Skip to main content

Cell Lines, Tissue Samples, Model Organisms, and Biobanks: Infrastructure and Tools for Cancer Systems Biology

  • Chapter
  • First Online:
Cancer Systems Biology, Bioinformatics and Medicine

Abstract

Despite significant advances in the understanding of cancer , we have seen hitherto only limited translation into improvements in diagnosis and treatment of patients. Further advances in targeted therapies are dependent on well-characterized cell line s for drug evaluation and testing as a preclinical entry point into the pharmaceutical development pipeline. Model organism systems to investigate cancer as a living, breathing organism functioning in three-dimensional space will increase in importance for testing novel therapeutics. Cell lines and xenograft systems have significant limitations. High-quality annotated banked tumour tissue is of fundamental importance for the investigation of cancer biomarkers , molecular pathways , and networks. These components are key parts of systems biology strategies for understanding and individualizing the treatment of human cancer .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Cory S (1991) Transgenic models of tumor development. Science 254(5035):1161–1167

    PubMed  CAS  Google Scholar 

  • Alberghina L, Chiaradonna F, Vanoni M (2004) Systems biology and the molecular circuits of cancer. Chembiochem 5(10):1322–1333

    PubMed  CAS  Google Scholar 

  • An Z, Wang X, Kubota T et al (1996) A clinical nude mouse metastatic model for highly malignant human pancreatic cancer. Anticancer Res 16(2):627–631

    PubMed  CAS  Google Scholar 

  • Arguello F, Sterry JA, Zhao YZ et al (1996) Two serologic markers to monitor the engraftment, growth, and treatment response of human leukemias in severe combined immunodeficient mice. Blood 87(10):4325–4332

    PubMed  CAS  Google Scholar 

  • Belinsky SA, Stefanski SA, Anderson MW (1993) The A/J mouse lung as a model for developing new chemointervention strategies. Cancer Res 53(2):410–416

    PubMed  CAS  Google Scholar 

  • Bignell GR, Greenman CD, Davies H et al (2010) Signatures of mutation and selection in the cancer genome. Nature 463(7283):893–898

    Google Scholar 

  • Blackhall FH, Pintilie M, Wigle DA et al (2004) Stability and heterogeneity of expression profiles in lung cancer specimens harvested following surgical resection. Neoplasia 6(6):761–767

    PubMed  Google Scholar 

  • Boven E, Winograd B, Berger DP et al (1992) Phase II preclinical drug screening in human tumor xenografts: a first European multicenter collaborative study. Cancer Res 52(21):5940–5947

    PubMed  CAS  Google Scholar 

  • Brinster RL, Chen HY, Trumbauer ME et al (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A 82(13):4438–4442

    PubMed  CAS  Google Scholar 

  • Bussey KJ, Chin K, Lababidi S et al (2006) Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Mol Cancer Ther 5:853–867

    PubMed  CAS  Google Scholar 

  • Butler TP, Gullino PM (1975) Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 35(3):512–516

    PubMed  CAS  Google Scholar 

  • Cancer Facts (2009) Cancer facts and figures 2009. http://www.cancer.org/docroot/PRO/content/PRO_1_1_Cancer_Statistics_2009_Presentation.asp. Accessed 1 Apr 2010

    Google Scholar 

  • Chen J, Sam L, Huang Y et al (2010) Protein interaction network underpins concordant prognosis among heterogeneous breast cancer signatures. J Biomed Inform [Epub ahead of print]

    Google Scholar 

  • Chuang HY, Lee E, Liu YT et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140

    PubMed  Google Scholar 

  • Corbett TH, Griswold DP Jr, Roberts BJ et al (1975) Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res 35(9):2434–2439

    PubMed  CAS  Google Scholar 

  • Corbett TH, Roberts BJ, Leopold WR et al (1984) Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Res 44(2):717–726

    PubMed  CAS  Google Scholar 

  • Crawford LV, Pim DC, Gurney EG et al (1981) Detection of a common feature in several human tumor cell lines—a 53,000-dalton protein. Proc Natl Acad Sci U S A 78(1):41–45

