Skip to main content

Global Molecular and Cellular Measurement Technologies

  • Chapter
  • First Online:
Book cover Cancer Systems Biology, Bioinformatics and Medicine

Abstract

Measuring technologies in the field of molecular biology and cellular biology have developed rapidly over the recent years, most obviously in the sequencing field where capacity and throughput have increased by several orders of magnitude. This has been a major factor in systems biology research , which thrives on technologies facilitating efficient and relatively economical genome-wide readout on DNA, mRNA, protein, and metabolome level. With data generation increasing exponentially, we are faced with new challenges of transforming this data into useful models that help to predict the outcome of genomic aberrations and to develop novel diagnostic and therapeutic strategies. There is currently a technological and digital transition from many array-based assays to second-generation sequencing approaches that analyse gene expression , genotype, single nucleotide polymorphisms and methylation patterns. Sequencing technologies are developing rapidly, as are preparatory enrichment techniques, which include the amplification of sample signal or target enrichment to reduce sample complexity. Proteomics and functional assays have also been much advanced as a result of technological progress in mass spectrometry or automatic microscopy and image analysis. Nevertheless, we are still far away from routinely measuring whole proteome data, because of the complexity of different transcripts and post-translational modifications. In spite of this, numerous new or improved analytical techniques embedded in integrated systems approach frameworks will potentially generate clinical usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BRET:

bioluminescence resonance energy transfer

BS:

bisulfite

CDK:

cyclin dependent kinases

CGH:

comparative genome hybridization

CGP:

cancer genome project

CNVs:

copy number variations

DIGE:

differential-in-gel-electrophoresis

ds:

double stranded

esiRNA:

endoribonuclease-derived short interference RNAs

FISH:

fluorescence in situ hybridizations

FFPE:

formalin-fixed and paraffin-embedded

FRET:

fluorescence resonance energy transfer

GC:

gas chromatography

HPR:

Human Protein Atlas

HRG:

Histidine rich glycoprotein

ICGC:

international cancer genome consortia

IEF:

isoelectric focusing

IHC:

immuno-histo chemistry

IMAC:

immobilized metal affinity chromatography

InDel:

insertions/deletions

IPG:

immobilized pH gradient

ICAT:

isotope encoded affinity tags

LC-MS:

liquid chromatography MS

LUMIER:

luminescence-based mammalian interactome mapping

MBP:

methyl-binding protein

MeDIP:

methylated DNA immuno-precipitation

MGS:

microarray -based genomic selection

MS:

mass spectrometry

MSCC:

Methyl-Seq and methyl-sensitive cut counting

NGS:

next-generation sequencing

NMR:

nuclear magnetic resonance

NSL:

non-small lung cancer

ORF:

open reading frame

PAC:

phosphoramidate chemistry

PGP:

personal genome project

PLA:

proximity ligation assay

PPI:

protein-protein interaction

PSA:

prostate specific antigen

PTM:

posttranslational modification

QQQ:

triple quadrupole

RISC:

RNA-induced silencing complex

RNAi:

RNA interferences

RPPA:

reverse phase protein array

RRBS:

reduced representation BS sequencing

SBGN:

Systems Biology Graphical Notation

SBML:

Systems Biology Markup Language

SNPs:

single nucleotide polymorphisms

SILAC:

stable-isotope labelling by amino acids in cell culture

TAP:

tandem affinity purification

TCGA:

The Cancer Genome Atlas

Y2H:

yeast-two-hybrid

4sU:

4-thiouridine

References

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    PubMed  CAS  Google Scholar 

  • Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27:361–368

    PubMed  CAS  Google Scholar 

  • Banerjee HN, Verma M (2009) Epigenetic mechanisms in cancer. Biomark Med 3:14

    Google Scholar 

  • Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C et al (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–1044

    PubMed  CAS  Google Scholar 

  • Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW et al (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307:1621–1625

    PubMed  CAS  Google Scholar 

  • Beck S, Rakyan VK (2008) The methylome: approaches for global DNA methylation profiling. Trends Genet 24:231–237

    PubMed  CAS  Google Scholar 

  • Bian YS, Yan P, Osterheld MC, Fontolliet C, Benhattar J (2001) Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR-SSCP. Biotechniques 30:66–72

