Skip to main content

Bioinformatic Identification and Structural Characterization of a New Carboxysome Shell Protein

  • Chapter
  • First Online:
Functional Genomics and Evolution of Photosynthetic Systems

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 33))

Summary

Bacterial Microcompartments (BMCs) are organelles composed of a polyhedral protein shell that encapsulates metabolically related enzymes. The best characterized BMC, the carboxysome, which functions to enhance CO2 fixation by D-ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), is found in all cyanobacteria. It is an essential part of the cyanobacterial CO2 concentrating mechanism. The shell of BMCs is composed of small (∼100 amino acids) proteins with a conserved primary structure known as the BMC domain. Proteins that contain BMC domains were shown to form hexamers that assemble in layers to form the facets of BMC shells. Previous structural models of the carboxysome shell were built from proteins which contain a single BMC domain. Recently, a new carboxysome shell protein was detected bioinformatically in Prochlorococcus and Synechococcus species. The crystal structure of this protein, CsoS1D, unexpectedly was the first tandem BMC domain protein structurally characterized. These data, together with the transcriptomic evidence suggested that CsoS1D is a novel alpha-carboxysome shell protein with unique functionally important features. Here we used bioinformatic and comparative structural modeling to show that a hypothetical protein found in all beta cyanobacterial genomes is the ortholog of CsoS1D. We also discuss observations of other tandem BMC domain proteins, and we propose the hypothesis that the carboxysome shell may be a dynamic structure that responds to the environmental conditions within the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The exceptions are Bradyrhizobium sp. BTAi1 and three Acidithiobacillus ferrooxidans strains (ATCC 53993, ATCC 23270, and DSM 10331) sequenced to-date.

Abbreviations

BMC:

bacterial microcompartment

CA:

carbonic anhydrase

CCM:

CO2 concentrating mechanism

HL:

high light

HMM:

hidden Markov model

LL:

low light

MSA:

multiple sequence alignment

MV:

methyl viologen

PG:

phosphoglycolate

3-PGA:

3-phosphogly­ceric acid

RMSD:

root mean square deviation

RubisCO:

ribulose1,5-bisphosphate carboxylase/oxygenase

RuBP:

ribulose 1,5-bisphosphate

References

  • Allen KN (2007) Form finds function. Nat Chem Biol 3: 452–453

    Article  PubMed  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J and Schwede T (2006) The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Badger MR and Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54: 609–622

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Price GD, Long BM and Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57: 249–265

    Article  PubMed  CAS  Google Scholar 

  • Bobik TA, Havemann GD, Busch RJ, Williams DS and Aldrich HC (1999) The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-­propanediol degradation. J Bacteriol 181: 5967–5975

    PubMed  CAS  Google Scholar 

  • Cai F, Menon BB, Cannon GC, Curry KJ, Shively JM and Heinhorst S (2009) The pentameric vertex proteins are necessary for the icosahedral carboxysome shell to function as a CO2 leakage barrier. PLoS One 4: e7521

    Article  PubMed  Google Scholar 

  • DeLano WL (2002) DeLano Scientific Palo Alto, CA

    Google Scholar 

  • Dong G and Golden SS (2008) How a cyanobacterium tells time. Curr Opin Microbiol 11: 541–546

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (2008) A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol 4: e1000069

    Article  PubMed  Google Scholar 

  • Eisenhut M, von Wobeser EA, Jonas L, Schubert H, Ibelings BW, Bauwe H, Matthijs HCP and Hagemann M (2007) Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiology 144: 1946–1959

    Google Scholar 

  • Futschik ME and Carlisle B (2005) Noise-robust soft clustering of gene expression time-course data. J Bioinform Comput Biol 3: 965–988

    Google Scholar 

  • Gantt E and Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97 (3): 1486–1493

    PubMed  CAS  Google Scholar 

  • Glaser F, Pupko T, Paz I, Bell RE, Bechor D, Martz E and Ben-Tal N (2003) ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19: 163–164

    Article  PubMed  CAS  Google Scholar 

  • Heldt D, Frank S, Seyedarabi A, Ladikis D, Parsons JB, Warren MJ and Pickersgill RW (2009) Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with ethanol utilization in Clostridium kluyveri. Biochem J 423: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W, Kunin V, Sun H, Lapidus A, Hugenholtz P and Brune A (2009) Genomic analysis of Elusimicrobium minutum, the first cultivated representative of the phylum Elusimicrobia (formerly termite group 1). Appl Environ Microbiol 75: 2841–2849

    Article  PubMed  CAS  Google Scholar 

  • Hermann JC, Marti-Arbona R, Fedorov AA, Fedorov E, Almo SC, Shoichet BK and Raushel FM (2007) Structure-based activity prediction for an enzyme of unknown function. Nature 448: 775–781