    PubMed  CAS  Google Scholar 

  • Dan S, Tsunoda T, Kitahara O et al (2002) An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res 62(4):1139–1147

    PubMed  CAS  Google Scholar 

  • Davies B, Brown PD, East N et al (1993) A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res 53(9):2087–2091

    PubMed  CAS  Google Scholar 

  • DeVita VT, Schein PS (1973) The use of drugs in combination for the treatment of cancer: rationale and results. N Engl J Med 288(19):998–1006

    PubMed  CAS  Google Scholar 

  • Der CJ, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci U S A 79(11):3637–3640

    PubMed  CAS  Google Scholar 

  • Dinney CP, Fishbeck R, Singh RK et al (1995) Isolation and characterization of metastatic variants from human transitional cell carcinoma passaged by orthotopic implantation in athymic nude mice. J Urol 154(4):1532–1538

    PubMed  CAS  Google Scholar 

  • Fidler IJ (1986) Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev 5(1):29–49

    PubMed  CAS  Google Scholar 

  • Fidler IJ (1991) Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metastasis Rev 10(3):229–243

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Hart IR (1982) Biological diversity in metastatic neoplasms: origins and implications. Science 217(4564):998–1003

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197(4306):893–895

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Naito S, Pathak S (1990) Orthotopic implantation is essential for the selection, growth and metastasis of human renal cell cancer in nude mice [corrected]. Cancer Metastasis Rev 9(2):149–165

    PubMed  CAS  Google Scholar 

  • Fisher GH, Wellen SL, Klimstra D et al (2001) Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 15(24):3249–3262

    PubMed  CAS  Google Scholar 

  • Fowlis DJ, Balmain A (1993) Oncogenes and tumour suppressor genes in transgenic mouse models of neoplasia. Eur J Cancer 29A(4):638–645

    PubMed  CAS  Google Scholar 

  • Furukawa T, Kubota T, Watanabe M et al (1993) A novel “patient-like” treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice. Cancer Res 53(13):3070–3072

    PubMed  CAS  Google Scholar 

  • Galski H, Sullivan M, Willingham MC et al (1989) Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of transgenic mice: resistance to daunomycin-induced leukopenia. Mol Cell Biol 9(10):4357–4363

    PubMed  CAS  Google Scholar 

  • Gaur A, Jewell DA, Liang Y et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468

    PubMed  CAS  Google Scholar 

  • Gazdar AF, Kurvari V, Virmani A et al (1998) Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int J Cancer 78(6):766–774

    PubMed  CAS  Google Scholar 

  • Glaves D (1986) Detection of circulating metastatic cells. Prog Clin Biol Res 212:151–167

    PubMed  CAS  Google Scholar 

  • Gordon JW, Ruddle FH (1983) Gene transfer into mouse embryos: production of transgenic mice by pronuclear injection. Methods Enzymol 101:411–433

    PubMed  CAS  Google Scholar 

  • Grever MR, Schepartz SA, Chabner BA (1992) The National Cancer Institute: cancer drug discovery and development program. Semin Oncol 19(6):622–638

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2008) The hallmarks of cancer. Cell 2000 Jan 7;100(1):57–70

    Google Scholar 

  • Heppner GH (1984) Tumor heterogeneity. Cancer Res 44(6):2259–2265

    PubMed  CAS  Google Scholar 

  • Holbeck S, Chang J, Best AM et al (2010) Expression profiling of nuclear receptors in the NCI60 cancer cell panel reveals receptor-drug and receptor-gene interactions. Mol Endocrinol [Epub ahead of print]

    Google Scholar 

  • Hornberg JJ, Bruggeman FJ, Westerhoff HV et al (2006) Cancer: a systems biology disease. Biosystems 83(2–3):81–90

    PubMed  CAS  Google Scholar 

  • Howard RB, Chu H, Zeligman BE et al (1991) Irradiated nude rat model for orthotopic human lung cancers. Cancer Res 51(12):3274–3280