    PubMed  CAS  Google Scholar 

  • Biron DG, Brun C, Lefevre T, Lebarbenchon C, Loxdale HD, Chevenet F, Brizard JP, Thomas F (2006) The pitfalls of proteomics experiments without the correct use of bioinformatics tools. Proteomics 6:5577–5596

    PubMed  CAS  Google Scholar 

  • Bjorklund M, Taipale M, Varjosalo M, Saharinen J, Lahdenpera J, Taipale J (2006) Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 439:1009–1013

    PubMed  Google Scholar 

  • Blagoev B, Ong SE, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22:1139–1145

    PubMed  CAS  Google Scholar 

  • Blow N (2008) DNA sequencing: generation next-next. Nat Methods 5:267–274

    CAS  Google Scholar 

  • Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4:231–237

    PubMed  CAS  Google Scholar 

  • Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566

    PubMed  CAS  Google Scholar 

  • Boutros M, Bras LP, Huber W (2006) Analysis of cell-based RNAi screens. Genome Biol 7:R66

    PubMed  Google Scholar 

  • Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105

    PubMed  CAS  Google Scholar 

  • Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5:626–639

    PubMed  CAS  Google Scholar 

  • Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    PubMed  Google Scholar 

  • Chan JN, Nislow C, Emili A (2009) Recent advances and method development for drug target identification. Trends Pharmacol Sci 31:82–88

    PubMed  Google Scholar 

  • Charrier JP, Tournel C, Michel S, Comby S, Jolivet-Reynaud C, Passagot J, Dalbon P, Chautard, D, Jolivet M (2001) Differential diagnosis of prostate cancer and benign prostate hyperplasia using two-dimensional electrophoresis. Electrophoresis 22:1861–1866

    PubMed  CAS  Google Scholar 

  • Chung YL, Griffiths JR (2007) Using metabolomics to monitor anticancer drugs. Ernst Schering Found Symp Proc 4:55–78

    Google Scholar 

  • Ciruela F (2008) Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19:338–343

    PubMed  CAS  Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    PubMed  CAS  Google Scholar 

  • Cross SH, Charlton JA, Nan X, Bird AP (1994) Purification of CpG islands using a methylated DNA binding column. Nat Genet 6:236–244

    PubMed  CAS  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    PubMed  CAS  Google Scholar 

  • DasGupta R, Kaykas A, Moon RT, Perrimon N (2005) Functional genomic analysis of the Wnt-wingless signaling pathway. Science 308:826–833

    PubMed  CAS  Google Scholar 

  • de Lichtenberg U, Jensen LJ, Brunak S, Bork P (2005) Dynamic complex formation during the yeast cell cycle. Science 307:724–727

    PubMed  Google Scholar 

  • Di Nicolantonio F, Arena S, Gallicchio M, Zecchin D, Martini M, Flonta SE, Stella GM, Lamba S, Cancelliere C, Russo M et al (2008) Replacement of normal with mutant alleles in the genome of normal human cells unveils mutation-specific drug responses. Proc Natl Acad Sci U S A 105:20864–20869

    PubMed  CAS  Google Scholar 

  • Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, Johnson N, Herrero J, Tomazou EM et al (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26:779–785

    PubMed  CAS  Google Scholar 

  • Dykxhoorn DM, Lieberman J (2005) The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56:401–423

    PubMed  CAS  Google Scholar 

  • Espina V, Liotta LA, Petricoin EF 3rd (2009) Reverse-phase protein microarrays for theranostics and patient tailored therapy. Methods Mol Biol 520:89–105

    PubMed  CAS  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447 433–440

    PubMed  CAS  Google Scholar 

  • Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6:685–694

    PubMed  CAS  Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    PubMed  CAS  Google Scholar 

  • Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    PubMed  CAS  Google Scholar 

  • Gentleman R, Huber W (2007) Making the most of high-throughput protein-interaction data. Genome Biol 8:112

    PubMed  Google Scholar 

  • Giaever G, Flaherty P, Kumm J, Proctor M, Nislow C, Jaramillo DF, Chu AM, Jordan MI, Arkin AP, Davis RW (2004) Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101:793–798

