhibition – a historical perspective. Photosynth Res 76: 343–370

    Article  PubMed  CAS  Google Scholar 

  • Allahverdiyeva Y, Deak Z, Szilard A, Diner B, Nixon P and Vass I (2004) The function of D1-H332 in photosystem II electron transport studied by thermoluminescence and chlorophyll fluorescence in site-directed mutants of Synechocystis 6803. Eur J Biochem 271: 3523–3532

    Article  PubMed  CAS  Google Scholar 

  • Allahverdiyeva Y, Mamedov F, Maenpaa P, Vass I and Aro EM (2005) Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. Biochim Biophys Acta 1709: 69–83

    Article  PubMed  CAS  Google Scholar 

  • Allen DJ and Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6: 36–42

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2003) State transitions - a question of balance. Science 299: 1530–1532

    Article  PubMed  CAS  Google Scholar 

  • Allen JF and Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6: 317–326

    Article  PubMed  CAS  Google Scholar 

  • Amunts A, Drory O and Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4  Å resolution. Nature 447: 58–63

    Article  PubMed  CAS  Google Scholar 

  • Anderson J, Park YI and Chow WS (1998) Unifying model for the photoinactivation of photosystem II in vivo and steady-state photosynthesis. Photosynth Res 56: 1–13

    Article  CAS  Google Scholar 

  • Andersson B and Aro EM (2001) Photodamage and D1 ­protein turnover in photosystem II. In: Aro EM and Andersson B (eds) Regulation of photosynthesis, Advances in Photosynthesis and Respiration, Vol 11, pp 377–393. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Andersson B and Barber J (1996) Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. In: Baker NR (ed) Photosynthesis and the Environment, Advances in Photosynthesis, Vol 5, pp 101–121. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Andersson B and Styring S (1991) Photosystem II: molecular organization, function, and acclimation. Curr Top Bioenerg 16: 1–81

    Article  CAS  Google Scholar 

  • Aro EM, Tyystjärvi E and Nurmi A (1990) Temperature-dependent changes in photosystem II heterogeneity of attached leaves under high light. Physiol Plant 79: 585–592

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, Virgin I and Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    Article  PubMed  CAS  Google Scholar 

  • Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N and Rintamaki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    Article  PubMed  CAS  Google Scholar 

  • Bailey S, Silva P, Nixon P, Mullineaux C, Robinson C and Mann N (2001a) Auxiliary functions in photosynthesis: the role of the FtsH protease. Biochem Soc Trans 29: 455–459

    Article  PubMed  CAS  Google Scholar 

  • Bailey S, Walters RG, Jansson S and Horton P (2001b) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213: 794–801

    Article  PubMed  CAS  Google Scholar 

  • Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C and Mann NH (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J Biol Chem 277: 2006–2011

    Article  PubMed  CAS  Google Scholar 

  • Ballottari M, Dall’Osto L, Morosinotto T and Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna system during acclimation. J Biol Chem 282: 8947–8958

    Article  PubMed  CAS  Google Scholar 

  • Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34: 619–631

    Article  PubMed  CAS  Google Scholar 

  • Barber J and Andersson B (1992) Too much of a good thing – light can be bad for photosynthesis. Trends Biochem Sci 17: 61–66

    Article  PubMed  CAS  Google Scholar 

  • Barth C and Krause GH (1999) Inhibition of photosystems I and II in chilling-sensitive and chilling-tolerant plants under light and low-temperature stress. Z Naturforsch 54c: 645–657

    Google Scholar 

  • Barth C, Krause GH and Winter K (2001) Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. Plant Cell Environ 24: 163–176

    Article  CAS  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G and Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433: 892–895

    Article  PubMed  CAS  Google Scholar 

  • Berry J and Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31: 491–543

    Article  Google Scholar 

  • Björkman O and Powles SB (1984) Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta 161: 490–504

    Article  Google Scholar 

  • Bongi G and Long SP (1987) Light-dependent damage to photosynthesis in olive leaves during chilling and high temperature stress. Plant Cell Environ 10: 241–249

    Google Scholar 

  • Bukhov NG, Govindachary S, Rajagopal S, Joly D and Carpentier R (2004) Enhanced rates of P700 + dark-reduction in leaves of Cucumis sativus L. photoinhibited at chilling temperature. Planta 218: 852–861

