Skip to main content

Functional Analysis of the Synechococcus elongatus PCC 7942 Genome

  • Chapter
  • First Online:
Functional Genomics and Evolution of Photosynthetic Systems

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 33))

Summary

Many genes related to the circadian clock have been discovered and studied in Synechococcus elongatus PCC 7942, the model organism for cyanobacterial circadian rhythms. However, the partners of some known clock components are still unidentified, and undiscovered pathways are predicted to exist that connect the central clock to other cellular functions. Identification of all clock components in S. elongatus is necessary for fully elucidating molecular mechanisms of the cyanobacterial circadian clock, as well as the relationship of the circadian clock to metabolism and other essential cellular activities. We adopted a transposon-mediated in vitro mutagenesis and sequencing strategy to disrupt essentially every locus in the genome and screen each insertional mutant for altered circadian phenotypes in S. elongatus. The completion of the genome sequence by the Department of Energy Joint Genome Institute greatly facilitated our functional genomics project, which is very close to the finish line with 88% of the genome mutagenized and more than 75% of loci screened for circadian function. Among the first 700 genes surveyed, 70 new clock loci were discovered that represent an array of functional categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

S. elongatus :

Synechococcus elongatus PCC 7942

Cm:

chloramphenicol

Km:

kanamycin

ORF:

open reading frame

PCR:

polymerase chain reaction

RFLP:

restriction fragment length polymorphism

References

  • Aldehni MF, Sauer J, Spielhaupter C, Schmid R and Forchhammer K (2003) Signal transduction protein P(II) is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942. J Bacteriol 185: 2582–2591

    Article  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657

    Article  PubMed  Google Scholar 

  • Andersson CR, Tsinoremas NF, Shelton J, Lebedeva NV, Yarrow J, Min H and Golden SS (2000) Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol 305: 527–542

    Article  PubMed  CAS  Google Scholar 

  • Aoki S, Kondo T and Ishiura M (1995) Circadian expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 177: 5606–5611

    PubMed  CAS  Google Scholar 

  • Balu B and Adams JH (2006) Functional genomics of Plasmodium falciparum through transposon-mediated mutagenesis. Cell Microbiol 8: 1529–1536

    Article  PubMed  CAS  Google Scholar 

  • Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R and Giebultowicz JM (2002) Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci USA 99: 2134–2139

    Article  PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL and Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6: 544–556

    Article  PubMed  CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Chen YB, Kupper H, Kolber Z, Bergman B and Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294: 1534–1537

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Takahashi A, Shahi P and Grossman AR (2001) Novel motility mutants of Synechocystis strain PCC 6803 generated by in vitro transposon mutagenesis. J Bacteriol 183: 6140–6143

    Article  PubMed  CAS  Google Scholar 

  • Biery MC, Stewart FJ, Stellwagen AE, Raleigh EA and Craig NL (2000) A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. Nucleic Acids Res 28: 1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Bourhy P, Louvel H, Saint Girons I and Picardeau M (2005) Random insertional mutagenesis of Leptospira interrogans the agent of leptospirosis using a mariner transposon. J Bacteriol 187: 3255–3258

    Article  PubMed  CAS  Google Scholar 

  • Bovy A, de Kruif J, de Vrieze G, Borrias M and Weisbeek P (1993) Iron-dependent protection of the Synechococcus ferredoxin I transcript against nucleolytic degradation requires cis-regulatory sequences in the 5′ part of the messenger RNA. Plant Mol Biol 22: 1047–1065

    Article  PubMed  CAS  Google Scholar 

  • Bradley RL and Reddy KJ (1997) Cloning sequencing and regulation of the global nitrogen regulator gene ntcA in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain BH68K. J Bacteriol 179: 4407–4410

    PubMed  CAS  Google Scholar 

  • Capuano V, Thomas JC, Tandeau de Marsac N and Houmard J (1993) An in vivo approach to define the role of the LCM the key polypeptide of cyanobacterial phycobilisomes. J Biol Chem 268: 8277–8283

    PubMed  CAS  Google Scholar 

  • Carlson CM and Largaespada DA (2005) Insertional mutagenesis in mice: new perspectives and tools. Nat Rev Genet 6: 568–580

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Holtman CK, Magnuson RD, Youderian PA and Golden SS (2008) The complete sequence and functional analysis of pANL the large plasmid of the unicellular freshwater cyanobacterium Synechococcus elongatus PCC 7942. Plasmid 59: 176–192

