Skip to main content

Leaf Senescence and Transformation of Chloroplasts to Gerontoplasts

  • Chapter
  • First Online:
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 34))

Summary

Senescence of green leaves brings about several structural and functional alterations in the cells. The process causes modifications in mitochondrial cristae, condensation of the nucleus, shrinkage of chloroplasts and extensive alteration of thylakoid structure. Senescence-induced changes in chloroplasts are extensive. These changes during senescence result in transdifferentiation of a chloroplast into a gerontoplast, a plastid form with unique structural features and physiology. During leaf senescence, the cells lose essential macromolecules including proteins, lipids and nucleic acids. The stroma proteins and lipids of the thylakoid membrane are the major targets for degradation. In addition to macromolecular degradation, the process causes loss in the photosynthetic pigments, namely chlorophylls and carotenoids. The enzymes that participate in chlorophyll degradation and their regulation are now known. However, the mechanism of degradation of carotenoids still remains a mystery.

Macromolecular degradation and mobilization of the breakdown products that participate in the nutrient recycling mechanism are mediated by up-regulation of senescence-related genes. These genes are known as senescence-associated genes (SAGs), many of which have been cloned and characterized. Data are now available on signaling systems associated with expression of SAGs. Down-regulation of photosynthetic genes, cellular sugar-sensing mechanisms, phytohormones and reactive oxygen species are likely to play major roles in the signal transduction pathway in the initiation, progression and termination of the senescence process. Leaf senescence is directly related to plant productivity and therefore its implication in the area of agricultural biotechnology is important. However, its biotechnological application will be possible only when some of the outstanding fundamental questions relating to the process are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chl:

– Chlorophyll;

FCC:

– Fluorescent chlorophyll catabolite;

pFCC:

– Primary fluorescent chlorophyll catabolite;

LHC:

– Light-harvesting complex;

mFCC:

– Modified fluorescence chlorophyll catabolite;

NCC:

– Non-fluorescent chlorophyll catabolite;

PAO:

– Pheophorbide a oxygenase;

PCD:

– Programmed cell death;

RCC:

– Red chlorophyll catabolite;

ROS:

– Reactive oxygen species;

Rubisco:

– Ribulose-1,5-bisphosphate carboxylase/oxygenase;

SAG:

– Senescence associated gene;

SDG:

– Senescence down-regulated gene

References

  • Adam Z (1996) Protein stability and degradation in chloroplasts. Plant Mol Biol 32: 773–783

    Article  PubMed  CAS  Google Scholar 

  • Andersson B and Aro E-M (1997) Proteolytic activities and proteases of plant chloroplasts. Physiol Plant 100: 780–793

    Article  CAS  Google Scholar 

  • Biswal B (1995) Carotenoid catabolism during leaf senescence and its control by light. J Photochem Photobiol B: Biol 30: 3–13

    Article  CAS  Google Scholar 

  • Biswal B (1997) Chloroplast metabolism during leaf greening and degreening. In: Pessarakli M (ed), Handbook of Photosynthesis, pp 71–81. Marcel Dekker Inc, New York

    Google Scholar 

  • Biswal B (1999) Senescence-associated genes of leaves. J Plant Biol 26: 43–50

    Google Scholar 

  • Biswal B (2005) Formation and demolition of chloroplast during leaf ontogeny. In: Pessarakli M (ed), Handbook of Photosynthesis, pp 109–122. CRC Press, Boca Raton

    Google Scholar 

  • Biswal B and Biswal UC (1999) Leaf senescence, physio­logy and molecular biology. Curr Sci 77: 775–782

    CAS  Google Scholar 

  • Biswal B, Rogers LJ, Smith AJ and Thomas H (1994) Carotenoid composition and its relationship to Chl and D1 protein during leaf development in a normally senescing cultivar and a stay green mutant of Festuca pratensis. Phytochemistry 37: 1257–1262

    Article  CAS  Google Scholar 

  • Biswal UC and Biswal B (1984) Photocontrol of leaf senescence. Photochem Photobiol 39: 875–879

    Article  CAS  Google Scholar 

  • Biswal UC and Biswal B (1988) Ultrastructural modifications and biochemical changes during senescence of chloroplasts. Int Rev Cytol 113: 271–321

    Article  CAS  Google Scholar 

  • Biswal UC and Biswal B (1990) Plant senescence and changes in photosynthesis. Biol Edn 7: 56–72