    Article  PubMed  CAS  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P and Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17: 868–876

    Article  PubMed  CAS  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–46

    Article  CAS  Google Scholar 

  • Chen GX, Kazimir J and Cheniae GM (1992) Photoinhibition of hydroxylamine-extracted photosystem II membranes: studies of the mechanism. Biochemistry 31:11072–11083

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Choi YD, Voytas DF and Rodermel S (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22: 303–313

    Article  PubMed  Google Scholar 

  • Choi S, Jeong S, Jeong W, Kwon S, Chow W and Park Y (2002) Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light. Planta 216: 315–324

    Article  PubMed  CAS  Google Scholar 

  • Chung SK and Jung J (1995) Inactivation of the acceptor side and degradation of the D1 protein of photosystem II by singlet oxygen photogenerated from the outside. Photochem Photobiol 61: 383–389

    Article  CAS  Google Scholar 

  • Clark RD, Hawkesford MJ, Coughlan SJ, Bennett J and Hind G (1984) Association of ferredoxin-NADP+ oxidoreductase with the chloroplast cytochrome b-f complex. FEBS Lett 174: 137–142

    Article  CAS  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends in Plant Sci 5: 187–188

    Article  Google Scholar 

  • Cornic G and Briantais JM (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183: 178–184

    Article  CAS  Google Scholar 

  • Crafts-Brandner SJ, Van de Loo FJ and Salvucci ME (1997) The two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase activase differ in sensitivity to elevated temperature. Plant Physiol 114: 439–444

    PubMed  CAS  Google Scholar 

  • Danielius RV, Satoh K, Van Kan PJM, Plijter JJ, Nuijs AM and Van Gorkom HJ (1987) The primary reaction of photosystem II in the D1-D2-cytochrome b-559 complex. FEBS Lett 213: 241–244

    Article  CAS  Google Scholar 

  • Debus RJ (2001) Amino acid residues that modulate the properties of tyrosine YZ and the manganese cluster in the water oxidizing complex of Photosystem II. Biochim Biophys Acta 1503: 164–186

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21–26

    Article  Google Scholar 

  • Demmig-Adams B and Adams WW III (2003) Photoinhibtion. In: Thomas B, Murphy D and Murray B (eds) Encyclopedia of Applied Plant Science, pp 707–717. Academics Press, London

    Google Scholar 

  • Diner BA and Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53: 551–580

    Article  PubMed  CAS  Google Scholar 

  • Durrant JR, Giorgi LB, Barber J, Klug DR and Porter G (1990) Characterization of triplet states in isolated photosystem II reaction centres: oxygen quenching as a mechanism for photodamage. Biochim Biophys Acta 1017: 167–175

    Article  CAS  Google Scholar 

  • Edge R and Truscott GT (1999) Carotenoid radicals and the interaction of carotenoids with active oxygen species. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, Advances in Photosynthesis, Vol 8, pp 223–234. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Endo T, Shikanai T, Takabayashi A, Asada K and Sato F (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457: 5–8

    Article  PubMed  CAS  Google Scholar 

  • Feller U, Crafts-Brandner SJ and Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-­bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116: 539–546

    Article  PubMed  CAS  Google Scholar 

  • Forsberg J, Strom J, Kieselbach T, Larsson H, Alexciev K, Engstrom A and Akerlund HE (2005) Protease activities in the chloroplast capable of cleaving an LHCII N-terminal peptide. Physiol Plant 123: 21–29

    Article  CAS  Google Scholar 

  • Flexas J and Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Fufezan C, Gross CM, Sjodin M, Rutherford AW, Krieger-Liszkay A and Kirilovsky D (2007) Influence of the redox potential of the primary quinone electron acceptor on photoinhibition in photosystem II. J Biol Chem 282: 12492–12502

    Article  PubMed  CAS  Google Scholar 

  • Garab G, Cseh Z, Kovacs L, Rajagopal S, Varkonyi Z, Wentworth M, Mustardy L, Der A, Ruban AV, Papp E, Holzenburg A and Horton P (2002) Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: thermo-optic mechanism. Biochemistry 41: 15121–15129

