Options for Improving Plant Nutrition to Increase Common Bean Productivity in Africa



Common bean (Phaseolus vulgaris L.) is one of the most important grain legume crops in Africa. It represents an important share of food proteins and calories of poor agricultural populations in Eastern and Southern Africa. The production of bean in Africa is carried out primarily by small-scale farmers, who use little or no fertilizers or soil amendments. Average seed yields of beans in Africa are very low as compared to other production areas, mainly because of abiotic (edaphic and climatic) and biotic constraints. African soils are generally nutrient poor and application of adequate fertilizers is currently not feasible for economic and other reasons. The grain yield in the future can be increased by (i) using improved bean varieties that are better adapted to low soil fertility (ii) by application of fertilizers and managing soil fertility, and (iii) by optimizing the root symbioses to improve plant nutrient uptake under present conditions. Beans are forming two distinct types of symbiotic relations. They undergo nodulation with nitrogen-fixing bacteria and they also establish arbuscular mycorrhiza with Glomeromycota. Both of these symbioses affect in an important way the plant nutrient uptake. However, limited research efforts were made so far into studying the complex interactions between the three partners compared to the research focused either on biological nitrogen fixation or on mycorrhizal symbiosis. Thus the interactions among the symbiotic partners within the tripartite symbiosis are still poorly understood, though they might offer a potential to improve and sustain bean production in the tropics.


Common Bean Fungal Community Mineral Fertilizer Arbuscular Mycorrhiza Biological Nitrogen Fixation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdelmajid K, Karim BH, Chedly A (2008) Symbiotic response of common bean (Phaseolus vulgaris L.) to iron deficiency. Acta Physiol Plant 30:27–34CrossRefGoogle Scholar
  2. Aggarwal VD, Mughogho SK, Chirwa RM et al (1997) Field-based screening methodology to improve tolerance of common bean to low-P soils. Commun Soil Sci Plan 28:1623–1632CrossRefGoogle Scholar
  3. Aguilar OM, Rival O, Peltzer E (2004) Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. P Natl Acad Sci USA 101:13548–13553CrossRefGoogle Scholar
  4. Ahmad MH (1995) Compatibility and coselection of vesicular-arbuscular mycorrhizal fungi and rhizobia for tropical legumes. Crit Rev Biotechnol 15:229–239CrossRefGoogle Scholar
  5. Al-Niemi TS, Kahn ML, McDermott TR (1997) P metabolism in the bean Rhizobium tropici symbiosis. Plant Physiol 113:1233–1242PubMedGoogle Scholar
  6. Al-Niemi TS, Kahn ML, McDermott TR (1998) Phosphorus uptake by bean nodules. Plant Soil 198:71–78CrossRefGoogle Scholar
  7. Anderson GD (1974) Bean responses to fertilizers on Mt. Kilimanjaro in relation to soil and climatic conditions. East Afr Agric For J 39:272–288Google Scholar
  8. Araujo AP, Teixeira MG (2000) Ontogenetic variations on absorption and utilization of phosphorus in common bean cultivars under biological nitrogen fixation. Plant Soil 225:1–10CrossRefGoogle Scholar
  9. Araujo AP, Teixeira MG (2003) Nitrogen and phosphorus harvest indices of common bean cultivars: Implications for yield quantity and quality. Plant Soil 257:425–433CrossRefGoogle Scholar
  10. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10PubMedCrossRefGoogle Scholar
  11. Aryal UK, Xu HL, Fujita M (2003) Rhizobia and AM fungal inoculation improve growth and nutrient uptake of bean plants under organic fertilization. J Sustain Agr 21:29–41CrossRefGoogle Scholar
  12. Aryal UK, Shah SK, Xu HL et al (2006) Growth, nodulation and mycorrhizal colonization in bean plants improved by rhizobial inoculation with organic and chemical fertilization. J Sustain Agr 29:71–83CrossRefGoogle Scholar
  13. Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381CrossRefGoogle Scholar
  14. Augé RM, Moore JL, Cho KH et al (2003) Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J Plant Physiol 160:1147–1156PubMedCrossRefGoogle Scholar
  15. Azcón R, Barea JM (1992) Nodulation, N2 fixation (15N) and N-nutrition relationships in mycorrhizal and phosphate-amended alfalfa plants. Symbiosis 12:33–41Google Scholar
  16. Baird LM, Caruso KJ (1994) Development of root-nodules in Phaseolus vulgaris inoculated with rhizobium and mycorrhizal fungi. Int J Plant Sci 155:633–639CrossRefGoogle Scholar
  17. Bationo A, Waswa B, Kihara J et al (eds.) (2007) Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, BerlinGoogle Scholar
  18. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244PubMedCrossRefGoogle Scholar
  19. Baylis GTS (1969) Mycorrhizal nodules and growth of Podocarpus in nitrogen-poor soils. Nature 223:1385–1386CrossRefGoogle Scholar
  20. Beebe S, Lynch J, Galwey N et al (1997) A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean. Euphytica 95:325–336CrossRefGoogle Scholar
  21. Beebe SE, Rojas-Pierce M, Yan XL et al (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423CrossRefGoogle Scholar
  22. Beebe SE, Rao IM, Cajiao C et al (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592CrossRefGoogle Scholar
  23. Bethlenfalvay GJ, Brown MS, Mihara KL et al (1987) Glycine-Glomus-Rhizobium symbiosis. 5. Effects of mycorrhiza on nodule activity and transpiration in soybeans under drought stress. Plant Physiol 85:115–119PubMedCrossRefGoogle Scholar
  24. Beyene D, Kassa S, Ampy F et al (2004) Ethiopian soils harbor natural populations of rhizobia that form symbioses with common bean (Phaseolus vulgaris L.). Arch Microbiol 181:129–136PubMedCrossRefGoogle Scholar
  25. Bittman S, Kowalenko CG, Hunt DE et al (2006) Starter phosphorus and broadcast nutrients on corn with contrasting colonization by mycorrhizae. Agron J 98:394–401CrossRefGoogle Scholar
  26. Blair MW, Porch T, Cichy K et al (2007) Induced mutants in common bean (Phaseolus vulgaris), and their potential use in nutrition quality breeding and gene discovery. Isr J Plant Sci 55:191–200CrossRefGoogle Scholar
  27. Blair M, Astudillo C, Grusak M et al (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breeding 23:197–207CrossRefGoogle Scholar
  28. Bliss FA (1993a) Breeding common bean for improved biological nitrogen-fixation. Plant Soil 152:71–79CrossRefGoogle Scholar
  29. Bliss FA (1993b) Utilizing the potential for increased nitrogen-fixation in common bean. Plant Soil 152:157–160CrossRefGoogle Scholar
  30. Bogino P, Banchio E, Bonfiglio C et al (2008) Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Curr Microbiol 56:66–72PubMedCrossRefGoogle Scholar
  31. Bouhmouch I, Souad-Mouhsine B, Brhada F et al (2005) Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. J Plant Physiol 162:1103–1113PubMedCrossRefGoogle Scholar
  32. Broughton WJ, Hernandez G, Blair M et al (2003) Beans (Phaseolus spp.) – model food legumes. Plant Soil 252:55–128CrossRefGoogle Scholar
  33. Bünemann EK, Smithson PC, Jama B et al (2004) Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya. Plant Soil 264:195–208CrossRefGoogle Scholar
  34. Buruchara R (2009) Bean seed production in Rwanda: one farmer’s story. Available via Accessed 6 Jan 2009
  35. Buttery BR, Park SJ, Findlay WI (1986) Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen, phosphorus and potassium fertilizer and to inoculation with Rhizobium. Can J Plant Sci 67:425–432CrossRefGoogle Scholar