    PubMed  CAS  Google Scholar 

  • Greenleaf WJ, Block SM (2006) Single-molecule, motion-based DNA sequencing using RNA polymerase. Science 31:801

    Google Scholar 

  • Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    PubMed  CAS  Google Scholar 

  • Gry M, Rimini R, Stromberg S, Asplund A, Ponten F, Uhlen M, Nilsson P (2009) Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10:365

    PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    PubMed  CAS  Google Scholar 

  • Hayles J, Nurse P (2001) A journey into space. Nat Rev Mol Cell Biol 2:647–656

    PubMed  CAS  Google Scholar 

  • Hopfgartner G, Varesio E, Tschappat V, Grivet C, Bourgogne E, Leuthold LA (2004) Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom 39:845–855

    PubMed  CAS  Google Scholar 

  • Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho HS, Woodard C, Wang H, Jeong JS et al (2009) Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139:610–622

    PubMed  CAS  Google Scholar 

  • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934

    PubMed  CAS  Google Scholar 

  • Januschke J, Gonzalez C (2008) Drosophila asymmetric division, polarity and cancer. Oncogene 27:6994–7002

    PubMed  CAS  Google Scholar 

  • Jiang R, Mircean C, Shmulevich I Cogdell D, Jia Y, Tabus I, Aldape K, Sawaya R, Bruner JM, Fuller GN et al (2006) Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays. Proteomics 6:2964–2971

    PubMed  CAS  Google Scholar 

  • Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK, Castoreno AB, Eggert US, Root DE, Golland P et al (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci U S A 106:1826–1831

    PubMed  CAS  Google Scholar 

  • Kerjean A, Vieillefond A, Thiounn N, Sibony M, Jeanpierre M, Jouannet P (2001) Bisulfite genomic sequencing of microdissected cells. Nucleic Acids Res 29:E106–E106

    PubMed  CAS  Google Scholar 

  • Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E, Pikarski E, Young RA, Niveleau A, Cedar H et al (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38:149–153

    PubMed  CAS  Google Scholar 

  • Kittler R, Putz G, Pelletier L, Poser I, Heninger AK, Drechsel D, Fischer S, Konstantinova I, Habermann B, Grabner H et al (2004) An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432:1036–1040

    PubMed  CAS  Google Scholar 

  • Korf U, Henjes F, Schmidt C, Tresch A, Mannsperger H, Lobke C, Beissbarth T, Poustka A (2008) Antibody microarrays as an experimental platform for the analysis of signal transduction networks. Adv Biochem Eng Biotechnol 110:153–175

    PubMed  CAS  Google Scholar 

  • Korf U, Löbke C, Sahin O, Haller F, Sültmann H, Arlt D, Poustka A (2009) Reverse-phase protein arrays for application-orientated cancer research. Proteomics—Clinic Appl 3:1140–1150

    CAS  Google Scholar 

  • Korshunova Y, Maloney RK, Lakey N, Citek RW, Bacher B, Budiman A, Ordway JM, McCombie WR, Leon J, Jeddeloh JA et al (2008) Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res 18:19–29

    PubMed  CAS  Google Scholar 

  • Kulasingam V, Diamandis EP (2008). Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol 5:588–599

    PubMed  CAS  Google Scholar 

  • Kung LA, Snyder M (2006) Proteome chips for whole-organism assays. Nat Rev Mol Cell Biol 7:617–622

    PubMed  CAS  Google Scholar 

  • Kuster B, Schirle M, Mallick P, Aebersold R (2005) Scoring proteomes with proteotypic peptide probes. Nat Rev Mol Cell Biol 6:577–583

    PubMed  CAS  Google Scholar 

  • Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, Borchers CH (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 8:1860–1877

    PubMed  CAS  Google Scholar 

  • Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8:547–566

    PubMed  CAS  Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    PubMed  CAS  Google Scholar 

  • Lee IN, Chen CH, Sheu JC, Lee HS, Huang GT, Yu CY, Lu FJ, Chow LP (2005) Identification of human hepatocellular carcinoma-related biomarkers by two-dimensional difference gel electrophoresis and mass spectrometry. J Proteome Res 4:2062–2069