    PubMed  CAS  Google Scholar 

  • Howard RB, Mullen JB, Pagura ME et al (1999) Characterization of a highly metastatic, orthotopic lung cancer model in the nude rat. Clin Exp Metastasis 17(2):157–162

    PubMed  CAS  Google Scholar 

  • Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18(4):644–652

    Google Scholar 

  • Ikediobi ON, Davies H, Bignell G et al (2006) Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther 5(11):2606–2612

    PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945

    Google Scholar 

  • Jackson EL, Willis N, Mercer K et al (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15(24):3243–3248

    PubMed  CAS  Google Scholar 

  • Jaenisch R (1980) Retroviruses and embryogenesis: microinjection of Moloney leukemia virus into midgestation mouse embryos. Cell 19(1):181–188

    PubMed  CAS  Google Scholar 

  • Jaenisch R, Jähner D, Nobis P et al (1981) Chromosomal position and activation of retroviral genomes inserted into the germ line of mice. Cell 24(2):519–529

    PubMed  CAS  Google Scholar 

  • Johnson L, Mercer K, Greenbaum D et al (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410(6832):1111–1116

    PubMed  CAS  Google Scholar 

  • Johnston MR, Mullen JB, Pagura ME et al (2001) Validation of an orthotopic model of human lung cancer with regional and systemic metastases. Ann Thorac Surg 71(4):1120–1125

    PubMed  CAS  Google Scholar 

  • Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18):2291–2297

    PubMed  CAS  Google Scholar 

  • Jähner D, Jaenisch R (1980) Integration of Moloney leukaemia virus into the germ line of mice: correlation between site of integration and virus activation. Nature 287(5781):456–458

    PubMed  Google Scholar 

  • Kerbel RS, Cornil I, Theodorescu D (1991) Importance of orthotopic transplantation procedures in assessing the effects of transfected genes on human tumor growth and metastasis. Cancer Metastasis Rev 10(3):201–215

    PubMed  CAS  Google Scholar 

  • Kerr KM (2001) Pulmonary preinvasive neoplasia. J Clin Pathol 54(4):257–271

    PubMed  CAS  Google Scholar 

  • Khalil IG, Hill C (2005) Systems biology for cancer. Curr Opin Oncol 17(1):44–48

    PubMed  CAS  Google Scholar 

  • Khleif SN (1997) Animal models in drug development. In: Holland JF (eds) Cancer medicine, B.R.J.M.D.F.E.K.D.W.R. Williams & Wilkins, Baltimore

    Google Scholar 

  • Kim SH, Lee CS (1996) Induction of benign and malignant pulmonary tumours in mice with benzo(a)pyrene. Anticancer Res 16(1):465–470

    PubMed  CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. 295(5560):1662–1664

    CAS  Google Scholar 

  • Kozaki K, Miyaishi O, Tsukamoto T et al (2000) Establishment and characterization of a human lung cancer cell line NCI-H460-LNM35 with consistent lymphogenous metastasis via both subcutaneous and orthotopic propagation. Cancer Res 60(9):2535–2540

    PubMed  CAS  Google Scholar 

  • Kuo TH, Kubota T, Watanabe M et al (1992) Orthotopic reconstitution of human small-cell lung carcinoma after intravenous transplantation in SCID mice. Anticancer Res 12(5):1407–1410

    PubMed  CAS  Google Scholar 

  • Kuo TH, Kubota T, Watanabe M et al (1993) Site-specific chemosensitivity of human small-cell lung carcinoma growing orthotopically compared to subcutaneously in SCID mice: the importance of orthotopic models to obtain relevant drug evaluation data. Anticancer Res 13(3):627–630

    PubMed  CAS  Google Scholar 

  • Lin WC, Pretlow TP, Pretlow TG 2nd et al (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res 50(9):2808–2817

    PubMed  CAS  Google Scholar 

  • Liotta LA, Kleinerman J, Saidel GM (1974) Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res 34(5):997–1004