    Article  PubMed  CAS  Google Scholar 

  • Golding AJ and Johnson GN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218: 107–114

    Article  PubMed  CAS  Google Scholar 

  • Hakala M, Tuominen I, Keränen M, Tyystjärvi T and Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta 1706: 68–80

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C and Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6: 301–305

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris E; Nield J, Gerle C and Barber J (2001) Three-dimensional structure of the photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 135: 262–269

    Article  PubMed  CAS  Google Scholar 

  • Haussuhl K, Andersson B and Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 20: 713–722

    Article  PubMed  CAS  Google Scholar 

  • Havaux M and Davaud A (1994) Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem-II activity. Photosynth Res 40: 75–92

    Article  CAS  Google Scholar 

  • Havaux M and Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213: 953–966

    Article  CAS  Google Scholar 

  • Havaux M and Tardy F (1996) Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta 198: 324–333

    Article  CAS  Google Scholar 

  • Havaux M, Dall’Osto L, Cuine S, Giuliano G and Bassi R (2004) The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J Biol Chem 279: 13878–13888

    Article  PubMed  CAS  Google Scholar 

  • Heddad M, Noren H, Reiser V, Dunaeva M, Andersson B and Adamska I (2006) Differential expression and localization of early light-induced proteins in Arabidopsis. Plant Physiol 142: 75–87

    Article  PubMed  CAS  Google Scholar 

  • Herrig R and Falkowski PG (1989) Nitrogen limitation in Isochrysis galbana (Haptophyceae). I. Photosynthetic energy conversion and growth efficiencies. J Phycol 25: 462–471

    Article  Google Scholar 

  • Hideg E and Vass I (1995) Singlet oxygen is not produced in photosystem I under photoinhibitory conditions. Photochem Photobiol 62: 949–952

    Article  CAS  Google Scholar 

  • Hideg E, Kalai T, Hideg K and Vass I (2000) Do oxidative stress conditions impairing photosynthesis in the light manifest as photoinhibition? Philos Trans R Soc Lond B Biol Sci 355: 1511–1516

    Article  PubMed  CAS  Google Scholar 

  • Holt NE, Fleming GR and Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43: 8281–8289

    Article  PubMed  CAS  Google Scholar 

  • Huesgen PF, Schuhmann H and Adamska I (2006) Photodamaged D1 protein is degraded in Arabidopsis mutants lacking the Deg2 protease. FEBS Lett 580: 6929–6932

    Article  PubMed  CAS  Google Scholar 

  • Huner NPA, Öquist G and Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3: 224–230

    Article  Google Scholar 

  • Hurry VM and Huner NP (1992) Effect of cold hardening on sensitivity of winter and spring wheat leaves to short-term photoinhibition and recovery of photosynthesis. Plant Physiol 100: 1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Hwang HJ, Kim JH, Eu YJ, Moon BY, Cho SH and Lee CH (2004) Photoinhibition of photosystem I is accelerated by dimethyldithiocarbamate, an inhibitor of superoxide dismutase, during light-chilling of spinach leaves. J Photochem Photobiol B: Biol 73: 79–85

    Article  CAS  Google Scholar 

  • Itzhaki H, Naveh L, Lindahl M, Cook M and Adam Z (1998) Identification and characterization of DegP, a serine protease associated with the lumenal side of the thylakoid membrane. J Biol Chem 273: 7094–7098

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AG, Morgan RM, Gray GR, Velitchkova MY and Huner NP (1998) Temperature/light dependent development of selective resistance to photoinhibition of photosystem I. FEBS Lett 430: 288–292

    Article  PubMed  CAS  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamura A, Takahashi Y and Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464: 1210–1213

    Google Scholar 

  • Jegerschold C, Virgin I and Styring S (1990) Light-dependent degradation of the D1 protein in photosystem II is accelerated after inhibition of the water splitting reaction. Biochemistry 29: 6179–6186

    Article  PubMed  CAS  Google Scholar 

  • Jegerschold C and Styring S (1996) Spectroscopic characteri­zation of intermediate steps involved in donor-side-induced photoinhibition of photosystem II. Biochemistry 35: 7794–7801

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (2006) Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci USA 102: 4913–4918