  36. Campo RJ, Hungria M (2004) Sources of nitrogen to reach high soybean yields. In: Moscardi F, Hoffmann-Campo CB, Saraiva OF et al (eds.) Proceedings of the 7th world soybean research conference, 6th International Soybean Processing and Utilization Conference, and 3rd Congresso Brasileiro de Soja, Foz do Iguacu, Brazil, 29 February – 5 March 2004, pp 1275–1280Google Scholar
  37. Cardenas L, Aleman E, Nava N et al (2006) Early responses to Nod factors and mycorrhizal colonization in a non-nodulating Phaseolus vulgaris mutant. Planta 223:746–754PubMedCrossRefGoogle Scholar
  38. Cardoso EJBN, Nogueira MA, Ferraz SMG (2007) Biological N2 fixation and mineral N in common bean-maize intercropping or sole cropping in Southeastern Brazil. Exp Agr 43:319–330CrossRefGoogle Scholar
  39. Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30CrossRefGoogle Scholar
  40. Cavagnaro TR, Jackson LE, Six J et al (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225CrossRefGoogle Scholar
  41. Chaverra MH, Graham PH (1992) Cultivar variation in traits affecting early nodulation of common bean. Crop Sci 32:1432–1436CrossRefGoogle Scholar
  42. Chikowo R, Mapfumo P, Leffelaar PA et al (2007) Integrating legumes to improve N cycling on smallholder farms in sub-humid Zimbabwe: resource quality, biophysical and environmental limitations. In: Bationo A, Waswa B, Kihara J et al (eds.) Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, Berlin, pp 231–243CrossRefGoogle Scholar
  43. CIAT (2009) Common bean: the nearly perfect food. Available via Accessed 6 Jan 2009
  44. Clark EA, Francis CA (1985a) Bean maize intercrops – a comparison of bush and climbing bean growth habits. Field Crop Res 10:151–166CrossRefGoogle Scholar
  45. Clark EA, Francis CA (1985b) Transgressive yielding in bean – maize intercrops – interference in time and space. Field Crop Res 11:37–53CrossRefGoogle Scholar
  46. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175CrossRefGoogle Scholar
  47. Colebatch G, Desbrosses G, Ott T et al (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512PubMedCrossRefGoogle Scholar
  48. Cordier C, Pozo MJ, Barea JM et al (1998) Cell defence responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028CrossRefGoogle Scholar
  49. Crouch JH, Buhariwalla HK, Blair M et al (2004) Biotechnology-based contributions to enhancing legume productivity in resource-poor areas. In: Serraji R (ed.) Symbiotic nitrogen fixation – prospects for enhanced application in tropical agriculture, Proceedings of the international workshop on the biological nitrogen fixation for increased crop productivity, Montpellier, France, 10–14 July 2004, pp 47–65Google Scholar
  50. da Silveira APD, Cardoso E (2004) Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants. Sci Agric 61:203–209CrossRefGoogle Scholar
  51. da Silveira PM, Braz AJBP, Kliemann HJ et al (2005) Nitrogen fertilization of common bean grown under no-tillage system after several cover crops. Pesqui Agropecu Bras 40:377–381CrossRefGoogle Scholar
  52. Daba S, Haile M (2002) Effects of rhizobial inoculant and nitrogen fertilizer on yield and nodulation of common bean under intercropped conditions. J Plant Nutr 25:1443–1455CrossRefGoogle Scholar
  53. Daellenbach GC, Kerridge PC, Wolfe MS et al (2005) Plant productivity in cassava-based mixed cropping systems in Colombian hillside farms. Agr Ecosyst Environ 105:595–614CrossRefGoogle Scholar
  54. Daft MJ, El-Giahmi AA (1974) Effect of Endogone mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation in french bean (Phaseolus vulgaris). New Phytol 73:1139–1147CrossRefGoogle Scholar
  55. Daniels-Hylton KDM, Ahmad MH (1994) Inoculation response in kidney beans (Phaseolus vulgaris L) to vesicular-arbuscular mycorrhizal fungi and rhizobia in non- sterilized soil. Biol Fert Soils 18:95–98CrossRefGoogle Scholar
  56. Dar GH, Zargar MY, Beigh GM (1997) Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb Ecol 34:74–80CrossRefGoogle Scholar
  57. Date RA (2001) Advances in inoculant technology: a brief review. Aust J Exp Agr 41:321–325CrossRefGoogle Scholar
  58. Dawo MI, Wilkinson JM, Pilbeam DJ (2009) Interactions between plants in intercropped maize and common bean. J Sci Food Agr 89:41–48CrossRefGoogle Scholar
  59. de Fatima LM, Kaschuk G, Alberton O et al (2007) Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements. Biol Fert Soils 43:665–674CrossRefGoogle Scholar
  60. de Wit M, Stankiewicz J (2006) Changes in surface water supply across Africa with predicted climate change. Science 311:1917–1921PubMedCrossRefGoogle Scholar
  61. Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288CrossRefGoogle Scholar
  62. Debouck DG (1999) Diversity in Phaseolus species in relation to the common bean. In: Singh SP (ed.) Common bean improvement in the twenty-first century. Kluwer Academic, Dordrecht, pp 25–52Google Scholar
  63. Donangelo CM, Woodhouse LR, King SM et al (2003) Iron and zinc absorption from two bean (Phaseolus vulgaris L.) genotypes in young women. J Agr Food Chem 51:5137–5143CrossRefGoogle Scholar
  64. dos Santos AB, Fageria NK (2007) Nitrogen fertilizer management for efficient use by dry bean in tropical lowland. Pesqui Agropecu Bras 42:1237–1248Google Scholar
  65. dos Santos AB, Fageria NK (2008) Physiological characteristics of common bean in tropical varzea soils as affected by rate and nitrogen management. Ciência e Agrotecnologia 32:23–31CrossRefGoogle Scholar
  66. Drechsel P, Steiner KG, Hagedorn F (1996) A review on the potential of improved fallows and green manure in Rwanda. Agroforest Syst 33:109–136CrossRefGoogle Scholar
  67. Drechsel P, Kunze D, de Vries FP (2001) Soil nutrient depletion and population growth in sub-Saharan Africa: a Malthusian nexus? Popul Environ 22:411–423CrossRefGoogle Scholar
  68. Drevon J-J, Alkama N, Blair M et al (2005) Phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris) and its consequence on soil P dynamic. In: Wang YP, Lin M, Tian ZX et al (eds.) Biological nitrogen fixation, sustainable agriculture and the environment, Proceedings of the 14th international nitrogen fixation congress, Beijing, China, 27 Oct – 1 Nov 2004, pp 277–278Google Scholar
  69. Du Toit W (1997) Long-term effects of fertilizer placement on grain yield of maize. Appl Plant Sci 11:24–25Google Scholar
  70. Eaton D, Hilhorst T (2003) Opportunities for managing solid waste flows in the peri-urban interface of Bamako and Ouagadougou. Environ Urban 15:53–63Google Scholar
  71. Edje OT, Mughogho LK, Ayonoadu UWU (1975) Responses of dry beans to varying nitrogen levels. Agron J 67:251–255CrossRefGoogle Scholar
  72. Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483PubMedCrossRefGoogle Scholar
  73. El Ghandour IA, El Sharawy MAO, Abdel-Moniem EM (1996) Impact of vesicular arbuscular mycorrhizal fungi and Rhizobium on the growth and P, N and Fe uptake by faba-bean. Fert Res 43:43–48CrossRefGoogle Scholar
  74. El-Tohamy W, Schnitzler WH, El-Behairy U et al (1999) Effect of VA mycorrhiza on improving drought and chilling tolerance of bean plants (Phaseolus vulgaris L.). J Appl Bot 73:178–183Google Scholar
  75. Facelli E, Facelli JM (2002) Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution. Oecologia 133:54–61CrossRefGoogle Scholar
  76. Facelli E, Facelli J, McLaughlin MJ et al (1999) An experimental study of the interactive effects of mycorrhizal symbiosis, intraspecific competition and resource availability using Trifolium subterraneum L. cv Mt Barker. New Phytol 141:535–547CrossRefGoogle Scholar