    PubMed  CAS  Google Scholar 

  • Livingood L (1986) Tumors in the mouse. Johns Hopkins Bull 66(67):177

    Google Scholar 

  • Malkinson AM (1989) The genetic basis of susceptibility to lung tumors in mice. Toxicology 54(3):241–271

    PubMed  CAS  Google Scholar 

  • Malkinson AM (1992) Primary lung tumors in mice: an experimentally manipulable model of human adenocarcinoma. Cancer Res 52(9 Suppl):2670s--2676s

    PubMed  CAS  Google Scholar 

  • Manzotti C, Audisio RA, Pratesi G (1993) Importance of orthotopic implantation for human tumors as model systems: relevance to metastasis and invasion. Clin Exp Metastasis 11(1):5–14

    PubMed  CAS  Google Scholar 

  • Maronpot RR, Palmiter RD, Brinster RL et al (1991) Pulmonary carcinogenesis in transgenic mice. Exp Lung Res 17(2):305–320

    PubMed  CAS  Google Scholar 

  • Masters JR (2002) HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2(4):315–319

    PubMed  CAS  Google Scholar 

  • Mattern J, Bak M, Hahn EW et al (1988) Human tumor xenografts as model for drug testing. Cancer Metastasis Rev 7(3):263–284

    PubMed  CAS  Google Scholar 

  • Mattison J, Kool J, Uren AG et al (2010) Novel candidate cancer genes identified by a large-scale cross-species comparative oncogenomics approach. Cancer Res 70(3):883–895

    Google Scholar 

  • McLemore TL, Eggleston JC, Shoemaker RH et al (1988) Comparison of intrapulmonary, percutaneous intrathoracic, and subcutaneous models for the propagation of human pulmonary and nonpulmonary cancer cell lines in athymic nude mice. Cancer Res 48(10):2880–2886

    PubMed  CAS  Google Scholar 

  • McLemore TL, Liu MC, Blacker PC et al (1987) Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res 47(19):5132–5140

    PubMed  CAS  Google Scholar 

  • Meuwissen R, Linn SC, Linnoila RI et al (2003) Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4(3):181–189

    PubMed  CAS  Google Scholar 

  • Meuwissen R, Linn SC, Valk M Van Der et al (2001) Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene 20(45):6551–6558

    PubMed  CAS  Google Scholar 

  • Miyoshi T, Kondo K, Ishikura H et al (2000) SCID mouse lymphogenous metastatic model of human lung cancer constructed using orthotopic inoculation of cancer cells. Anticancer Res 20(1A):161–163

    Google Scholar 

  • Morikawa K, Walker SM, Jessup JM et al (1988) In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res 48(7):1943–1948

    PubMed  CAS  Google Scholar 

  • Mulvin DW, Howard RB, Mitchell DH et al (1992) Secondary screening system for preclinical testing of human lung cancer therapies. J Natl Cancer Inst 84(1):31–37

    PubMed  CAS  Google Scholar 

  • Naito S, Eschenbach AC von, Giavazzi R et al (1986) Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res 46(8):4109–4115

    PubMed  CAS  Google Scholar 

  • Nicolson GL (1984) Generation of phenotypic diversity and progression in metastatic tumor cells. Cancer Metastasis Rev 3(1):25–42

    PubMed  CAS  Google Scholar 

  • Nicolson GL (1987) Tumor cell instability, diversification, and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res 47(6):1473–1487

    PubMed  CAS  Google Scholar 

  • Nissen KK, Vogel U, Nexø BA (2009) Association of a single nucleotide polymorphic variation in the human chromosome 19q13.3 with drug responses in the NCI60 cell lines. Anticancer Drugs 20(3):174–178

    PubMed  CAS  Google Scholar 

  • Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101

    PubMed  CAS  Google Scholar 

  • Park ES, Rabinovsky R, Carey M et al (2010) Integrative analysis of proteomic signatures, mutations, and drug responsiveness in the NCI 60 cancer cell line set. Mol Cancer Ther 9(2):257–267