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Kim YI, Mackey SR, Holtman CK, Liwang A and Golden SS (2009) A novel allele of kaiA shortens the circadian period and strengthens interaction of oscillator components in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol 191: 4392–4400

    Article  PubMed  CAS  Google Scholar 

  • Chen YB, Dominic B, Mellon MT and Zehr JP (1998) Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. strain IMS 101. J Bacteriol 180: 3598–3605

    PubMed  CAS  Google Scholar 

  • Chen YB, Dominic B, Zani S, Mellon MT and Zehr JP (1999) Expression of photosynthesis genes in relation to nitrogen fixation in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101. Plant Mol Biol 41: 89–104

    Article  PubMed  CAS  Google Scholar 

  • Clerico EM, Ditty JL and Golden SS (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol Biol 362: 155–171

    Article  PubMed  CAS  Google Scholar 

  • Cohen MF, Wallis JG, Campbell EL and Meeks JC (1994) Transposon mutagenesis of Nostoc sp. strain ATCC 29133 a filamentous cyanobacterium with multiple cellular differentiation alternatives. Microbiology 140: 3233–3240

    Article  PubMed  CAS  Google Scholar 

  • Collier JL and Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria EMBO J 13: 1039–1047

    PubMed  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ and Webb AA (2005) Plant circadian clocks increase photosynthesis growth survival and competitive advantage. Science 309: 630–633

    Article  PubMed  CAS  Google Scholar 

  • Dong G and Golden SS (2008) How a cyanobacterium tells time. Curr Opin Microbiol 11: 541–546

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC, Loros JJ and DeCoursey P, (eds) (2003) Chronobiology: Biological Timekeeping. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Durham KA, Porta D, McKay RM and Bullerjahn GS (2003) Expression of the iron-responsive irpA gene from the cyanobacterium Synechococcus sp. strain PCC 7942. Arch Microbiol 179: 131–134

    PubMed  CAS  Google Scholar 

  • Elhai J, Taton A, Massar JP, Myers JK, Travers M, Casey J, Slupesky M and Shrager J (2009) BioBIKE: a Web-based programmable integrated biological knowledge base. Nucleic Acids Res 37: W28-32

    Article  PubMed  CAS  Google Scholar 

  • Ewing B and Green P (1998) Base-calling of automated sequencer traces using phred II Error probabilities. Genome Res 8: 186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC and Green P (1998) Base-calling of automated sequencer traces using phred I. Accuracy assessment. Genome Res 8: 175–185

    PubMed  CAS  Google Scholar 

  • Garcia-Dominguez M and Florencio FJ (1997) Nitrogen availability and electron transport control the expression of glnB gene (encoding PII protein) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 35: 723–734

    Article  PubMed  CAS  Google Scholar 

  • Gehring AM, Nodwell JR, Beverley SM and Losick R (2000) Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci USA 97: 9642–9647

    Article  PubMed  CAS  Google Scholar 

  • Golden SS (2003) Timekeeping in bacteria: the cyanobacterial circadian clock. Curr Opin Microbiol 6: 535–540

    Article  PubMed  CAS  Google Scholar 

  • Golden SS, Brusslan J and Haselkorn R (1986) Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J 5: 2789–2798

    PubMed  CAS  Google Scholar 

  • Golden SS, Brusslan J and Haselkorn R (1987) Genetic engineering of the cyanobacterial chromosome. Methods Enzymol 153: 215–231

    Article  PubMed  CAS  Google Scholar 

  • Golden SS and Canales SR (2003) Cyanobacterial circadian clocks—timing is everything. Nat Rev Microbiol 1: 191–199

    Article  PubMed  CAS  Google Scholar 

  • Golden SS, Nalty MS and Cho DS (1989) Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans. J Bacteriol 171: 24–29

    PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C and Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8: 195–202

    PubMed  CAS  Google Scholar 

  • Gordon D, Desmarais C and Green P (2001) Automated finishing with autofinish. Genome Res 11: 614–625

    Article  PubMed  CAS  Google Scholar 

  • Goryshin IY and Reznikoff WS (1998) Tn5 in vitro transposition. J Biol Chem 273: 7367–7374

    Article  PubMed  CAS  Google Scholar 

  • Granger L, Martin E and Segalat L (2004) Mos as a tool for genome-wide insertional mutagenesis in Caenorhabditis elegans: results of a pilot study. Nucleic Acids Res 32: e117

    Article  PubMed  CAS  Google Scholar 

  • Green LS, Laudenbach DE and Grossman AR (1989) A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci USA 86: 1949–1953