    Article  CAS  Google Scholar 

  • Kanervo E, Suorsa M and Aro EM (2005) Functional flexibility and acclimation of the thylakoid membrane. Photochem Photobiol Sci 4: 1072–1080

    Article  PubMed  CAS  Google Scholar 

  • Kapri-Pardes E, Naveh L and Adam Z (2007) The thylakoid lumen protease Deg1 is involved in the repair of photosystem II from photoinhibition in Arabidopsis. Plant Cell 19: 1039–1047

    Article  PubMed  CAS  Google Scholar 

  • Keren N, Gong H and Ohad I (1995) Oscillations of reaction center II-D1 protein degradation in vivo induced by repetitive flashes. Correlation between the level of RCII-Q -B and protein degradation in low light. J Biol Chem 270: 806–814

    Article  PubMed  CAS  Google Scholar 

  • Kingston-Smith AH, Harbinson J, Williams J and Foyer CH (1997) Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiol 114: 1039–1046

    PubMed  CAS  Google Scholar 

  • Koivuniemi A, Swiezewska E, Aro EM, Styring S and Andersson B (1993) Reduced content of the quinone acceptor QA in photosystem II complexes isolated from thylakoid membranes after prolonged photoinhibition under anaerobic conditions. FEBS Lett 327: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Koivuniemi A, Aro EM and Andersson B (1995) Degradation of the D1- and D2-proteins of photosystem II in higher plants is regulated by reversible phosphorylation. Biochemistry 34: 16022–16029

    Article  PubMed  CAS  Google Scholar 

  • Kozaki A and Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384: 557–560

    Article  CAS  Google Scholar 

  • Komayama K, Khatoon M, Takenaka D, Horie J, Yamashita A, Yoshioka M, Nakayama Y, Yoshida M, Ohira S, Morita N, Velitchkova M, Enami I and Yamamoto Y (2007) Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochim Biophys Acta 1767: 838–846

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21: 234–244

    Article  PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A and Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: relevance to photodamage and phytotoxicity. Biochemistry 37: 17339–17344

    Article  PubMed  CAS  Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51: 649–660

    Article  CAS  Google Scholar 

  • Kudoh H and Sonoike K (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215: 541–548

    Article  PubMed  CAS  Google Scholar 

  • Kulheim C, Agren J and Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91–93

    Article  PubMed  Google Scholar 

  • Law RD and Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of rubilose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Lindahl M, Yang DH and Andersson B (1995) Regulatory proteolysis of the major light-harvesting chlorophyll a/b protein of photosystem II by a light induced membrane-associated enzymic system. Eur J Biochem 231: 503–509

    Article  PubMed  CAS  Google Scholar 

  • Lindahl M, Tabak S, Cseke L, Pichersky E, Andersson B and Adam Z (1996) Identification, characterization, and molecular cloning of a homologue of the bacterial FtsH protease in chloroplasts of higher plants. J Biol Chem 271: 29329–29334

    Article  PubMed  CAS  Google Scholar 

  • Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z and Andersson B (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 12: 419–431

    PubMed  CAS  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E and Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119: 1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Humphries S and Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45: 633–662

    Article  CAS  Google Scholar 

  • Matsubara S and Chow WS (2004) Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci USA 101: 18234–18239

    Article  PubMed  CAS  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulias J and Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89: 895–905

    Article  PubMed  CAS  Google Scholar 

  • Mizusawa N, Tomo T, Satoh K and Miyao M (2003) Degradation of the D1 protein of photosystem II under illumination in vivo: Two different pathways involving cleavage or intermolecular cross-linking. Biochemistry 42: 10034–10044

    Article  PubMed  CAS  Google Scholar 

  • Moon BY, Higashi S, Gombos Z and Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Montane MH and Kloppstech K (2000) The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function? Gene 258: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Yonekura K, Kobayashi Y and Yokota A (2002) Cyclic electron flow within PS II functions in intact chloroplasts from spinach leaves. Plant Cell Physiol 43: 951–957

    Article  PubMed  CAS  Google Scholar 

  • Muller P, Li XP and Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125: 1558–1566

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M and Shikanai T (2002) PGR5 Is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Murchie EH and Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20: 438–448