    Article  PubMed  CAS  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A and Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793–806

    PubMed  CAS  Google Scholar 

  • Hwang KY, Chung JH, Kim S, Han YS and Cho Y (1999) Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat Struct Biol 6: 691–696

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Mutsuda M, Murayama Y, Tomita J, Hosokawa N, Terauchi K, Sugita C, Sutita M, Terauchi K, Sugita C, Sugita M, Kondo T, Iwasaki H (2009) Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proc Nat Acad Sci USA 106: 14168–14173

    Article  PubMed  CAS  Google Scholar 

  • Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M and Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309: 936–938

    Article  PubMed  CAS  Google Scholar 

  • Kerfeld CA, Heinhorst S, and Cannon GC (2010) Bacterial microcompartments. Annu Rev Microbiol in press

    Google Scholar 

  • Kiefer F, Arnold K, Künzli M, Bordoli L and Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37: D387–D392

    Article  PubMed  CAS  Google Scholar 

  • Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC and Kerfeld CA (2009) Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol 392: 319–333

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ishizuka T, Katayama M, Kanehisa M, Bhattacharyya-Pakrasi M, Pakrasi HB and Ikeuchi M (2004) Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 45: 290–299

    Article  PubMed  CAS  Google Scholar 

  • Kofoid E, Rappleye C, Stojiljkovic I and Roth J (1999) The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacterial 181: 5317–5329

    CAS  Google Scholar 

  • Kumar L and Futschik ME (2007) Mfuzz: A software package for soft clustering of microarray data. Bioinformation 2: 5–7

    Article  PubMed  Google Scholar 

  • Osanai T, Imamura S, Asayama M, Shirai M, Suzuki I, Murata N and Tanaka K (2006) Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res 13: 185–195

    Article  PubMed  CAS  Google Scholar 

  • Peitsch MC (1995) Protein modeling by E-mail. Nature Biotechnol 13: 658–660

    Article  CAS  Google Scholar 

  • Petrey D and Honig B (2003) GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol 374: 492–509

    Article  PubMed  CAS  Google Scholar 

  • Robert CE (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797

    Article  Google Scholar 

  • Sagermann M, Ohtaki A and Nikolakakis K (2009) Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompatment. Proc Natl Acad Sci USA 106: 8883–8887

    Article  PubMed  CAS  Google Scholar 

  • Schuster-Böckler B, Schultz J and Rahmann S (2004) HMM Logos for visualization of protein families. BMC Bioinformatics 5: 7

    Article  PubMed  Google Scholar 

  • Shively JM, Ball F, Brown DH and Saunders RE (1973) Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182: 584–586

    Article  PubMed  CAS  Google Scholar 

  • Shively JM, Bradburne CE, Aldrich HC, Bobik TA, Mehlman JL, Jin S and Baker SH (1998) Sequence homologs of the carboxysomal polypeptide CsoS1 of the thiobacilli are present in cyanobacteria and enteric bacteria that form carboxysomes-polyhedral bodies. Can J Bot 76: 906–916

    CAS  Google Scholar 

  • Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC and Yeates TO (2008) Atomic-level models of the bacterial carboxysome shell. Science 319: 1083–1086

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Sawaya MR and Yeates TO (2010) Structure and mechanisms of a protein-based organelle in Escherichia coli. Science 327: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA and Yeates TO (2007) Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biology 5: e144

    Article  PubMed  Google Scholar 

  • Vijayan V, Zuzow R and O’Shea EK (2009) Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 106: 22564–22568

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Postier BL and Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279: 5739–5751

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Sanderson S, Ezersky A, Savchenko A, Edwards A, Orengo C, Joachimiak A, Laskowshi RA and Thornton JM (2006) Towards fully automated structure-based function prediction in structural genomics: a case study. J Mol Biol 367: 1511–1522

    Article  Google Scholar 

Download references

Acknowledgments

We thank Gordon C. Cannon, Sabine Heinhorst and Claire Ting for helpful discussions, Seth Axen for preparing Fig. 14.4, Phil Hugenholtz for providing a template for Fig. 14.5 and Edwin Kim for preparing Fig. 14.7c and d.

FC and CAK’s current carboxysome research is supported by NSF grant and MCB-085170. The work of CAK and GS is performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract number DE-AC02-05CH11231, and Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl A. Kerfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cai, F., Kerfeld, C.A., Sandh, G. (2012). Bioinformatic Identification and Structural Characterization of a New Carboxysome Shell Protein. In: Burnap, R., Vermaas, W. (eds) Functional Genomics and Evolution of Photosynthetic Systems. Advances in Photosynthesis and Respiration, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1533-2_14

Download citation

Publish with us

Policies and ethics