    Article  PubMed  CAS  Google Scholar 

  • Haapa S, Taira S, Heikkinen E and Savilahti H (1999a) An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res 27: 2777–2784

    Article  PubMed  CAS  Google Scholar 

  • Haapa S, Suomalainen S, Eerikainen S, Airaksinen M, Paulin L and Savilahti H. (1999b). An efficient DNA sequencing strategy based on the bacteriophage Mu in vitro DNA transposition reaction. Genome Res 9: 308–315

    PubMed  CAS  Google Scholar 

  • Haapa-Paananen S, Rita H and Savilahti H (2002) DNA transposition of bacteriophage Mu. A quantitative analysis of target site selection in vitro. J Biol Chem 277: 2843–2851

    Article  PubMed  CAS  Google Scholar 

  • Hayes F (2003) Transposon-based strategies for microbial functional genomics and proteomics. Annu Rev Genet 37: 3–29

    Article  PubMed  CAS  Google Scholar 

  • Hirani TA, Suzuki I, Murata N, Hayashi H and Eaton-Rye JJ (2001) Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803. Plant Mol Biol 45: 133–144

    Article  PubMed  CAS  Google Scholar 

  • Holtman CK, Chen Y, Sandoval P, Gonzales A, Nalty MS, Thomas TL, Youderian P and Golden SS (2005) High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res 12: 103–115

    Article  PubMed  CAS  Google Scholar 

  • Huang T-C and Chow T-J (1986) New type of N2-fixing unicellular cyanobacterium (blue-green alga). FEMS Microbiol Lett 36: 109–110

    Article  Google Scholar 

  • Ikeuchi M (1996) [Complete genome sequence of a cyanobacterium Synechocystis sp. PCC 6803 the oxygenic photosynthetic prokaryote] Tanpakushitsu Kakusan Koso 41: 2579–2583

    PubMed  CAS  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH and Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281: 1519–1523

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Williams SB, Kitayama Y, Ishiura M, Golden SS and Kondo T (2000) A kaiC-interacting sensory histidine kinase SasA necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101: 223–233

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Golden SS and Kondo T (1998) Adaptive significance of circadian programs in cyanobacteria. Trends Microbiol 6: 407–410

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Hastings J W (1986) The elusive mechanism of the circadian clock. Am Sci 74: 29–36

    Google Scholar 

  • Katayama M, Kondo T, Xiong J and Golden SS (2003) ldpA encodes an iron-sulfur protein involved in light-dependent modulation of the circadian period in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol 185: 1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Katayama M, Tsinoremas NF, Kondo T and Golden SS (1999) cpmA a gene involved in an output pathway of the cyanobacterial circadian system. J Bacteriol 181: 3516–3524

    PubMed  CAS  Google Scholar 

  • Kim YI, Dong G, Carruthers CW, Jr, Golden SS and LiWang A (2008) The day/night switch in KaiC a central oscillator component of the circadian clock of cyanobacteria. Proc Natl Acad Sci USA 105: 12825–12830

    Article  PubMed  CAS  Google Scholar 

  • Kirby JR (2007) In vivo mutagenesis using EZ-Tn5. Methods Enzymol 421: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Kitada K, Ishishita S, Tosaka K, Takahashi R, Ueda M, Keng VW, Horie K and Takeda J (2007) Transposon-tagged mutagenesis in the rat. Nat Methods 4: 131–133

    Article  PubMed  CAS  Google Scholar 

  • Kitayama Y, Nishiwaki T, Terauchi K and Kondo T (2008) Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev 22: 1513–1521

    Article  PubMed  CAS  Google Scholar 

  • Kiyohara YB, Katayama M and Kondo T (2005) A novel mutation in kaiC affects resetting of the cyanobacterial circadian clock. J Bacteriol 187: 2559–2564

    Article  PubMed  CAS  Google Scholar 

  • Koksharova OA and Wolk CP (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58: 123–137

    Article  PubMed  CAS  Google Scholar 

  • Kondo T and Ishiura M (1994) Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence. J Bacteriol 176: 1881–1885

    PubMed  CAS  Google Scholar 

  • Kondo T, Strayer CA, Kulkarni RD, Taylor W, Ishiura M, Golden SS and Johnson CH (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 90: 5672–5676