    PubMed  CAS  Google Scholar 

  • Pawson T, Warner N (2007) Oncogenic re-wiring of cellular signaling pathways. Oncogene 26(9):1268–1275

    PubMed  CAS  Google Scholar 

  • Povlsen CO, Rygaard J (1971) Heterotransplantation of human adenocarcinomas of the colon and rectum to the mouse mutant Nude. A study of nine consecutive transplantations. Acta Pathol Microbiol Scand A 79(2):159–169

    PubMed  CAS  Google Scholar 

  • Price JE (1994) Analyzing the metastatic phenotype. J Cell Biochem 56(1):16–22

    PubMed  CAS  Google Scholar 

  • Rapp UR, Todaro GJ (1980) Generation of oncogenic mouse type C viruses: in vitro selection of carcinoma-inducing variants. Proc Natl Acad Sci U S A 77(1):624–628

    PubMed  CAS  Google Scholar 

  • Rashidi B, Yang M, Jiang P et al (2000) A highly metastatic Lewis lung carcinoma orthotopic green fluorescent protein model. Clin Exp Metastasis 18(1):57–60

    PubMed  CAS  Google Scholar 

  • Ring BZ, Chang S, Ring LW et al (2008) Gene expression patterns within cell lines are predictive of chemosensitivity. BMC Genomics 9:74

    PubMed  Google Scholar 

  • Ross DT, Scherf U, Eisen MB et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235

    PubMed  CAS  Google Scholar 

  • Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062):1173–1178

    PubMed  CAS  Google Scholar 

  • Russell PJ, Ho Shon I, Boniface GR et al (1991) Growth and metastasis of human bladder cancer xenografts in the bladder of nude rats. A model for intravesical radioimmunotherapy. Urol Res 19(4):207–213

    PubMed  CAS  Google Scholar 

  • Sandmöller A, Halter R, Suske G et al (1995) A transgenic mouse model for lung adenocarcinoma. Cell Growth Differ 6(1):97–103

    PubMed  Google Scholar 

  • Scherf U, Ross DT, Waltham M et al (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24(3):236–244

    PubMed  CAS  Google Scholar 

  • Schneider U, Schwenk HU, Bornkamm G (1977) Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 19(5):621–626

    PubMed  CAS  Google Scholar 

  • Schuster JM, Friedman HS, Archer GE et al (1993) Intraarterial therapy of human glioma xenografts in athymic rats using 4-hydroperoxycyclophosphamide. Cancer Res 53(10 Suppl):2338–2343

    PubMed  CAS  Google Scholar 

  • Shankavaram UT, Reinhold WC, Nishizuka S et al (2007) Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 6:820–832

    PubMed  CAS  Google Scholar 

  • Shell S, Park SM, Radjabi AR et al (2007) Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A 104(27):11400–11405

    PubMed  CAS  Google Scholar 

  • Shimkin MB, Stoner GD (1975) Lung tumors in mice: application to carcinogenesis bioassay. Adv Cancer Res 21:1–58

    PubMed  CAS  Google Scholar 

  • Shockett PE, Schatz DG (1996) Diverse strategies for tetracycline-regulated inducible gene expression. Proc Natl Acad Sci U S A 93(11):5173–5176

    PubMed  CAS  Google Scholar 

  • Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823

    PubMed  CAS  Google Scholar 

  • Shoemaker RH, Abbott BJ et al (1988) Human tumor xenograft models for use with an in vitro-based, disease-oriented antitumor drug screening program. In: B.W.M.P.a.H.P. (eds) Human tumor xenografts in anticancer drug development. Springer, Berlin

    Google Scholar 

  • Shoemaker RH, Dykes DJ, Plowman J et al (1991) Practical spontaneous metastasis model for in vivo therapeutic studies using a human melanoma. Cancer Res 51(11):2837–2841