  77. Fageria NK, da Costa JGC (2000) Evaluation of common bean genotypes for phosphorus use efficiency. J Plant Nutr 23:1145–1152CrossRefGoogle Scholar
  78. Fageria NK, Santos AB (1998) Rice and common bean growth and nutrient concentration as influenced by aluminum on an acid lowland soil. J Plant Nutr 21:903–912CrossRefGoogle Scholar
  79. FAO (2008) FAOSTAT: FAO statistical database. Available via: Accessed 18 Dec 2008
  80. Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72CrossRefGoogle Scholar
  81. Fermont AM, van Asten PJA, Giller KE (2008) Increasing land pressure in East Africa: the changing role of cassava and consequences for sustainability of farming systems. Agr Ecosys Environ 128:239–250CrossRefGoogle Scholar
  82. Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f. sp phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235PubMedCrossRefGoogle Scholar
  83. Fisher MCT, Eissenstat DM, Lynch JP (2002) Lack of evidence for programmed root senescence in common bean (Phaseolus vulgaris) grown at different levels of phosphorus supply. New Phytol 153:63–71CrossRefGoogle Scholar
  84. Flores M, Morales L, Avila A et al (2005) Diversification of DNA sequences in the symbiotic genome of Rhizobium etli. J Bacteriol 187:7185–7192PubMedCrossRefGoogle Scholar
  85. Francis CA, Sanders JH (1978) Economic analysis of bean and maize systems: monoculture versus associated cropping. Field Crop Res 1:319–335CrossRefGoogle Scholar
  86. Franke AC, Laberge G, Oyewole BD et al (2008) A comparison between legume technologies and fallow, and their effects on maize and soil traits, in two distinct environments of the West African savannah. Nutr Cycl Agroecosys 82:117–135CrossRefGoogle Scholar
  87. Fritz M, Jakobsen I, Lyngkjaer MF et al (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419PubMedCrossRefGoogle Scholar
  88. Frossard E, Bucher M, Mächler F et al (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879CrossRefGoogle Scholar
  89. Frossard E, Bünemann EK, Carsky R et al (2007) Integrated nutrient management as a tool to combat soil degradation in sub Saharan Africa. In: Bearth T, Becker B, Kappel R et al (eds.) Afrika im Wandel. Zürcher Hochschulforum, Zurich, pp 137–146Google Scholar
  90. Frossard E, Bünemann E, Jansa J et al (2009) Concepts and practices of nutrient management in agro-ecosystems: can we draw lessons from history to design future sustainable agricultural production systems? Die Bodenkultur 60:5–22Google Scholar
  91. Fujikake H, Tamura Y, Ohtake N et al (2003) Photoassimilate partitioning in hypernodulation mutant of soybean (Glycine max (L.) Merr.) NOD1-3 and its parent Williams in relation to nitrate inhibition of nodule growth. Soil Sci Plant Nutr 49:583–590Google Scholar
  92. Gadd ME (2005) Conservation outside of parks: attitudes of local people in Laikipia, Kenya. Environ Conserv 32:50–63CrossRefGoogle Scholar
  93. Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68CrossRefGoogle Scholar
  94. Ge ZY, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171PubMedCrossRefGoogle Scholar
  95. Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292CrossRefGoogle Scholar
  96. Gepts P, Aragão FJL, de Barros E et al (2008) Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In: Moore PH, Ming R (eds.) Genomics of tropical crop plants. Springer, Berlin, pp 113–142CrossRefGoogle Scholar
  97. Gherbi H, Markmann K, Svistoonoff S et al (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. P Natl Acad Sci USA 105:4928–4932CrossRefGoogle Scholar
  98. Ghosh PK, Bandyopadhyay KK, Wanjari RH et al (2007) Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems – An Indian perspective: a review. J Sustain Agr 30:59–86CrossRefGoogle Scholar
  99. Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation – an ecological approach to agriculture. Plant Soil 174:255–277CrossRefGoogle Scholar
  100. Giller KE, Cadisch G, Ehaliotis C et al (1997) Building soil nitrogen capital in Africa. In: Buresh RJ, Sanchez PA, Calhoun F (eds.) Replenishing soil fertility in Africa, SSSA Special Publication No. 51. SSSA, Madison, pp 151–192Google Scholar
  101. Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos T R Soc B 362:187–196CrossRefGoogle Scholar
  102. Gomes AA, Araujo AP, Rossiello ROP et al (2000) Accumulation of biomass, physiological characteristics and grain yield of bean cultivars under irrigated and dry regimes. Pesqui Agropecu Bras 35:1927–1937CrossRefGoogle Scholar
  103. Gonzalez A, Lynch J (1999) Tolerance of tropical common bean genotypes to manganese toxicity: performance under different growing conditions. J Plant Nutr 22:511–525CrossRefGoogle Scholar
  104. Gonzalez EM, Galvez L, Royuela M et al (2001) Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability. Agronomie 21:607–613CrossRefGoogle Scholar
  105. Gonzalez AM, Monteagudo AB, Casquero PA et al (2006a) Genetic variation and environmental effects on agronomical and commercial quality traits in the main European market classes of dry bean. Field Crop Res 95:336–347CrossRefGoogle Scholar
  106. Gonzalez V, Santamaria RI, Bustos P et al (2006b) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. P Natl Acad Sci USA 103:3834–3839CrossRefGoogle Scholar
  107. Graham AH (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crop Res 4:93–112CrossRefGoogle Scholar
  108. Graham PH, Ranalli P (1997) Common bean (Phaseolus vulgaris L). Field Crop Res 53:131–146CrossRefGoogle Scholar
  109. Grange L, Hungria M, Graham PH et al (2007) New insights into the origins and evolution of rhizobia that nodulate common bean (Phaseolus vulgaris) in Brazil. Soil Biol Biochem 39:867–876CrossRefGoogle Scholar
  110. Guene NFD, Diouf A, Gueye M (2004) Nitrogen fixation in the common bean (Phaseolus vulgaris) – A multilocational inoculation trial in Senegal. In: Serraji R (ed.) Symbiotic nitrogen fixation – prospects for enhanced application in tropical agriculture, Proceedings of the International workshop on the biological nitrogen fixation for increased crop productivity, Montpellier, France, 10–14 July 2004, pp 247–252Google Scholar
  111. Guillon C, St-Arnaud M, Hamel C et al (2002) Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Can J Bot 80:305–315CrossRefGoogle Scholar
  112. Guimaraes CM, Stone LF, Brunini O (1996) Adaptation of common bean (Phaseolus vulgaris L) to drought.2. Productivity and agronomic components. Pesqui Agropecu Bras 31:481–488Google Scholar
  113. Haase S, Neumann G, Kania A et al (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221CrossRefGoogle Scholar
  114. Hacisalihoglu G, Duke ER, Longo LM (2005) Differential response of common bean genotypes to mycorrhizal colonization. In: Proceedings of the 118th Annual meeting of the Florida state horticultural society, Tampa, FL, 5–7 June 2005, pp 150–152Google Scholar
  115. Hafeez FY, Hameed S, Ahmad T et al (2001) Competition between effective and less effective strains of Bradyrhizobium spp. for nodulation on Vigna radiata. Biol. Fert Soil 33:382–386CrossRefGoogle Scholar
  116. Hardarson G, Atkins C (2003) Optimising biological N2 fixation by legumes in farming systems. Plant Soil 252:41–54CrossRefGoogle Scholar
  117. Hardarson G, Bliss FA, Cigalesrivero MR et al (1993) Genotypic variation in biological nitrogen fixation by common bean. Plant Soil 152:59–70CrossRefGoogle Scholar
  118. Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol 101:427–440CrossRefGoogle Scholar