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Tsinoremas NF, Golden SS, Johnson CH, Kutsuna S and Ishiura M (1994) Circadian clock mutants of cyanobacteria. Science 266: 1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Kutsuna S, Kondo T, Aoki S and Ishiura M (1998) A period-extender gene pex that extends the period of the circadian clock in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 180: 2167–2174

    PubMed  CAS  Google Scholar 

  • Kutsuna S, Nakahira Y, Katayama M, Ishiura M and Kondo T (2005) Transcriptional regulation of the circadian clock operon kaiBC by upstream regions in cyanobacteria. Mol Microbiol 57: 1474–1484

    Article  PubMed  CAS  Google Scholar 

  • Lavoie BD and Chaconas G (1996) Transposition of phage Mu DNA. Curr Top Microbiol Immunol 204: 83–102

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CW, Gibbs PE, Borden A, Horsfall MJ and Kilbey BJ (1993) Mutagenesis induced by single UV photoproducts in E. coli and yeast. Mutat Res 299: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Golden SS, Kondo T, Ishiura M and Johnson CH (1995a) Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J Bacteriol 177: 2080–2086

    PubMed  CAS  Google Scholar 

  • Liu Y and Tsinoremas NF (1996) An unusual gene arrangement for the putative chromosome replication origin and circadian expression of dnaN in Synechococcus sp. strain PCC 7942. Gene 172: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Tsinoremas NF, Golden SS, Kondo T and Johnson CH (1996) Circadian expression of genes involved in the purine biosynthetic pathway of the cyanobacterium Synechococcus sp. strain PCC 7942. Mol Microbiol 20: 1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Tsinoremas NF, Johnson CH, Lebedeva NV, Golden SS, Ishiura M and Kondo T (1995b) Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9: 1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Mackey SR, Ditty JL, Clerico EM and Golden SS (2007) Detection of rhythmic bioluminescence from luciferase reporters in cyanobacteria. Methods Mol Biol 362: 115–129

    Article  PubMed  CAS  Google Scholar 

  • Maloy SR (2007) Use of antibiotic-resistant transposons for mutagenesis. Methods Enzymol 421: 11–17

    Article  PubMed  CAS  Google Scholar 

  • Maurizi MR, Clark WP, Kim SH and Gottesman S (1990) ClpP represents a unique family of serine proteases. J Biol Chem 265: 12546–12552

    PubMed  CAS  Google Scholar 

  • McCarren J and Brahamsha B (2005) Transposon mutagenesis in a marine Synechococcus strain: isolation of swimming motility mutants. J Bacteriol 187: 4457–4462

    Article  PubMed  CAS  Google Scholar 

  • Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR and McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302: 1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Michielse CB, Hooykaas PJ, van den Hondel CA and Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Mills DA (2001) Mutagenesis in the post genomics era: tools for generating insertional mutations in the lactic acid bacteria. Curr Opin Biotechnol 12: 503–509

    Article  PubMed  CAS  Google Scholar 

  • Min H, Liu Y, Johnson CH and Golden SS (2004) Phase determination of circadian gene expression in Synechococcus elongatus PCC 7942. J Biol Rhythms 19: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S and Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323: 720–722

    Article  CAS  Google Scholar 

  • Miyagishima SY, Wolk CP and Osteryoung KW (2005) Identification of cyanobacterial cell division genes by comparative and mutational analyses. Mol Microbiol 56: 126–143

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K (1992) Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem 61: 1011–1051

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K and Craigie R (1986) Mechanism of bacteriophage mu transposition. Annu Rev Genet 20: 385–429

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi M and Mizuuchi K (1993) Target site selection in transposition of phage Mu. Cold Spring Harb Symp Quant Biol 58: 515–523

    Article  PubMed  CAS  Google Scholar 

  • Mori T and Johnson CH (2001) Circadian programming in cyanobacteria. Semin Cell Dev Biol 12: 271–278

    Article  PubMed  CAS  Google Scholar 

  • Muller EG and Buchanan BB (1989) Thioredoxin is essential for photosynthetic growth. The thioredoxin m gene of Anacystis nidulans. J Biol Chem 264: 4008–4014

    PubMed  CAS  Google Scholar 

  • Nair U, Ditty JL, Min H and Golden SS (2002) Roles for sigma factors in global circadian regulation of the cyanobacterial genome. J Bacteriol 184: 3530–3538

    Article  PubMed  CAS  Google Scholar 

  • Nair U, Thomas C and Golden SS (2001) Functional elements of the strong psbAI promoter of Synechococcus elongatus PCC 7942. J Bacteriol 183: 1740–1747