    Article  Google Scholar 

  • Nakano R, Ishida H, Makino A and Mae T (2006) In vivo fragmentation of the large subunit of Ribulose-1,5-bisphosphate carboxylase by reactive oxygen species in an intact leaf of cucumber under chilling-light conditions. Plant Cell Physiol 47: 270–276

    Article  PubMed  CAS  Google Scholar 

  • Nelson N and Yocum CF (2006) Structure and function of photosystem I and II. Annu Rev Plant Biol 57: 521–565

    Article  PubMed  CAS  Google Scholar 

  • Nixon PJ, Barker M, Boehm M, de Vries R and Komenda J (2005) FtsH-mediated repair of the photosystem II complex in response to light stress. J Exp Bot 56: 357–363

    Article  PubMed  CAS  Google Scholar 

  • Nixon PJ, Michoux F, Yu J, Boehm M and Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106: 1–16

    Google Scholar 

  • Niyogi KK, Li XP, Rosenberg V and Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56: 375–382

    Article  PubMed  CAS  Google Scholar 

  • Ohad I, Kyle DJ and Arntzen CJ (1984) Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptide in chloroplast membranes. J Cell Biol 99: 481–485

    Article  PubMed  CAS  Google Scholar 

  • Ohad I, Adir N, Koike H, Kyle DJ and Inoue Y (1990) Mechanism of photoinhibition in vivo. A reversible light-induced conformational change of reaction center II is related to an irreversible modification of the D1 protein. J Biol Chem 265: 1972–1979

    PubMed  CAS  Google Scholar 

  • Ohira S, Morita N, Suh HJ, Jung J and Yamamoto Y (2005) Quality control of photosystem II under light stress - turnover of aggregates of the D1 protein in vivo. Photosynth Res 84: 29–33

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y and Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44: 8494–8499

    Article  PubMed  CAS  Google Scholar 

  • Ortega JM, Roncel M and Losada M (1999) Light-induced degradation of cytochrome b 559 during photoinhibition of the photosystem II reaction center. FEBS Lett 458: 87–92

    Article  PubMed  CAS  Google Scholar 

  • Osmond CB (1981) Photorespiration and photoinhibition. Some implications for the energetics of photosynthesis. Biochim Biophys Acta 639: 77–98

    Article  CAS  Google Scholar 

  • Osmond B, Badger M, Maxwell K, Björkman O and Leegood R (1997) Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2: 119–121

    Article  Google Scholar 

  • Osmond B and Förster B (2005) Photoinhibition: Then and now. In: Demmig-Adams B, Adams WW III and Mattoa AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, Advances in Photosynthesis and Respiration, Vol 21, pp 11–22. Springer, Dordrecht

    Chapter  Google Scholar 

  • Ott T, Clarke J, Birks K and Johnson G (1999) Regulation of the photosynthetic electron transport chain. Planta 209: 250–258

    Article  PubMed  CAS  Google Scholar 

  • Oquist G, Hurry VM and Huner NPA (1993) The temperature dependence of the redox state of QA and the susceptibility of photosynthesis to photoinhibition. Plant Physiol Biochem 31: 683–691

    Google Scholar 

  • Park YII, Chow WS, Osmond CB and Anderson JM (1996) Electron transport to oxygen mitigates against the photoinactivation of photosystem II in vivo. Photosynth Res 50: 23–31

    Article  CAS  Google Scholar 

  • Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G and Van Wijk KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14: 211–236

    Article  PubMed  CAS  Google Scholar 

  • Peng L and Shikanai T (2011) Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiol 155: 1629–1639

    Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35: 15–44

    Article  CAS  Google Scholar 

  • Rajagopal S, Bukhov NG, Tajmir-Riahi HA and Carpentier R (2003) Control of energy dissipation and photochemical activity in photosystem I by NADP-dependent reversible conformational changes. Biochemistry 42: 11839–11845

    Article  PubMed  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA and Lavergne J (2002) Kinetics and pathways of charge recombination in Photosystem II. Biochemistry 41: 8518–8527

    Article  PubMed  CAS  Google Scholar 

  • Renger G (2011) light induced oxidative water splitting in photosynthesis: Energetics, kinetics and mechanism. J Photochem Photobiol B: Biol 104: 35–43

    Google Scholar 

  • Renger G and Renger T (2008) Photosystem II: the machinery of photosynthetic water splitting. Photosynth Res 98: 53–80