  119. Hartwig UA, Trommler J (2001) Increase in the concentrations of amino acids in the vascular tissue of white clover and white lupin after defoliation: an indication of a N feedback regulation of symbiotic N2 fixation. Agronomie 21:615–620CrossRefGoogle Scholar
  120. Hastorf CA (1999) Recent research in paleoethnobotany. J Archaeol Res 7:55–103Google Scholar
  121. Haugen R, Steffes L, Wolf J et al (2008) Evolution of drought tolerance and defense: dependence of tradeoffs on mechanism, environment and defense switching. Oikos 117:231–244CrossRefGoogle Scholar
  122. Hause B, Mrosk C, Isayenkov S et al (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110PubMedCrossRefGoogle Scholar
  123. Hawkins HJ, George E (1999) Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol Plant 105:694–700CrossRefGoogle Scholar
  124. He Z-Q, He C-X, Zhang Z-B et al (2007) Mechanism of plant salt tolerance enhanced by arbuscular mycorrhizal fungi. Xibei Zhiwu Xuebao 27:414–420Google Scholar
  125. Hellsten A, Huss-Danell K (2001) Interaction effects of nitrogen and phosphorus on nodulation in red clover (Trifolium pratense L.). Acta Agr Scand B-S P 50:135–142Google Scholar
  126. Henao J, Baanante CA (1999) Estimating rates of nutrient depletion in soils of agricultural lands of Africa. Technical Bulletin T-48, International Fertilizer Development Center, Muscle ShoalGoogle Scholar
  127. Herrera-Cervera JA, Caballero-Mellado J, Laguerre G et al (1999) At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol Ecol 30:87–97CrossRefGoogle Scholar
  128. Herridge D, Rose I (2000) Breeding for enhanced nitrogen fixation in crop legumes. Field Crop Res 65:229–248CrossRefGoogle Scholar
  129. Hillocks RJ, Madata CS, Chirwa R et al (2006) Phaseolus bean improvement in Tanzania, 1959–2005. Euphytica 150:215–231CrossRefGoogle Scholar
  130. Hungria M, Neves MCP (1987) Cultivar and Rhizobium strain effect on nitrogen fixation and transport in Phaseolus vulgaris L. Plant Soil 103:111–121CrossRefGoogle Scholar
  131. Hungria M, Stacey G (1997) Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biol Biochem 29:819–830CrossRefGoogle Scholar
  132. Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164CrossRefGoogle Scholar
  133. Hungria M, Andrade DD, Chueire LMD et al (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528CrossRefGoogle Scholar
  134. Huston M (1993) Biological diversity, soils, and economics. Science 262:1676–1680PubMedCrossRefGoogle Scholar
  135. Ibijbijen J, Urquiaga S, Ismaili M et al (1996) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans (Phaseolus vulgaris). New Phytol 134:353–360CrossRefGoogle Scholar
  136. Ishikawa K, Yokota K, Li YY et al (2008) Isolation of a novel root-determined hypernodulation mutant rdh1 of Lotus japonicus. Soil Sci Plant Nutr 54:259–263CrossRefGoogle Scholar
  137. Isobe K, Tsuboki Y (1998) The relationship between growth promotion by arbuscular mycorrhizal fungi and root morphology and phosphorus absorption in gramineous and leguminous crops. Jpn J Crop Sci 67:347–352Google Scholar
  138. Isoi T, Yoshida S (1991) Low nitrogen fixation of common bean (Phaseolus vulgaris L). Soil Sci Plant Nutr 37:559–563Google Scholar
  139. Israel DW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835–840PubMedCrossRefGoogle Scholar
  140. Izaguirre-Mayoral ML, Carballo O, Carreno L et al (2000) Effects of arbuscular mycorrhizal inoculation on growth, yield, nitrogen, and phosphorus nutrition of nodulating bean varieties in two soil substrates of contrasting fertility. J Plant Nutr 23:1117–1133CrossRefGoogle Scholar
  141. Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83CrossRefGoogle Scholar
  142. Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380CrossRefGoogle Scholar
  143. Jama B, Pizarro G (2008) Agriculture in Africa: strategies to improve and sustain smallholder production systems. Reducing the impact of poverty on health and human development: scientific Approaches. Ann NY Acad Sci 1136:218–232PubMedCrossRefGoogle Scholar
  144. Jansa J, Mozafar A, Frossard E (2003a) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488CrossRefGoogle Scholar
  145. Jansa J, Mozafar A, Kuhn G et al (2003b) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176CrossRefGoogle Scholar
  146. Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176CrossRefGoogle Scholar
  147. Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. In: Frossard E, Blum W, Warkentin B (eds.) Function of soils for human societies and the environment. Geological Society, Burlington House, pp 89–115Google Scholar
  148. Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789PubMedCrossRefGoogle Scholar
  149. Jebara M, Drevon J-J (2001) Genotypic variation in nodule conductance to the oxygen diffusion in common bean (Phaseolus vulgaris). Agronomie 21:667–674CrossRefGoogle Scholar
  150. Jia Y, Gray VM, Straker CJ (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot – London 94:251–258CrossRefGoogle Scholar
  151. Jin H, Pfeffer PE, Douds DD et al (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696PubMedCrossRefGoogle Scholar
  152. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  153. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  154. Joner EJ, Roos P, Jansa J et al (2004) No significant contribution of arbuscular mycorrhizal fungi to transfer of radiocesium from soil to plants. Appl Environ Microbiol 70:6512–6517PubMedCrossRefGoogle Scholar
  155. Kandji ST, Ogol CKPO, Albrecht A (2003) Crop damage by nematodes in improved-fallow fields in western Kenya. Agroforest Syst 57:49–55CrossRefGoogle Scholar
  156. Kaschuk G, Hungria M, Andrade DS et al (2006a) Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol 32:210–220CrossRefGoogle Scholar
  157. Kaschuk G, Hungria M, Santos JCP et al (2006b) Differences in common bean rhizobial populations associated with soil tillage management in southern Brazil. Soil Till Res 87:205–217CrossRefGoogle Scholar
  158. Kayuki KC, Wortmann CS (2001) Plant materials for soil fertility management in subhumid tropical areas. Agron J 93:929–935CrossRefGoogle Scholar
  159. Kelly JD (2004) Advances in common bean improvement: some case histories with broader applications. In: McCreight JD, Ryder EJ (eds.) Advances in vegetable breeding, Proceedings of the 26th International horticultural congress, Toronto, Canada, 11–17 August 2002, pp 99–122Google Scholar
  160. Khalil S, Loynachan TE, Tabatabai MA (1994) Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron J 86:949–958CrossRefGoogle Scholar
  161. Kiers ET, West SA, Denison RF (2002) Mediating mutualisms: farm management practices and evolutionary changes in symbiont co-operation. J Appl Ecol 39:745–754CrossRefGoogle Scholar
  162. Kimani JM, Tongoona P (2008) The mechanism of genetic control for low soil nitrogen (N) tolerance in common beans (Phaseolus vulgaris L.). Euphytica 162:193–203CrossRefGoogle Scholar
  163. Kohlmeier S, Smits THM, Ford RM et al (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646PubMedCrossRefGoogle Scholar
  164. Koide RT (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol 147:233–235CrossRefGoogle Scholar
  165. Kosuta S, Hazledine S, Sun J et al (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. P Natl Acad Sci USA 105:9823–9828CrossRefGoogle Scholar
  166. Kucey R, Paul E (1982) Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol Biochem 14:407–412CrossRefGoogle Scholar
  167. Laguerre G, Nour SM, Macheret V et al (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993PubMedGoogle Scholar