    Google Scholar 

  • Biswal UC, Biswal B and Raval MK (2003) Chloroplast Biogenesis: From Proplastid to Gerontoplast. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Biswal UC, Choudhury NK and Biswal B (1983) Degradation of plastid membranes during senescence. In: Sen DN and Kumar S (eds), Indian Review of Life Sciences, Vol. 3, pp. 33–61. Geobios International, Jodhpur

    Google Scholar 

  • Britton G and Young AJ (1989) Chloroplast carotenoids: function, biosynthesis and effects of stress and senescence. In: Biswal UC and Britton G (eds) Trends in Photosynthesis Research, pp 303–319. Agro Botanical Publishers, Bikaner

    Google Scholar 

  • Brychkova G, Alikulov Z, Fluhr R and Sagi M (2008) A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. Plant J 54: 496–509

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48: 181–199

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T and Pink D (2003) The molecular analysis of leaf senescence: a genomics approach. Plant Biotech J 1: 3–22

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K and Leaver CJ (2005) Comparative transcriptome ana­lysis reveals significant differences in gene expression and signa­ling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42: 567–585

    Article  PubMed  CAS  Google Scholar 

  • Callard D, Axelos M and Mazzolini L (1996) Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol 112: 705–15

    Article  PubMed  CAS  Google Scholar 

  • Cardini F (1983) Carotenoids in ripe green and in autumn senescing leaves of a tree: II-seasonal changes of free carotenoids and xanthophyll esters and relationship between their content and senescing stage. Gion Bot Ital 117: 75–97

    Article  CAS  Google Scholar 

  • Cha K-W, Lee Y-J, Koh H-J, Lee B-M, Nam Y-W and Paek N-C (2002) Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Genet 104: 526–532

    Article  PubMed  CAS  Google Scholar 

  • Chrost B, Daniel A and Krupinska K (2004) Regulation of a-galactosidase gene expression in primary foliage leaves of barley (Hordeum vulgare L.) during dark-induced senescence. Planta 218: 886–889

    Article  PubMed  CAS  Google Scholar 

  • Chrost B, Kolukisaoglu U, Schulz B and Krupinska K (2007) An α-galactosidase with an essential function during leaf development. Planta 225: 311–320

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME and Egli DB (1990) Changes in ribulose bisphosphate carboxylase/oxygenase and ribulose-5-phosphate-kinase abundances and photosynthetic capacity during leaf senescence. Photosynth Res 23: 223–230

    Article  CAS  Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A and Granot D (1999) Over expression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11: 1253–1266

    PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA and Thomas H (2000) Senescence and programmed cell death. In: Buchanan B, Gruissem W and Jones R (eds) Biochemistry and Molecular Biology of Plants, pp 1044–1100. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Drake R, John I, Farrell A, Cooper W, Schuch W and Grierson D (1996) Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol Biol 30: 755–767

    Article  PubMed  CAS  Google Scholar 

  • Efrati A, Eyal Y and Paran I (2005) Molecular mapping of the chlorophyll retainer (cl) mutation in pepper (Capsicum spp.) and screening for candidate genes using tomato ESTs homologous to structural genes of the chlorophyll catabolism pathway. Genome 48: 347–351

    Article  PubMed  CAS  Google Scholar 

  • Espinozoa C, Medina C, Somerville S and Arce-Johnson P (2007) Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J Exp Bot 58: 3197–3212

    Article  CAS  Google Scholar 

  • Fang Z, Bouwkamp JC and Solomos T (1998) Chlorophyllase activities and chlorophyll degradation during leaf senescence in nonyellowing mutant and wild type of Phaseolus vulgaris L. J Exp Bot 49: 503–510

    CAS  Google Scholar 

  • Fischer A, Brouquisse R and Raymond P (1998) Influence of senescence and of carbohydrate levels on the pattern of leaf proteases in purple nutsedge (Cyperus rotundus). Physiol Plant 102: 385–395

    Article  CAS  Google Scholar 

  • Fujiki Y, Nakagauchi Y, Furumoto T, Yoshida S, Biswal B, Ito M, Watanabe A and Nishida I (2005) Response to darkness of late-responsive dark-inducible genes is positively regulated by leaf age and negatively regulated by calmodulin-antagonist-signaling in Arabidopsis thaliana. Plant Cell Physiol 46: 1741–1746

    Article  PubMed  CAS  Google Scholar 

  • Gan S and Amasino RM (1995) Inhibition of leaf senescence by auto-regulated production of cytokinin. Science 270: 1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Gan S and Amasino RM (1997) Making sense of senescence: Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113: 313–319

    PubMed  CAS  Google Scholar 

  • Gepstein S (2004) Leaf senescence – not just a ‘wear and tear’ phenomenon. Genome Biol 5: 212–214