    PubMed  CAS  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    PubMed  CAS  Google Scholar 

  • Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958

    PubMed  CAS  Google Scholar 

  • McDermott U, Settleman J (2009) Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J Clin Oncol 27:5650–5659

    PubMed  CAS  Google Scholar 

  • Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151

    PubMed  CAS  Google Scholar 

  • Mustafa D, Kros JM, Luider T (2008) Combining laser capture microdissection and proteomics techniques. Methods Mol Biol 428:159–178

    PubMed  CAS  Google Scholar 

  • Nishizuka S, Spurrier B (2008) Experimental validation for quantitative protein network models. Curr Opin Biotechnol 19:41–49

    PubMed  CAS  Google Scholar 

  • Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461

    PubMed  CAS  Google Scholar 

  • Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin IE, Liotta LA (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989

    PubMed  CAS  Google Scholar 

  • Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806

    PubMed  CAS  Google Scholar 

  • Ponten F, Jirstrom K, Uhlen M (2008) The human protein atlas—a tool for pathology. J Pathol 216:387–393

    PubMed  CAS  Google Scholar 

  • Poulin G, Nandakumar R, Ahringer J (2004) Genome-wide RNAi screens in Caenorhabditis elegans: impact on cancer research. Oncogene 23:8340–8345

    PubMed  CAS  Google Scholar 

  • Ragoussis J (2009) Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet 10:117–133

    PubMed  CAS  Google Scholar 

  • Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Graf S, Tomazou EM, Backdahl L, Johnson N, Herberth M et al (2008) An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res 18:1518–1529

    PubMed  CAS  Google Scholar 

  • Rapkiewicz A, Espina V, Zujewski JA, Lebowitz PF, Filie A, Wulfkuhle J, Camphausen K, Petricoin EF 3rd, Liotta LA, Abati A (2007) The needle in the haystack: application of breast fine-needle aspirate samples to quantitative protein microarray technology. Cancer 111:173–184

    PubMed  CAS  Google Scholar 

  • Reymond MA, Schlegel W (2007) Proteomics in cancer. Adv Clin Chem 44:103–142

    PubMed  CAS  Google Scholar 

  • Rix U, Superti-Furga G (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5:616–624

    PubMed  CAS  Google Scholar 

  • Rothenberg ML, Carbone DP, Johnson DH (2003) Improving the evaluation of new cancer treatments: challenges and opportunities. Nat Rev Cancer 3:303–309

    PubMed  CAS  Google Scholar 

  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    PubMed  CAS  Google Scholar 

  • Rusk N (2009) Cheap third-generation sequencing. Nat Methods 6:244

    CAS  Google Scholar 

  • Sahin O, Wiemann S (2009) Functional genomics and proteomics approaches to study the ERBB network in cancer. FEBS Lett 583:1766–1771

    PubMed  CAS  Google Scholar 

  • Schiess R, Wollscheid B, Aebersold R (2009) Targeted proteomic strategy for clinical biomarker discovery. Mol Oncol 3:33–44

    PubMed  CAS  Google Scholar 

  • Schmidt C (2009) Costly cancer drugs trigger proposals to modify clinical trial design. J Natl Cancer Inst 101:1662–1664

    PubMed  Google Scholar 

  • Schweiger MR, Kerick M, Timmermann B, Albrecht MW, Borodina T, Parkhomchuk D, Zatloukal K, Lehrach H (2009) Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS ONE 4:e5548

    PubMed  Google Scholar 

  • Sharma SV, Haber DA, Settleman J (2010) Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer 10:241–253

    PubMed  CAS  Google Scholar 

  • Smith NF, Raynaud FI, Workman P (2007) The application of cassette dosing for pharmacokinetic screening in small-molecule cancer drug discovery. Mol Cancer Ther 6:428–440

    PubMed  CAS  Google Scholar 

  • Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45:227–232

    PubMed  Google Scholar 

  • Sos ML, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, Li D, Ullrich R, Koker M, Fischer F et al (2009) Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest 119:1727–1740