  168. Laguerre G, Courde L, Nouaim R et al (2006) Response of rhizobial populations to moderate copper stress applied to an agricultural soil. Microb Ecol 52:426–435PubMedCrossRefGoogle Scholar
  169. Laine AL, Tellier A (2008) Heterogeneous selection promotes maintenance of polymorphism in host-parasite interactions. Oikos 117:1281–1288CrossRefGoogle Scholar
  170. Lal R (2007) Soil science and the carbon civilization. Soil Sci Soc Am J 71:1425–1437CrossRefGoogle Scholar
  171. Lal R, Singh BR (1998) Effects of soil degradation on crop productivity in East Africa. J Sustain Agr 13:15–36CrossRefGoogle Scholar
  172. Leidi EO, Rodriguez Navarro DN (2000) Nitrogen and phosphorus availability limit N2 fixation in bean. New Phytol 147:337–346CrossRefGoogle Scholar
  173. Lekberg Y, Koide RT (2005) Arbuscular mycorrhizal fungi, rhizobia, available soil P and nodulation of groundnut (Arachis hypogaea) in Zimbabwe. Agr Ecosys Environ 110:143–148CrossRefGoogle Scholar
  174. Li HY, Smith FA, Dickson S et al (2008) Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol 178:852–862PubMedCrossRefGoogle Scholar
  175. Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:93–122Google Scholar
  176. Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds.) Mycorrhzae in sustainable agriculture, ASA Special Publication 54. ASA, Madison, pp 45–70Google Scholar
  177. Lodeiro AR, Gonzalez P, Hernandez A et al (2000) Comparison of drought tolerance in nitrogen-fixing and inorganic nitrogen-grown common beans. Plant Sci 154:31–41PubMedCrossRefGoogle Scholar
  178. Lunze L, Kimani PM, Ngatoluwa R et al (2007) Bean improvement for low soil fertility adaptation in Eastern and Central Africa. In: Bationo A, Waswa B, Kihara J et al (eds.) Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, Berlin, pp 325–332CrossRefGoogle Scholar
  179. Lynch J, Beebe SE (1995) Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. HortScience 30:1165–1171Google Scholar
  180. Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56CrossRefGoogle Scholar
  181. Lynch J, Rodriguez NS (1994) Photosynthetic nitrogen use efficiency in relation to leaf longevity in common bean. Crop Sci 34:1284–1290CrossRefGoogle Scholar
  182. Lynch J, van Beem JJ (1993) Growth and architecture of seedling roots of common bean genotypes. Crop Sci 33:1253–1257CrossRefGoogle Scholar
  183. Lynch J, White JW (1992) Shoot nitrogen dynamics in tropical common bean. Crop Sci 32:392–397CrossRefGoogle Scholar
  184. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748PubMedCrossRefGoogle Scholar
  185. Mando A, Bonzi M, Wopereis MCS et al (2005) Long-term effects of mineral and organic fertilization on soil organic matter fractions and sorghum yield under Sudano-Sahelian conditions. Soil Use Manage 21:396–401CrossRefGoogle Scholar
  186. Marquez ML, Teran H, Singh SP (2007) Selecting common bean with genes of different evolutionary origins for resistance to Xanthomonas camplestris pv. phaseoli. Crop Sci 47:1367–1374CrossRefGoogle Scholar
  187. Marsh JF, Schultze M (2001) Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol 150:525–532CrossRefGoogle Scholar
  188. Martin RC, Eaglesham ARJ, Voldeng HD et al (1995) Factors affecting nitrogen benefit from soybean [Glycine max (L) Merr cv Lee] to interplanted corn (Zea mays L cv Co-op S259). Environ Exp Bot 35:497–505CrossRefGoogle Scholar
  189. Martinez-Romero E (2003) Diversity of RhizobiumPhaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252:11–23CrossRefGoogle Scholar
  190. Mauyo LW, Okalebo JR, Kirkby RA et al (2007) Spatial pricing efficiency and regional market integration of cross-border bean (Phaseolus vulgaris L.) marketing in East Africa: The case of Western Kenya and Eastern Uganda. In: Bationo A, Waswa B, Kihara J et al (eds.) Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, Berlin, pp 1027–1033CrossRefGoogle Scholar
  191. Mayona CM, Kamasho J (1988) Research experiences with inorganic and organic fertilizers in the southern highlands of Tanzania. In: Wortmann CS (ed.) Proceedings of a workshop on soil fertility research for bean cropping systems in Africa, CIAT African Workshop Series No 3. CIAT, CaliGoogle Scholar
  192. Mbugua GW (1986) Effects of plant density and phosphate levels on growth, yield and yield components of field beans (Phaseolus vugaris L.). Phaseolus Newsl East Afr 15:15–16Google Scholar
  193. Mendes IC, Hungria M, Vargas MAT (2003) Soybean response to starter nitrogen and Bradyrhizobium inoculation on a Cerrado oxisol under no-tillage and conventional tillage systems. Rev Bras Cienc Solo 27:81–87Google Scholar
  194. Mhamdi R, Jebara M, Aouani ME et al (1999) Genotypic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in Tunisian soils. Biol Fert Soil 28:313–320CrossRefGoogle Scholar
  195. Miklas PN, Kelly JD, Beebe SE et al (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131CrossRefGoogle Scholar
  196. Miyasaka SC, Hawes MC (2001) Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125:1978–1987PubMedCrossRefGoogle Scholar
  197. Miyasaka SC, Buta JG, Howell RK et al (1991) Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol 96:737–743PubMedCrossRefGoogle Scholar
  198. Moawad AM, Vlek PLG (1998) Potential contribution of (vesicular-) arbuscular mycorrhiza to nutrient efficient crops. In: Proceedings of the BTIG workshop on oil palm improvement through biotechnology, Bogor Indonesia, 16–17 April 1997, pp 48–58Google Scholar
  199. Moawad H, El-Rahim WMA, El-Aleem DA et al (2005) Persistence of two Rhizobium etli inoculant strains in clay and silty loam soils. J Basic Microb 45:438–446CrossRefGoogle Scholar
  200. Moody PW, Cong PT, Legrand J et al (2008) A decision support framework for identifying soil constraints to the agricultural productivity of tropical upland soils. Soil Use Manage 24:148–155CrossRefGoogle Scholar
  201. Morandi D, Prado E, Sagan M et al (2005) Characterisation of new symbiotic Medicago truncatula (Gaertn.) mutants, and phenotypic or genotypic complementary information on previously described mutants. Mycorrhiza 15:283–289PubMedCrossRefGoogle Scholar
  202. Mortimer PE, Perez-Fernandez MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027CrossRefGoogle Scholar
  203. Mosse B, Thompson JP (1984) Vesicular-arbuscular endomycorrhizal inoculum production. 1.Exploratory experiments with beans (Phaseolus vulgaris) in nutrient flow culture. Can J Bot 62:1523–1530CrossRefGoogle Scholar
  204. Mugai EN, Agong SG, Matsumoto H (2000) Aluminium tolerance mechanisms in Phaseolus vulgaris L.: citrate synthase activity and TTC reduction are well correlated with citrate secretion. Soil Sci Plant Nutr 46:939–950Google Scholar
  205. Munkvold L, Kjøller R, Vestberg M et al (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364CrossRefGoogle Scholar
  206. Munoz-Perea CG, Allen RG, Westermann DT et al (2007) Water use efficiency among dry bean landraces and cultivars in drought-stressed and non-stressed environments. Euphytica 155:393–402CrossRefGoogle Scholar
  207. Ndakidemi PA, Dakora FD, Nkonya EM et al (2006) Yield and economic benefits of common bean (Phaseolus vulgaris) and soybean (Glycine max) inoculation in northern Tanzania. Aust J Exp Agric 46:571–577CrossRefGoogle Scholar
  208. Neeraj SK (2005) Impact of VA-mycorrhiza, Rhizobium and phosphorus on growth and yield of Phaseolus vulgaris L. J Phytol Res 18:59–63Google Scholar
  209. Neves MCP, Hungria M (1987) The physiology of nitrogen fixation in tropical grain legumes. CRC Crit Rev Plant Sci 6:267–321CrossRefGoogle Scholar