    PubMed  CAS  Google Scholar 

  • Shoemaker RH, Smythe AM, Wu L et al (1992) Evaluation of metastatic human tumor burden and response to therapy in a nude mouse xenograft model using a molecular probe for repetitive human DNA sequences. Cancer Res 52(10):2791–2796

    PubMed  CAS  Google Scholar 

  • Soriano P, Jaenisch R (1986) Retroviruses as probes for mammalian development: allocation of cells to the somatic and germ cell lineages. Cell 46(1):19–29

    PubMed  CAS  Google Scholar 

  • Spencer SL, Berryman MJ, García JA et al (2004) An ordinary differential equation model for the multistep transformation to cancer. J Theor Biol 231(4):515–524

    PubMed  CAS  Google Scholar 

  • Steel GG, Courtenay VD, Peckham MJ (1983) The response to chemotherapy of a variety of human tumour xenografts. Br J Cancer 47(1):1–13

    PubMed  CAS  Google Scholar 

  • Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    PubMed  CAS  Google Scholar 

  • Stern HM, Zon LI (2003) Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3(7):533–539

    PubMed  CAS  Google Scholar 

  • Stoner GD (1991) Lung tumors in strain A mice as a bioassay for carcinogenicity of environmental chemicals. Exp Lung Res 17(2):405–423

    PubMed  CAS  Google Scholar 

  • Suda Y, Aizawa S, Hirai S et al (1987) Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice. EMBO J 6(13):4055–4065

    PubMed  CAS  Google Scholar 

  • Thomas H, Balkwill F (1995) Assessing new anti-tumour agents and strategies in oncogene transgenic mice. Cancer Metastasis Rev 14(2):91–95

    PubMed  CAS  Google Scholar 

  • Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21(23):4205–4208

    PubMed  CAS  Google Scholar 

  • Wallqvist A, Rabow AA, Shoemaker RH et al (2002) Establishing connections between microarray expression data and chemotherapeutic cancer pharmacology. Mol Cancer Ther 1:311–320

    PubMed  CAS  Google Scholar 

  • Wang H, Huang S, Shou J et al (2006) Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data. BMC Genomics 7:166

    PubMed  Google Scholar 

  • Wang X, Fu X, Hoffman RM (1992) A new patient-like metastatic model of human lung cancer constructed orthotopically with intact tissue via thoracotomy in immunodeficient mice. Int J Cancer 51(6):992–995

    PubMed  CAS  Google Scholar 

  • Weerden WM van, Romijn JC (2000) Use of nude mouse xenograft models in prostate cancer research. Prostate 43(4):263–271

    PubMed  Google Scholar 

  • Weinstein JN, Myers TG, O’Connor PM et al (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275(5298):343–349

    PubMed  CAS  Google Scholar 

  • Wikenheiser KA, Clark JC, Linnoila RI et al (1992) Simian virus 40 large T antigen directed by transcriptional elements of the human surfactant protein C gene produces pulmonary adenocarcinomas in transgenic mice. Cancer Res 52(19):5342–5352

    PubMed  CAS  Google Scholar 

  • Wistuba II, Bryant D, Behrens C et al (1999) Comparison of features of human lung cancer cell lines and their corresponding tumors. Clin Cancer Res 5(5):991–1000

    PubMed  CAS  Google Scholar 

  • Wu M, Pastor-Pareja JC, Xu T (2010) Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463(7280):545–548

    PubMed  CAS  Google Scholar 

  • Zhao B, Magdaleno S, Chua S et al (2000) Transgenic mouse models for lung cancer. Exp Lung Res 26(8):567–579

    PubMed  CAS  Google Scholar 

  • Zubrod C (1972) Chemical control of cancer. Proc Natl Acad Sci U S A 69(4):1042–1047

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis S. Tomaszek MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tomaszek, S., Tomaszek, D.S. (2011). Cell Lines, Tissue Samples, Model Organisms, and Biobanks: Infrastructure and Tools for Cancer Systems Biology. In: Cesario, A., Marcus, F. (eds) Cancer Systems Biology, Bioinformatics and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1567-7_4

Download citation

Publish with us

Policies and ethics