    Article  PubMed  CAS  Google Scholar 

  • Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T and Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308: 414–415

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Nakahira Y, Imai K, Tsuruhara A, Kondo H, Hayashi H, Hirai M, Saito H and Kondo T (2002) Mutations in KaiA a clock protein extend the period of circadian rhythm in the cyanobacterium Synechococcus elongatus PCC 7942. Microbiology 148: 2903–2909

    PubMed  CAS  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS and Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95: 8660–8664

    Article  PubMed  CAS  Google Scholar 

  • Pajunen MI, Pulliainen AT, Finne J and Savilahti H (2005) Generation of transposon insertion mutant libraries for Gram-positive bacteria by electroporation of phage Mu DNA transposition complexes. Microbiology 151: 1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Pattanayek R, Williams DR, Pattanayek S, Mori T, Johnson CH, Stewart PL and Egli M (2008) Structural model of the circadian clock KaiB-KaiC complex and mechanism for modulation of KaiC phosphorylation. EMBO J 27: 1767–1778

    Article  PubMed  CAS  Google Scholar 

  • Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW and Becker A (2006) Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl Environ Microbiol 72: 4329–4337

    Article  PubMed  CAS  Google Scholar 

  • Reznikoff WS (1993) The Tn5 transposon. Annu Rev Microbiol 47: 945–963

    Article  PubMed  CAS  Google Scholar 

  • Richaud C, Zabulon G, Joder A and Thomas JC (2001) Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183: 2989–2994

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury J, Herdman M and Stanier R (1979) Generic assignments strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61

    Google Scholar 

  • Rust MJ, Markson JS, Lane WS, Fisher DS and O’Shea EK (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318: 809–812

    Article  PubMed  CAS  Google Scholar 

  • Schaefer MR and Golden SS (1989) Light availability influences the ratio of two forms of D1 in cyanobacterial thylakoids. J Biol Chem 264: 7412–7417

    PubMed  CAS  Google Scholar 

  • Schelin J, Lindmark F and Clarke AK (2002) The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus. Microbiology 148: 2255–2265

    PubMed  CAS  Google Scholar 

  • Schmitz O, Katayama M, Williams SB, Kondo T and Golden SS (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289: 765–768

    Article  PubMed  CAS  Google Scholar 

  • Schneegurt MA, Sherman DM, Nayar S and Sherman LA (1994) Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 176: 1586–1597

    PubMed  CAS  Google Scholar 

  • Shestakov SV and Khyen NT (1970) Evidence for genetic transformation in blue-green alga Anacystis nidulans. Mol Gen Genet 107: 372–375

    Article  PubMed  CAS  Google Scholar 

  • Singer B and Kusmierek JT (1982) Chemical mutagenesis. Annu Rev Biochem 51: 655–693

    Article  PubMed  CAS  Google Scholar 

  • Sippola K, Kanervo E, Murata N and Aro EM (1998) A genetically engineered increase in fatty acid unsaturation in Synechococcus sp. PCC 7942 allows exchange of D1 protein forms and sustenance of photosystem II activity at low temperature. Eur J Biochem 251: 641–648

    Article  PubMed  CAS  Google Scholar 

  • Smith RM and Williams SB (2006) Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci USA 103: 8564–8569

    Article  PubMed  CAS  Google Scholar 

  • Soitamo AJ, Zhou G, Clarke AK, Oquist G, Aro EM and Gustafsson P (1994) Over-production of the D1 protein of photosystem II reaction centre in the cyanobacterium Synechococcus sp. PCC 7942. Plant Mol Biol 26: 709–721

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S and Bader KP (2003) Dependence of the flash-induced oxygen evolution pattern on the chemically and far red light-modulated redox condition in cyanobacterial photosynthetic electron transport. Z Naturforsch [C] 58: 93–102

    CAS  Google Scholar 

  • Stal LJ and Krumbein WE (1985) Nitrogenase activity in the nonheterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles. Arch Microbiol 143: 67–71

    Article  CAS  Google Scholar 

  • Stanne TM, Pojidaeva E, Andersson FI and Clarke AK (2007) Distinctive types of ATP-dependent Clp proteases in cyanobacteria. J Biol Chem 282: 14394–14402

    Article  PubMed  CAS  Google Scholar 

  • Stothard P and Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21: 537–539

    Article  PubMed  CAS  Google Scholar 

  • Su J, Yang J, Zhao D, Kawula TH, Banas JA and Zhang JR (2007) Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 75: 3089–3101