  210. Newsham K, Fitter A, Watkinson A (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411PubMedCrossRefGoogle Scholar
  211. Nielsen KL, Miller CR, Beck D et al (1999) Fractal geometry of root systems: field observations of contrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes. Plant Soil 206:181–190CrossRefGoogle Scholar
  212. Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339PubMedCrossRefGoogle Scholar
  213. Nyakudya IW, Katsvanga CAT, Mugayi EC et al (2005) Working with communities to improve soil productivity: Sadziwa Ward, Zimbabwe. J Sustain Dev Africa 7:183–191Google Scholar
  214. Nziguheba G (2007) Overcoming phosphorus deficiency in soils of Eastern Africa: recent advances and challenges. In: Bationo A, Waswa B, Kihara J et al (eds.) Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, Berlin, pp 149–160CrossRefGoogle Scholar
  215. O’Hara GW (2001) Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Aust J Exp Agric 41:417–433CrossRefGoogle Scholar
  216. O’Kennedy MM, Grootboom A, Shewry PR (2006) Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci 44:224–235CrossRefGoogle Scholar
  217. Oldroyd GED, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357PubMedCrossRefGoogle Scholar
  218. Oliveira AAR, Sanders FE (1999) Effect of management practices on mycorrhizal infection, growth and dry matter partitioning in field-grown bean. Pesqui Agropecu Bras 34:1247–1254CrossRefGoogle Scholar
  219. Oliveira AAR, Sanders FE (2000) Effect of inoculum placement of indigenous and introduced arbuscular mycorrhizal fungi on mycorrhizal infection, growth, and dry matter in Phaseolus vulgaris. Trop Agr 77:220–225Google Scholar
  220. Ortas I, Akpinar C (2006) Response of kidney bean to arbuscular mycorrhizal inoculation and mycorrhizal dependency in P and Zn deficient soils. Acta Agr Scand B-S P 56:101–109Google Scholar
  221. Osbourn AE (2001) Plant mechanisms that give defence against soilborne diseases. Australas Plant Path 30:99–102CrossRefGoogle Scholar
  222. Pachico D (1993) The demand for bean technology. In: Henry G, Henry G (eds.) Trends in CIAT Commodities 1993, Working Document No. 128. CIAT, Cali, pp 60–74Google Scholar
  223. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  224. Paul EA, Kucey RMN (1981) Carbon flow in plant microbial associations. Science 213:473–474PubMedCrossRefGoogle Scholar
  225. Pfeffer PE, Douds DD, Bucking H et al (2004) The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol 163:617–627CrossRefGoogle Scholar
  226. Phillips J, McIntyre B (2000) ENSO and interannual rainfall variability in Uganda: implications for agricultural management. Int J Climatol 20:171–182CrossRefGoogle Scholar
  227. Picone C (2002) Managing mycorrhizae for sustainable agriculture in the tropics. In: Vandermeer JH (ed.) Tropical agroecosystems. CRC Press, Boca Raton, pp 95–132Google Scholar
  228. Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility.1. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209CrossRefGoogle Scholar
  229. Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398PubMedCrossRefGoogle Scholar
  230. Ramirez-Vallejo P, Kelly JD (1998) Traits related to drought resistance in common bean. Euphytica 99:127–136CrossRefGoogle Scholar
  231. Rangel AF, Mobin M, Rao IM et al (2005) Proton toxicity interferes with the screening of common bean (Phaseolus vulgaris L.) genotypes for aluminium resistance in nutrient solution. J Plant Nutr Soil Sci 168:607–616CrossRefGoogle Scholar
  232. Rangel AF, Rao IM, Horst WJ (2007) Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. J Exp Bot 58:3895–3904PubMedCrossRefGoogle Scholar
  233. Rangel AF, Rao IM, Horst WJ (2009) Intracellular distribution and binding state of aluminum in root apices of two common bean (Phaseolus vulgaris) genotypes in relation to Al toxicity. Physiol Plant 135:162–173PubMedCrossRefGoogle Scholar
  234. Rao IM (2002) Role of physiology in improving crop adaptation to abiotic stresses in the tropics: The case of common bean and tropical forages. In: Pessarakli M (ed.) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 583–613Google Scholar
  235. Requena N, Jimenez I, Toro M et al (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667–677CrossRefGoogle Scholar
  236. Rodriguez-Uribe L, O’Connell MA (2006) A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris). J Exp Bot 57:1391–1398PubMedCrossRefGoogle Scholar
  237. Rondon MA, Lehmann J, Ramirez J et al (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fert Soils 43:699–708CrossRefGoogle Scholar
  238. Rosemeyer ME, Gliessman SR (1992) Modifying traditional and high-input agroecosystems for optimization of microbial symbioses – a case study of dry beans in Costa Rica. Agr Ecosyst Environ 40:61–70CrossRefGoogle Scholar
  239. Roy RN, Misra RV, Lesschen JP (2003) Assessment of soil nutrient balance: approaches and methodologies, FAO fertilizer and plant nutrition bulletin 14. FAO, RomeGoogle Scholar
  240. Rubio G, Lynch JP (2007) Compensation among root classes in Phaseolus vulgaris L. Plant Soil 290:307–321CrossRefGoogle Scholar
  241. Ruiz-Lozano JM, Collados C, Barea JM et al (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502CrossRefGoogle Scholar
  242. Russell AJ, Bidartondo MI, Butterfield BG (2002) The root nodules of the Podocarpaceae harbour arbuscular mycorrhizal fungi. New Phytol 156:283–295CrossRefGoogle Scholar
  243. Rutunga V, Neel H (2006) Yield trends in the long-term crop rotation with organic and inorganic fertilisers on Alisols in Mata (Rwanda). Biotechnologie, Agronomie, Société et Environnement 10:217–228Google Scholar
  244. Rutunga V, Janssen BH, Mantel S et al (2007) Soil use and management strategy for raising food and cash output in Rwanda. J Food Agric Environ 5:434–441Google Scholar
  245. Saadallah K, Drevon J-J, Abdelly C (2001a) Nodulation and growth of nodules in the common bean (Phaseolus vulgaris) under salt stress. Agronomie 21:627–634CrossRefGoogle Scholar
  246. Saadallah K, Drevon J-J, Hajji M et al (2001b) Genotypic variability for tolerance to salinity of N2-fixing common bean (Phaseolus vulgaris). Agronomie 21:675–682CrossRefGoogle Scholar
  247. Sanchez PA, Swaminathan MS (2005) Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365:442–444PubMedGoogle Scholar
  248. Sanders IR (2004) Intraspecific genetic variation in arbuscular mycorrhizal fungi and its consequences for molecular biology, ecology, and development of inoculum. Can J Bot 82:1057–1062CrossRefGoogle Scholar
  249. Sangakkara UR, Richner W, Steinebrunner F et al (2003) Impact of the cropping systems of a minor dry season on the growth, yields and nitrogen uptake of maize (Zea mays L) grown in the humid tropics during the major rainy season. J Agron Crop Sci 189:361–366CrossRefGoogle Scholar
  250. Sanginga PC, Kaaria S, Muzira R et al (2007) The resources-to-consumption system: A framework for linking soil fertility management innovations to market opportunities. In: Bationo A, Waswa B, Kihara J et al (eds.) Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Springer, Berlin, pp 979–992CrossRefGoogle Scholar
  251. Sassi S, Gonzalez EM, Aydi S et al (2008) Tolerance of common bean to long-term osmotic stress is related to nodule carbon flux and antioxidant defenses: evidence from two cultivars with contrasting tolerance. Plant Soil 312:39–48CrossRefGoogle Scholar
  252. Scheublin TR, Ridgway KP, Young JPW et al (2004) Non-legumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microb 70:6240–6246CrossRefGoogle Scholar