    PubMed  CAS  Google Scholar 

  • Spradling A, Ganetsky B, Hieter P, Johnston M, Olson M, Orr-Weaver T, Rossant J, Sanchez A, Waterston R (2006) New roles for model genetic organisms in understanding and treating human disease: report from the 2006 Genetics Society of America meeting. Genetics 172:2025–2032

    PubMed  CAS  Google Scholar 

  • Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914

    PubMed  CAS  Google Scholar 

  • Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E (1987) Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med 317:909–916

    PubMed  CAS  Google Scholar 

  • Stelzl U, Wanker EE (2006) The value of high quality protein-protein interaction networks for systems biology. Curr Opin Chem Biol 10:551–558

    PubMed  CAS  Google Scholar 

  • Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    PubMed  CAS  Google Scholar 

  • Sugiyama S, Yoshino T, Tsukamoto K, Sasou M, Kuwazaki S, Takahashi H, Suetsugu Y, Narukawa J, Yamamoto K, Ohtani T (2006) Application of scanning probe microscopy to genetic analysis. Jpn J Appl Phys 45:2305–2309

    CAS  Google Scholar 

  • Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D et al (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960

    PubMed  CAS  Google Scholar 

  • Taylor KH, Kramer RS, Davis JW, Guo J, Duff DJ, Xu D, Caldwell CW, Shi H (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67:8511–8518

    PubMed  CAS  Google Scholar 

  • Torrance CJ, Agrawal V, Vogelstein B, Kinzler KW (2001) Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol 19:940–945

    PubMed  CAS  Google Scholar 

  • Tucker CL, Gera JF, Uetz P (2001) Towards an understanding of complex protein networks. Trends Cell Biol 11:102–106

    PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    PubMed  CAS  Google Scholar 

  • Vijver MJ van de, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    PubMed  Google Scholar 

  • Van QN, Veenstra TD (2009) How close is the bench to the bedside? Metabolic profiling in cancer research. Genome Med 1:5

    PubMed  Google Scholar 

  • Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9:691–700

    PubMed  CAS  Google Scholar 

  • Wagner KU (2004) Models of breast cancer: quo vadis, animal modeling? Breast Cancer Res 6:31–38

    PubMed  CAS  Google Scholar 

  • Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    PubMed  CAS  Google Scholar 

  • Whiteaker JR, Zhao L, Anderson L, Paulovich AG (2010) An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics 9:184–196

    PubMed  CAS  Google Scholar 

  • White FM (2008) Quantitative phosphoproteomic analysis of signaling network dynamics. Curr Opin Biotechnol 19:404–409

    PubMed  CAS  Google Scholar 

  • Williams C, Brunskill S, Altman D, Briggs A, Campbell H, Clarke M, Glanville J, Gray A, Harris A, Johnston K, Lodge M (2006) Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy. Health Technol Assess 10:iii–iv, ix–xi, 1–204

    Google Scholar 

  • Wolf-Yadlin A, Kumar N, Zhang Y, Hautaniemi S, Zaman M, Kim HD, Grantcharova V, Lauffenburger DA, White FM (2006) Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol Syst Biol 2:54

    PubMed  Google Scholar 

  • Yates JR, Cociorva D, Liao L, Zabrouskov V (2006) Performance of a linear ion trap-orbitrap hybrid for peptide analysis. Anal Chem 78:493–500

    PubMed  CAS  Google Scholar 

  • Zhou M, Veenstra TD (2007) Proteomic analysis of protein complexes. Proteomics 7:2688–2697

    PubMed  CAS  Google Scholar 

  • Zhu W, Smith JW, Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotech 840518

    Google Scholar 

Download references

Acknowledgments

We thank our colleagues for comments on text and discussions, in particular M. Ralser for his extensive comments and suggestions on the MS part of the manuscript and C. Wierling for contributing Fig. 3.2. Our work is funded through: BL: NGFN IG Cellular Systems Biology, IG Neuronet, IG Mutanom; MS: IG Mutanom, IG Intestinal Modifiers; HL: Max Planck Society

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo M. H. Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lange, B., Schweiger, M., Lehrach, H. (2011). Global Molecular and Cellular Measurement Technologies. In: Cesario, A., Marcus, F. (eds) Cancer Systems Biology, Bioinformatics and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1567-7_3

Download citation

Publish with us

Policies and ethics