    Article  PubMed  Google Scholar 

  • Goldberg AL (1992) The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem 203: 9–23

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S and Maurizi MR (1992) Regulation of proteolysis: energy dependent proteases and their targets. Microbiol Rev 56: 592–621

    PubMed  CAS  Google Scholar 

  • Graham IA and Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41: 156–181

    Article  PubMed  CAS  Google Scholar 

  • Gresersen PL and Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotech J 5: 192–206

    Article  CAS  Google Scholar 

  • Griffiths CM, Hosken SE, Oliver D, Chojecki J and Thomas H (1997) Sequencing, expression pattern and RFLP mapping of a senescence enhanced cDNA from Zea mays with high homology to Oryzain γ and aleurain. Plant Mol Biol 34: 815–821

    Article  PubMed  CAS  Google Scholar 

  • Guo Y and Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46: 601–612

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Cai Z and Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27: 521–549

    Article  CAS  Google Scholar 

  • He Y and Gan S (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14: 805–815

    Article  PubMed  CAS  Google Scholar 

  • Hebeler R, Oeljeklaus S, Reidegeld KA, Eisenacher M, Stephan C, Sitek B, Stuhler K, Meyer HE, Sturre MJ, Dijkwel PP and Warscheid B (2008) Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol Cell Proteomics 7: 108–120

    PubMed  CAS  Google Scholar 

  • Hensel LL, Grbic V, Baumgarten DA and Bleecker AB (1993) Developmental and age related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5: 553–564

    PubMed  CAS  Google Scholar 

  • Hörtensteiner S (1999) Chlorophyll breakdown in higher plants and algae. Cell Mol Life Sci 56: 330–347

    Article  PubMed  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57: 55–77

    Article  PubMed  CAS  Google Scholar 

  • Hortensteiner S and Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53: 927–937

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Makino A and Mae T (1999) Fragmentation of the large subunit of ribulose-1,5-bisphosphatase carboxylase by reactive oxygen species occurs near Gly-329. J Biol Chem 274: 5222–5226

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Anzawa D, Kokubun N, Makino A and Mae T (2002) Direct evidence for non-enzymatic fragmentation of chloroplastic glutamine synthetase by reactive oxygen species. Plant Cell Environ 25: 625–631

    Article  CAS  Google Scholar 

  • Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F and Wu G (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52: 197–209

    Article  PubMed  CAS  Google Scholar 

  • Kawakami N and Watanabe A (1993) Translatable mRNAs for chloroplast targeted proteins in detached radish cotyledons during senescence in darkness. Plant Cell Physiol 34: 697–704

    CAS  Google Scholar 

  • Krupinska K (2006) Fate and activities of plastids during leaf senescence. In: Wise RR and Hoober K (eds) The Structure and Function of Plastids, Advances in Photosynthesis and Respiration, Vol 23, pp 433–449. Springer, Dordrecht

    Chapter  Google Scholar 

  • Krupinska K and Humbeck K (2004) Photosynthesis and chloroplast break down. In: Nooden LD (ed) Plant Cell Death Processes, pp 169–187. Elsevier Academic Pres, San Diego

    Chapter  Google Scholar 

  • Kusuba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M and Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19: 1362–375

    Article  CAS  Google Scholar 

  • Li XP, Gan R, Li PL, Ma YY, Zhang LW, Zhang R, Wang Y and Wang NN (2006) Identification of a leucine-rich repeat receptor-like kinase gene that is involved in regulation of soyabean leaf senescence. Plant Mol Biol 61: 829–844

    Article  PubMed  CAS  Google Scholar 

  • Lim PO and Nam HG (2005) The molecular and genetic control of leaf senescence and longevity in Arabidopsis. Curr Top Dev Biol 67: 49–83

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Kim HJ and Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58: 115–136

    Article  PubMed  CAS  Google Scholar 

  • Lin J-F and Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39: 612–628

    Article  PubMed  CAS  Google Scholar 

  • Lindahl M, Spatea C, Hundal T, Oppenheim AB, Adam Z and Andersson B (2000) The thylakoid Ftsh protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 12: 419–431

    PubMed  CAS  Google Scholar 

  • Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X and Lin Y (2008) Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol 67: 37–55

    Article  PubMed  CAS  Google Scholar 

  • Liu X-Q and Jagendorf AT (1984) ATP dependent proteolysis in pea chloroplasts. FEBS Lett 166: 248–252

    Article  CAS  Google Scholar 

  • Lohman KN, Gan S, John M C and Amasino RM (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92: 322–328