    Google Scholar 

  • Rintamaki E, Kettunen R and Aro EM (1996) Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. Dephosphorylation is a prerequisite for degradation of damaged D1. J Biol Chem 271: 14870–14875

    Article  PubMed  CAS  Google Scholar 

  • Rokka A, Suorsa M, Saleem A, Battchikova N and Aro EM (2005) Synthesis and assembly of thylakoid protein complexes: multiple assembly steps of photosystem II. Biochem J 388: 159–168

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW and Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26: 648–653

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57: 599–621

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W, Tamura T, Hanba-Tomita Y, Sodmergen and Murata M (2002) The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 7: 769–780

    Google Scholar 

  • Sakamoto W, Zaltsman A, Adam Z and Takahashi Y (2003) Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15: 2843–2855

    Article  PubMed  CAS  Google Scholar 

  • Salonen M, Aro EM and Rintamäki E (1998) Reversible phosphorylation and turnover of the D1 protein under various redox states of photosystem II induced by low temperature photoinhibition. Photosynth Res 58: 143–151

    Article  CAS  Google Scholar 

  • Satoh K (1970) Mechanism of photoinactivation in photosynthetic systems III. Site and mode of photoinactivation in photosystem I. Plant Cell Physiol 11: 187–197

    CAS  Google Scholar 

  • Satoh K and Fork DC (1982) Photoinhibition of reaction centers of photosystem I and II in intact Bryopsis chloroplasts under anaerobic conditions. Plant Physiol 70: 1004–1008

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV and Haldrup A (2005) Photoinhibition of photosystem I. Planta 221: 5–8

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP and Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277: 8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Seemann JR, Sharkey TD, Wang J and Osmond CB (1987) Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol 84: 796–802

    Article  PubMed  CAS  Google Scholar 

  • Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, Mann NH and Nixon PJ (2003) FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp. PCC 6803. Plant Cell 15: 2152–2164

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K (1996) Photoinhihition of photosystem I: Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37: 239–247

    Article  CAS  Google Scholar 

  • Sonoike K and Terashima I (1994) Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L. Planta 194: 287–293

    Article  CAS  Google Scholar 

  • Sonoike K, Terashima I, Iwaki M and Itoh S (1995) Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. FEBS Lett 362: 235–238

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K and Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95: 9705–9709

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1986) Limitation of photosynthesis by carbon metabolism: I. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light and CO2. Plant Physiol 81: 1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Styring S and Jegerschöld C (1994) Light-induced reactions impairing electron transfer through photosystem II. In: Baker NR and Bowyer J (eds) Photoinhibition of Photosynthesis; from Molecular Mechanisms to the Field, pp 51–74. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Sun ZL, Lee HY, Matsubara S, Hope AB, Pogson BJ, Hong YN and Chow WS (2006) Photoprotection of residual functional photosystem II units that survive illumination in the absence of repair, and their critical role in subsequent recovery. Physiol Plant 128: 415–424

    Article  CAS  Google Scholar 

  • Takahashi S and Murata N (2006) Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II. Biochim Biophys Acta 1757: 198–205

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Bauwe H and Badger M (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol 144: 487–494

    Article  PubMed  CAS  Google Scholar 

  • Teardo E, de Laureto PP, Bergantino E, Dalla Vecchia F, Rigoni F, Szabo I and Giacometti GM (2007) Evidences for interaction of PsbS with photosynthetic complexes in maize thylakoids. Biochim Biophys Acta 1767: 703–711

    Article  PubMed  CAS  Google Scholar 

  • Teicher HB, Møller BL and Scheller HV (2000) Photoinhibition of photosystem I in field-grown barley (Hordeum vulgare L.): Induction, recovery and acclimation. Photosynth Res 64: 53–61

    Article  CAS  Google Scholar 

  • Terashima I, Sonoike K, Kawazu T and Katoh S (1991) Exposure of leaves of Cucumis sativus L. to low temperatures in the light causes uncoupling of thylakoids II. Non-destructive measurements with intact leaves. Plant Cell Physiol 32: 1275–1283

    CAS  Google Scholar 

  • Terashima I, Funayama S and Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta 193: 300–306