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y, Tanaka K, Masuda S and Takahashi H (1997) The rpoD1: gene of Synechococcus sp. strain PCC 7942 encodes the principal sigma factor of RNA polymerase. J Gen Appl Microbiol 43: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Sugita C, Ogata K, Shikata M, Jikuya H, Takano J, Furumichi M, Kanehisa M, Omata T, Sugiura M and Sugita M (2007) Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization. Photosynth Res 93: 55–67

    Google Scholar 

  • Sweeney BM and Borgese MB (1989) A circadian rhythm in cell division in a prokaryote the cyanobacterium Synechococcus WH7803. J Phycol 25: 183–186

    Article  Google Scholar 

  • Tadege M, Ratet P and Mysore KS (2005) Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends Plant Sci 10: 229–235

    Article  PubMed  CAS  Google Scholar 

  • Takai N, Nakajima M, Oyama T, Kito R, Sugita C, Sugita M, Kondo T and Iwasaki H (2006) A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci USA 103: 12109–12114

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi Y, Katayama M, Ito R, Takai N, Kondo T and Oyama T (2007) labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. Genes Dev 21: 60–70

    Article  PubMed  CAS  Google Scholar 

  • Tsinoremas NF, Ishiura M, Kondo T, Andersson CR, Tanaka K, Takahashi H, Johnson CH and Golden SS (1996) A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. EMBO J 15: 2488–2495

    PubMed  CAS  Google Scholar 

  • Tsinoremas NF, Kutach AK, Strayer CA and Golden SS (1994) Efficient gene transfer in Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies ­conjugation and chromosomal recombination. J Bacteriol 176: 6764–6768

    PubMed  CAS  Google Scholar 

  • Vazquez-Bermudez MF, Herrero A and Flores E (2003) Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942. FEMS Microbiol Lett 221: 155–159

    Article  PubMed  CAS  Google Scholar 

  • Vidan S and Snyder M (2001) Large-scale mutagenesis: yeast genetics in the genome era. Curr Opin Biotechnol 12: 28–34

    Article  PubMed  CAS  Google Scholar 

  • van Waasbergen LG, Dolganov N and Grossman AR (2002) nblS a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress in Synechococcus elongatus PCC 7942. J Bacteriol 184: 2481–2490

    Article  PubMed  CAS  Google Scholar 

  • Woelfle MA, Ouyang Y, Phanvijhitsiri K and Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14: 1481–1486

    Article  PubMed  CAS  Google Scholar 

  • Young MW and Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2: 702–715

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Laborde SM, Frankel LK and Bricker TM (2004) Four novel genes required for optimal photoautotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803 identified by in vitro transposon mutagenesis. J Bacteriol 186: 875–879

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the following undergraduate students who contributed to the S. elongatus functional genomics project: Kimberly Baker, Carla Blumentritt, Audra Boettcher-Herring, Zack Bussey, Krista Cole, Priyanka Desai, Robert Dover, Ramiro Fernandez, Randall Gil, Judith Kwarteng-Amaning, Shaun McMurtry, Minh Nguyen, Ogonna (Kinney) Nwawka, Victoria Omishakin, Cassie Reyna, Nancy Reyes, Johnathan Siefert, Lindsay Stautzenberger, Ola Tokunbo. Alejandra Gonzales, Brandi Mohler, Isabel Salinas, and Pamela Sandoval contributed as technicians to the early stages of this work and Drs. Lisa Campbell and Sunil Pabbi participated as sabbatical visitors. Dr. Phil Beremand of the Laboratory for Functional Genomics and Larry Harris-Haller of the Gene Technologies Laboratory provided technical advice and support. JGI provided the complete S. elongatus PCC 7942 sequence. This project was initiated with grants to Philip A Youderian and SSG by the National Science Foundation (MCB-0196144 to PY and MCB-9818031 to SSG) and continued with support by the US Department of Energy (DE-FG03-00ER15055 to SSG) and the National Institutes of Health (R01 GM59336 and P01 NS39546 to SSG). AT and development of CyanoBIKE were supported by NSF grant DBI- DBI-0516378 to Jeff Elhai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan S. Golden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chen, Y., Holtman, C.K., Taton, A., Golden, S.S. (2012). Functional Analysis of the Synechococcus elongatus PCC 7942 Genome. In: Burnap, R., Vermaas, W. (eds) Functional Genomics and Evolution of Photosynthetic Systems. Advances in Photosynthesis and Respiration, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1533-2_5

Download citation

Publish with us

Policies and ethics