    Article  CAS  Google Scholar 

  • Makino A, Mae T and Ohira K (1983) Photosynthesis and ribulose 1,5-bisphosphate carboxylase in rice leaves: changes in photosynthesis and enzymes involved in carbon metabolism from leaf development through senescence. Plant Physiol 73: 1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Malek L, Bogorad L, Ayers AR and Goldberg AL (1984) Newly synthesized proteins are degraded by an ATP stimulated proteolytic process in isolated pea chloroplasts. FEBS Lett 166: 253–257

    Article  CAS  Google Scholar 

  • Martínez DE, Bartoli CG, Grbic V and Guiamet JJ (2007) Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors. J Exp Bot 58: 1099–1107

    Article  PubMed  Google Scholar 

  • Masferrer A, Arro M, Manzano D, Schaller H, Fernandez-Busquets X, Moncalean P, Fernandez B, Cunillera N, Boronat A and Ferrer A (2002) Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J 30: 123–132

    Article  PubMed  CAS  Google Scholar 

  • Matile P (1992) Chloroplast senescence. In Baker N and Thomas H (eds) Crop Photosynthesis: Spatial and Temporal Determinants pp 413–440. Elsevier, Amsterdam

    Google Scholar 

  • Matile P, Hörtensteiner S and Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50: 67–95

    Article  PubMed  CAS  Google Scholar 

  • Maurizi M (1992) Proteases and protein degradation in Escherichia coli. Experientia 48: 178–201

    Article  PubMed  CAS  Google Scholar 

  • Misra AN and Biswal UC (1982) Changes in the content of plastid macromolecules during aging of attached and detached leaves, and of isolated chloroplasts of wheat seedlings. Photosynthetica 16: 22–26

    CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T and Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300: 332–336

    Article  PubMed  CAS  Google Scholar 

  • Muller B and Sheen J (2007) Arabidopsis cytokinin signaling pathway. Sci STKE 407: cm5

    Google Scholar 

  • Nakabayashi K, Ito M, Kiyosue T, Shinozaki K and Watanabe A (1999) Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol 40: 504–514

    Article  PubMed  CAS  Google Scholar 

  • Oh M-H, Kim Y-J and Lee C-H (2000) Leaf senescence in a stay-green mutant of Arabidopsis thaliana: disassembly process of photosystem I and II during dark-incubation. J Biochem Mol Biol 33: 256–262

    CAS  Google Scholar 

  • Otegui MS, Yoo-Sun Noh YS, Martínez DE, Vila Petroff MG, Staehelin LA, Amasino RM, and Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolysis activity develop in leaves of Arabidopsis and soybean. Plant J 41: 831–844

    Article  PubMed  CAS  Google Scholar 

  • Ouelhadj A, Kaminski M, Mittag M and Humbeck K (2007) Receptor-like protein kinase HvLysMR1 of barley (Hordeum vulgare L.) is induced during leaf senescence and heavy metal stress. J Exp Bot 58: 1381–1396

    Article  PubMed  CAS  Google Scholar 

  • Ougham HJ, Morris P and Thomas H (2005) The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Cur Top Dev Biol 66: 135–160

    Article  CAS  Google Scholar 

  • Panigrahi PK and Biswal UC (1979) Aging of chloroplasts in vitro 1. Quantitative analysis of the degradation of pigments, proteins and nucleic acids. Plant Cell Physiol 20: 775–779

    CAS  Google Scholar 

  • Park SY, Yu J-W, Park J-S, Li J, Yoo S-C, Lee N-Y, Lee S-K, Jeong S-W, Seo HS, Koh H-J, Jeon J-S, Park Y-I and Paek N-C (2007) The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell 19: 1649–1664

    Article  PubMed  CAS  Google Scholar 

  • Parrott D, Yang L, Shama L and Fischer AM (2005) Senescence is accelerated, and several proteases are induced by carbon “feast” conditions in barley (Hordeum vulgare L.) leaves. Planta 222: 989–1000

    Article  PubMed  CAS  Google Scholar 

  • Pruzínská A, Anders I, Aubry S, Schenk N, Tapernoux-Lüthi E, Müller T, Kräutler B and Hörtensteiner S (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19: 369–38

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Arribas T, Barrett JE, Huber DJ, Nell TA and Clark DG (2001) Leaf senescence in a non-yellowing cultivar of chrysanthemum (Dendranthema grandiflora). Physiol Plant 111: 540–544

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57: 675–709

    Article  PubMed  CAS  Google Scholar 

  • Roulin S and Feller U (1998) Dithiothreitol triggers photo oxidative stress and fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in intact pea chloroplasts. Plant Physiol Biochem 36: 849–856