  253. Schnabel E, Journet EP, de Carvalho-Niebel F et al (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822PubMedCrossRefGoogle Scholar
  254. Schulze J (2004) How are nitrogen fixation rates regulated in legumes? J Plant Nutr Soil Sci 167:125–137CrossRefGoogle Scholar
  255. Sessitsch A, Howieson JG, Perret X et al (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378CrossRefGoogle Scholar
  256. Shamseldin A (2008) Plasmid content of salt stress-tolerant Rhizobium strains from Egyptian soils nodulating common bean (Phaseolus vulgaris L.). World J Microb Biot 24:1603–1606CrossRefGoogle Scholar
  257. Shamseldin A, Werner D (2005) High salt and high pH tolerance of new isolated Rhizobium etli strains from Egyptian soils. Curr Microbiol 50:11–16PubMedCrossRefGoogle Scholar
  258. Shamseldin AAY, Vinuesa P, Thierfelder H et al (2005) Rhizobium etli and Rhizobium gallicum nodulate Phaseolus vulgaris in Egyptian soils and display cultivar-dependent symbiotic efficiency. Symbiosis 38:145–161Google Scholar
  259. Sharma AK, Srivastava PC, Johri BN (1999) Multiphasic zinc uptake system in mycorrhizal and nonmycorrhizal roots of French bean (Phaseolus vulgaris L.). Curr Sci 76:228–230Google Scholar
  260. Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880PubMedCrossRefGoogle Scholar
  261. Shen H, Yan XL, Cai KZ et al (2004) Differential Al resistance and citrate secretion in the tap and basal roots of common bean seedlings. Physiol Plant 121:595–603CrossRefGoogle Scholar
  262. Shirtliffe SJ, Vessey JK (1996) A nodulation (Nod(+)/Fix-) mutant of Phaseolus vulgaris L has nodule-like structures lacking peripheral vascular bundles (Pvb(−)) and is resistant to mycorrhizal infection (Myc(−)). Plant Sci 118:209–220CrossRefGoogle Scholar
  263. Sierra J, Nygren P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol Biochem 38:1893–1903CrossRefGoogle Scholar
  264. Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH, EschbornGoogle Scholar
  265. Silwana TT, Lucas EO, Olaniyan AB (2007) The effects of inorganic and organic fertilizers on the growth and development of component crops in maize/bean intercrop in Eastern Cape of South Africa. J Food Agric Environ 5:267–272Google Scholar
  266. Singh SP (1982) A key for identification of different growth habits of frijol Phaseolus vulgaris L. Annual Reports of Bean Improvement Cooperation Nr 25, pp 92–95Google Scholar
  267. Singh SP (1995) Selection for water stress tolerance in interracial populations of common bean. Crop Sci 35:118–124CrossRefGoogle Scholar
  268. Singh SP (1999a) Integrated genetic improvement. In: Singh SP (ed.) Common bean improvement in the twenty-first century. Kluwer, Dordrecht, pp 133–166Google Scholar
  269. Singh SP (1999b) Production and utilization. In: Singh SP (ed.) Common bean improvement in the twenty-first century. Kluwer, Dordrecht, pp 1–24Google Scholar
  270. Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675CrossRefGoogle Scholar
  271. Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396CrossRefGoogle Scholar
  272. Singh SP, Teran H, Gutierrez JA (2001) Registration of SEA 5 & SEA 13 drought tolerant dry bean germplasm. Crop Sci 41:276–277CrossRefGoogle Scholar
  273. Singh SP, Teran H, Munoz CG et al (2003) Low soil fertility tolerance in landraces and improved common bean genotypes. Crop Sci 43:110–119CrossRefGoogle Scholar
  274. Six J, Bossuyt H, Degryze S et al (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31CrossRefGoogle Scholar
  275. Smith S, Read D (2008) Mycorrhizal symbiosis. Academic, New YorkGoogle Scholar
  276. Smithson P, Jama B, Delve R et al (2003) East African phosphate resources and their agronomic performance. In: Rajan SSS, Chien SH (eds.) Proceedings of the international meeting on direct application of phosphate rock and related appropriate technology-latest developments and practical experience, Kuala Lumpur, Malaysia, 16–20 July 2001, pp 123–133Google Scholar
  277. Snapp SS, Lynch JP (1996) Phosphorus distribution and remobilization in bean plants as influenced by phosphorus nutrition. Crop Sci 36:929–935CrossRefGoogle Scholar
  278. Snapp S, Aggarwal V, Chirwa R (1998) Note on phosphorus and cultivar enhancement of biological nitrogen fixation and productivity of maize/bean intercrops in Malawi. Field Crop Res 58:205–212CrossRefGoogle Scholar
  279. Snellgrove RC, Splittstoesser WE, Stribley DP et al (1982) The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol 92:75–87CrossRefGoogle Scholar
  280. Sokoto AL, Singh A (2008) Yield and yield components of cowpea (Vigna unguiculata (L.) Walp.) as influenced by Sokoto phosphate rock and placement methods in the semi-arid zone of Nigeria. Nutr Cycl Agroecosys 81:255–265CrossRefGoogle Scholar
  281. Sperling L (2001) The effect of the civil war on Rwanda’s bean seed systems and unusual bean diversity. Biodivers Conserv 10:989–1009CrossRefGoogle Scholar
  282. StClair DA, Bliss FA (1991) Intrapopulation recombination for 15N-determined dinitrogen fixation ability in common bean. Plant Breeding 106:215–225CrossRefGoogle Scholar
  283. Stocco P, do Santos JCP, Vargas VP et al (2008) Assessment of biodiversity in rhizobia symbionts of common bean (Phaseolus vulgaris L.) in Santa Catarina, Brazil. Rev Bras Cienc Solo 32:1107–1120CrossRefGoogle Scholar
  284. Stracke S, Kistner C, Yoshida S et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962PubMedCrossRefGoogle Scholar
  285. Suarez R, Wong A, Ramirez M et al (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe In 21:958–966CrossRefGoogle Scholar
  286. Sunseri T (2005) ‘Something else to burn’: forest squatters, conservationists, and the state in modern Tanzania. J Mod Afr Stud 43:609–640CrossRefGoogle Scholar
  287. Tamado T, Fininsa C, Worku W (2007) Agronomic performance and productivity of common bean (Phaseolus vulgaris L.) varieties in double intercropping with maize (Zea mays L.) in eastern Ethiopia. Asian J Plant Sci 6:749–756CrossRefGoogle Scholar
  288. Tang CX, Hinsinger P, Jaillard B et al (2001) Effect of phosphorus deficiency on the growth, symbiotic N2 fixation and proton release by two bean (Phaseolus vulgaris) genotypes. Agronomie 21:683–689CrossRefGoogle Scholar
  289. Thung M (1992) Phosphorus: a limiting nutrient in bean production in Latin America and field. Screening for efficiency and response. In: El Bassam N (ed.) Genetic aspects of plant mineral nutrition. Kluwer Academic, Dordrecht, pp 501–521Google Scholar
  290. Thung M, Rao IM (1999) Integrated management of abiotic stresses. In: Singh SP (ed.) Common bean improvement in the twenty-first century. Kluwer, Dordrecht, pp 331–370Google Scholar
  291. Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71CrossRefGoogle Scholar
  292. Toljander JF, Artursson V, Paul LR et al (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40PubMedCrossRefGoogle Scholar
  293. Tsai SM, Bonetti R, Agbola SM et al (1993) Minimizing the effect of mineral nitrogen on biological nitrogen fixation in common bean by increasing nutrient levels. Plant Soil 152:131–138CrossRefGoogle Scholar
  294. UN (2008) The Millennium development goals report 2008. United Nations, New YorkGoogle Scholar
  295. Vadez V, Drevon J-J (2001) Genotypic variability in phosphorus use efficiency for symbiotic N2 fixation in common bean (Phaseolus vulgaris). Agronomie 21:691–699CrossRefGoogle Scholar
  296. Vadez V, Lasso JH, Beck DP et al (1999) Variability of N2-fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency. Euphytica 106:231–242CrossRefGoogle Scholar