    Article  CAS  Google Scholar 

  • Tikkanen M, Piippo M, Suorsa M, Sirpiö S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y and Aro EM (2006) State transitions revisited - a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62: 779–793

    Article  PubMed  CAS  Google Scholar 

  • Tjus SE, Moller BL and Scheller HV (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol 116: 755–764

    Article  PubMed  CAS  Google Scholar 

  • Tjus SE, Moller BL and Scheller HV (1999) Photoinhibition of photosystem I damages both reaction centre proteins PS I-A and PS I-B and acceptor-side located small photosystem I polypeptides. Photosynth Res 60: 75–86

    Article  CAS  Google Scholar 

  • Tjus SE, Scheller HV, Andersson B and Moller BL (2001) Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II. Plant Physiol 125: 2007–2015

    Article  PubMed  CAS  Google Scholar 

  • Tourneux C and Peltier G (1995) Effect of water deficit on photosynthetic oxygen measured using 18O2 and mass spectrometry in Solanum tuberosum L. leaf discs. Planta 195: 570–577

    Article  CAS  Google Scholar 

  • Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen-evolving manganese cluster. Coord Chem Rev 252: 361–376

    Google Scholar 

  • Vass I (2011) Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol Plant 142: 6–16

    Google Scholar 

  • Vass I and Aro EM (2007) Photoinhibition of photosystem II electron transport. In: Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus. Comprehensive Series in Photochemical and Photobiological Sciences, pp 393–411. Royal Society Chemistry, Cambridge

    Chapter  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E and Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: Stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89: 1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP and Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond Ser B Biol Sci 355: 1517–1529

    Article  CAS  Google Scholar 

  • Weis E (1981) The temperature sensitivity of dark-inactivation and light-activation of the ribulose-1,5-bisphosphate carboxylase in spinach chloroplasts. FEBS Lett 129: 197–200

    Article  CAS  Google Scholar 

  • Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20: 3623–3630

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y (2001) Quality control of photosystem II. Plant Cell Physiol 42: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Ishikawa Y, Nakatani E, Yamada M, Zhang H and Wydrzynski T (1998) Role of an extrinsic 33 kilodalton protein of photosystem II in the turnover of the reaction center-binding protein D1 during photoinhibition. Biochemistry 37: 1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Yang DH, Paulsen H and Andersson B (2000) The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complexes (LHCII) is essential for its acclimative proteolysis. FEBS Lett 466: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka M and Yamamoto Y (2011) Quality control of photosystem II: Where and how does the degradation of the D1 protein by FtsH protease start under light stress? Facts and hypotheses. J Photochem Photobiol B: Biol 104: 229–235

    Google Scholar 

  • Zaltsman A, Feder A and Adam Z (2005a) Developmental and light effects on the accumulation of FtsH protease in Arabidopsis chloroplasts-implications for thylakoid formation and photosystem II maintenance. Plant J 42: 609–617

    Article  PubMed  CAS  Google Scholar 

  • Zaltsman A, Ori N and Adam Z (2005b) Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem II repair in Arabidopsis. Plant Cell 17: 2782–2790

    Article  PubMed  CAS  Google Scholar 

  • Zhang LX, Paakkarinen V, Van Wijk KJ and Aro EM (2000) Biogenesis of the chloroplast-encoded D1 protein: regulation of translation elongation, insertion, and assembly into photosystem II. Plant Cell 12: 1769–1782

    PubMed  CAS  Google Scholar 

  • Zhang H, Whitelegge JP and Cramer WA (2001) Ferredoxin:NADP  +  oxidoreductase is a subunit of the chloroplast cytochrome b 6 f complex. J Biol Chem 276: 38159–38165

    PubMed  CAS  Google Scholar 

  • Zhang S and Scheller HV (2004) Photoinhibition of ­photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol 45: 1595–1602

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in our laboratory is financially supported by Academy of Finland. We would like to thank Dr. Marja Hakala for critical reading of this manuscript and for her helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yagut Allahverdiyeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Allahverdiyeva, Y., Aro, EM. (2012). Photosynthetic Responses of Plants to Excess Light: Mechanisms and Conditions for Photoinhibition, Excess Energy Dissipation and Repair. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_13

Download citation

Publish with us

Policies and ethics