    Article  CAS  Google Scholar 

  • Sato Y, Morita R, Nishimura M, Yamaguchi H and Kusaba M (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA 104: 14169–14174

    Article  PubMed  CAS  Google Scholar 

  • Sitte P (1977) Chromoplasten-bunte objekte der modernen zell biologie. Biol Uns Zeit 7: 65–74

    Article  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126: 419–448

    Article  CAS  Google Scholar 

  • Spetea C, Hundal T, Lohmann F and Andersson B (1999) GTP bound to the chloroplast thylakoid membranes is required for light-induced multienzyme degradation of the photosystem II D1 protein. Proc Natl Acad Sci USA 96: 6547–6552

    Article  PubMed  CAS  Google Scholar 

  • Tevini M and Steinmuller D (1985) Composition and function of plastoglobuli. II. Lipid composition of leaves and plastoglobuli during beech leaf senescence. Planta 163: 91–96

    Article  CAS  Google Scholar 

  • Thayer SS, Choe HT, Tang A and Huffaker RC (1987) Protein turnover during senescence. In: Thompson WW, Nothnagel E and Huffaker RC (eds) Plant Senescence: Its Biochemistry and Physiology pp. 71–80. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Thomas H (1986) The role of polyunsaturated fatty acids in senescence. J Plant Physiol 123: 97–105

    Article  CAS  Google Scholar 

  • Thomas H (1994) Aging in the plant and animal kingdoms-the role of cell death. Rev Clinical Gerontol 4: 5–20

    Article  Google Scholar 

  • Thomas H and Howarth CJ (2000) Five ways to stay green. J Exp Bot 51: 329–337

    Article  PubMed  CAS  Google Scholar 

  • Thomas H and Stoddart J (1975) Separation of chlorophyll degradation from other senescence processes in leaves of a mutant genotype of meadow fescue (Festuca pratensis L.). Plant Physiol 56: 438–441

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, Ougham H and Hortensteiner S (2001) Recent advances in the cell biology of chlorophyll catabolism. Adv Bot Res 35: 1–52

    Article  CAS  Google Scholar 

  • Thomas H, Ougham HJ, Wagstaff C and Stead AD (2003) Defining senescence and death. J Exp Bot 54: 1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Taylor C and Wang TW (2000) Altered membrane lipase expression delays leaf senescence. Biochem Soc Trans 28: 775–777

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A and Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Ülker B, Mukhtar MS and Somssich IE (2007) The WRKY 70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226: 125–137

    Article  PubMed  CAS  Google Scholar 

  • Van Doorn WG (2005) Plant programmed cell death and the point of no return. Trends Plant Sci 10: 478–483

    Article  PubMed  CAS  Google Scholar 

  • Van Doorn WG and Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Expt Bot 55: 2147–2153

    Article  Google Scholar 

  • Wingler A, von Schaewen A, Leegood RC, Lea PJ and Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars, and light. Effects on NADH-dependent hydroxypyruvate reductase. Plant Physiol 116: 329–335

    Article  CAS  Google Scholar 

  • Wingler A, Purdy S, MacLean JA and Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Expt Bot 57: 391–399

    Article  CAS  Google Scholar 

  • Woolhouse HW (1987) Regulation of senescence in the chloroplast. In: Thomson WW, Nothnagel EA and Huffaker RC (eds) Plant Senescence: Its Biochemistry and Physiology pp 132–145. The American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Xiao W, Sheen J and Jang JC (2000) The role of hexokinase n plant sugar signal transduction and growth and development. Plant Mol Biol 44: 451–461

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6: 79–84

    Article  PubMed  CAS  Google Scholar 

  • Zavaleta-Mancera HA, Franklin KA, Ougham HJ, Thomas H and Scott IM (1999a) Regreening of senescent Nicotiana leaves 1. Reappearance of NADPH-protochlorophyllide oxidoreductase and light harvesting chlorophyll a/b binding protein. J Exp Bot 50: 1677–1682

    CAS  Google Scholar 

  • Zavaleta-Mancera HA, Thomas BJ, Thomas H and Scott IM (1999b) Regreening of senescent Nicotiana leaves II. Redifferentiation of plastids. J Exp Bot 50: 1683–1689

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology, Government of India, New Delhi for financial support in the form of a major research grant (SP/SO/A-71/99) to B.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basanti Biswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Biswal, B., Mohapatra, P.K., Biswal, U.C., Raval, M.K. (2012). Leaf Senescence and Transformation of Chloroplasts to Gerontoplasts. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_10

Download citation

Publish with us

Policies and ethics