  297. Valentine AJ, Kleinert A (2007) Respiratory responses of arbuscular mycorrhizal roots to short-term alleviation of P deficiency. Mycorrhiza 17:137–143PubMedCrossRefGoogle Scholar
  298. Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition: plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397PubMedCrossRefGoogle Scholar
  299. Vanlauwe B, Giller KE (2006) Popular myths around soil fertility management in sub-Saharan Africa. Agric Ecosyst Environ 116:34–46CrossRefGoogle Scholar
  300. Vanlauwe B, Kanampiu F, Odhiambo GD et al (2008) Integrated management of Striga hermonthica, stemborers, and declining soil fertility in western Kenya. Field Crop Res 107:102–115Google Scholar
  301. Vargas MAT, Mendes IC, Hungria M (2000) Response of field-grown bean (Phaseolus vulgaris L.) to Rhizobium inoculation and nitrogen fertilization in two Cerrados soils. Biol Fert Soils 32:228–233CrossRefGoogle Scholar
  302. Vejsadová H, Hršelová H, Přikryl Z et al (1988) Interrelationships between vesicular-arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soybean plants. Dev Soil Sci 18:115–123CrossRefGoogle Scholar
  303. Veltcheva M, Svetleva D, Petkova S et al (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.) – Problems and progress. Sci Hortic 107:2–10CrossRefGoogle Scholar
  304. Verdoodt A, Van Ranst E, Ye LM (2004) Daily simulation of potential dry matter production of annual field crops in tropical environments. Agron J 96:1739–1753CrossRefGoogle Scholar
  305. Vieira C (1998) Growing beans in favorable environments and in association with crops of high social and economic value. In: Voysest O (ed.) An ecoregional framework for bean germplasm development and natural resources research. Working Document. CIAT, Cali, pp 128–154Google Scholar
  306. Vinuesa P, Silva C (2004) Species delineation and biogeography of symbiotic bacteria associated with cultivated and wild legumes. In: Werner D (ed.) Biological resources and migration. Springer, Berlin, pp 143–155Google Scholar
  307. Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, PrincetonGoogle Scholar
  308. Voets L, Goubau I, Olsson PA et al (2008) Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. FEMS Microbiol Ecol 65:350–360PubMedCrossRefGoogle Scholar
  309. von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15CrossRefGoogle Scholar
  310. Vosátka M, Dodd JC, Patten R et al (2003) A joint initiative for the use of mycorrhizal fungi in plant production (the establishment of the Federation of European mycorrhizal fungi producers – FEMFiP). Folia Geobot 38:235–237CrossRefGoogle Scholar
  311. Wander AE, Didonet AD, Moreira JAA et al (2007) Economic viability of small scale organic production of rice, common bean and maize in Goias state, Brazil. J Agr Rural Dev Trop 108:51–58Google Scholar
  312. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513PubMedCrossRefGoogle Scholar
  313. Weil RR (2000) Soil and plant influences on crop response to two African phosphate rocks. Agron J 92:1167–1175CrossRefGoogle Scholar
  314. Whitfield J (2007) Fungal roles in soil ecology: underground networking. Nature 449:136–138PubMedCrossRefGoogle Scholar
  315. Wilson GWT, Hartnett DC, Rice CW (2006) Mycorrhizal-mediated phosphorus transfer between tallgrass prairie plants Sorghastrum nutans and Artemisia ludoviciana. Funct Ecol 20:427–435CrossRefGoogle Scholar
  316. Wolyn DJ, StClair DA, Dubois J et al (1991) Distribution of nitrogen in common bean (Phaseolus vulgaris L) genotypes selected for differences in nitrogen fixation ability. Plant Soil 138:303–311CrossRefGoogle Scholar
  317. Wooley J, Lepiz R, Aquinas-Portesy CT et al (1991) Bean cropping systems in the tropics and subtropics and their determinants. In: van Schoonhoven A, Voysest O (eds.) Common beans: research for crop improvement. CAB International and CIAT, Wallingford, pp 679–706Google Scholar
  318. Woomer PL, Okalebo JR, Maritim HK et al (2003) PREP-PAC: a nutrient replenishment product designed for smallholders in western Kenya. Agr Ecosyst Environ 100:295–303CrossRefGoogle Scholar
  319. Wortmann CS (2001) Nutrient dynamics in a climbing bean and sorghum crop rotation in the Central Africa highlands. Nutr Cycl Agroecosys 61:267–272CrossRefGoogle Scholar
  320. Wortmann CS, Allen DJ (1994) African bean production environments: their definition, characteristics and constraints. Network on bean research in Africa Occasional Publication Series, no. 11. CIAT, KampalaGoogle Scholar
  321. Wortmann CS, Lunze L, Ochwoh VA et al (1995) Bean improvement for low fertility soils in Africa. Afr Crop Sci J 3:469–477Google Scholar
  322. Wortmann C, Kirgby R, Eledu C et al (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT, CaliGoogle Scholar
  323. Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891CrossRefGoogle Scholar
  324. Yan XL, Beebe SE, Lynch JP (1995a) Genetic variation for phosphorus efficiency of common bean in contrasting soil types. 2.Yield response. Crop Sci 35:1094–1099CrossRefGoogle Scholar
  325. Yan XL, Lynch JP, Beebe SE (1995b) Genetic variation for phosphorus efficiency of common bean in contrasting soil types. 1.Vegetative response. Crop Sci 35:1086–1093CrossRefGoogle Scholar
  326. Yan XL, Lynch JP, Beebe SE (1996) Utilization of phosphorus substrates by contrasting common bean genotypes. Crop Sci 36:936–941CrossRefGoogle Scholar
  327. Zacarías JJJ, Altamirano-Hernández J, Cabriales JJP (2004) Nitrogenase activity and trehalose content of nodules of drought-stressed common beans infected with effective (Fix+) and ineffective (Fix-) rhizobia. Soil Biol Biochem 36:1975–1981CrossRefGoogle Scholar
  328. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedGoogle Scholar
  329. Zaiter HZ, Mahfouz B (1993) Salinity effect on root and shoot characteristics of common and tepary beans evaluated under hydroponic solution and sand culture. J Plant Nutr 16:1569–1592CrossRefGoogle Scholar
  330. Zaman-Allah M, Sifi B, L’Taief B et al (2007) Symbiotic response to low phosphorus supply in two common bean (Phaseolus vulgaris L.) genotypes. Symbiosis 44:109–113Google Scholar
  331. Zeder MA, Emshwiller E, Smith BD et al (2006) Documenting domestication: the intersection of genetics and archaeology. Trends Genet 22:139–155PubMedCrossRefGoogle Scholar
  332. Zhang FS, Li L (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248:305–312CrossRefGoogle Scholar
  333. Zhang F, Hamel C, Kianmehr H et al (1995) Root-zone temperature and soybean [Glycine max (L) Merr] vesicular-arbuscular mycorrhizae: development and interactions with the nitrogen fixing symbiosis. Environ Exp Bot 35:287–298CrossRefGoogle Scholar
  334. Zhu YG, Smith SE, Barritt AR et al (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255CrossRefGoogle Scholar
  335. Zhu JM, Kaeppler SM, Lynch JP (2005) Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol 32:749–762CrossRefGoogle Scholar
  336. Zingore S, Murwira HK, Delve RJ et al (2007) Soil type, management history and current resource allocation: three dimensions regulating variability in crop productivity on African smallholder farms. Field Crop Res 101:296–305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Swiss Federal Institute of Technology (ETH) ZurichInstitute of Agricultural SciencesLindauSwitzerland
  2. 2.Alliance for a Green Revolution in Africa (AGRA), Soil Health ProgramAirport-AccraGhana
  3. 3.Centro International de Agriculture Tropical (CIAT)CaliColombia

Personalised recommendations