Skip to main content

Physical and Chemical Principles

  • Chapter
  • First Online:
  • 1630 Accesses

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 44))

Abstract

The land surface affects the atmosphere via the exchange of heat, matter (moisture, gases, aerosols), and momentum. The exchange of heat and moisture, for instance, are described by the energy and water budgets that are coupled via the water-vapor flux due to evapotranspiration (i.e., the sum of transpiration and evaporation). Coupled energy- and water-budget equations are required to determine the temperature and moisture conditions at the atmosphere-surface interface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Avissar R (1993) Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective. Bound Layer Meteorol 64:127–148

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Chen F, Dudhia J (2000) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon Wea Rev 129:569–585

    Google Scholar 

  • Claussen M (1990) Area-averaging of surface fluxes in a neutrally stratified, horizontally inhomogeneous atmospheric boundary layer. Part A General topics. Atmos Environ 24:1349–1360

    Article  Google Scholar 

  • Damköhler G (1940) Influence of turbulence on the velocity of flames in gas mixtures. Z Elektrochem 46:601–626

    Google Scholar 

  • Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res 83C:1889–1903

    Article  Google Scholar 

  • Dingman SL (1994) Physical hydrology. Macmillan, New York.

    Google Scholar 

  • Dolman AJ (1992) A note on areally-averaged evaporation and the value of the effective surface conductance. J Hydrol 138:583–589

    Article  Google Scholar 

  • Giorgi F, Avissar R (1997) Representation of heterogeneity effects in earth system modeling: experience from land surface modeling. Rev Geophys 35:413–438

    Article  Google Scholar 

  • Hasson AS, Chung MY, Kuwata KT, Converse AD, Krohn D, Paulson SE (2003) Reaction of Criegee intermediates with water vapor: an additional source of OH radicals in alkene ozonolysis? J Phys Chem A 107:6176–6182. doi:10.1021/jp0346007

    Article  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomal conductance found in canopies in the field. Philos Trans R Soc Lond 273B:593–610

    Article  Google Scholar 

  • Koster RD, Suarez MJ (1992) A comparative analysis of two land surface heterogeneity representations. J Clim 5:1379–1390

    Article  Google Scholar 

  • Kramm G, Dlugi R (1994) Modelling of the vertical fluxes of nitric acid, ammonia, and ammonium nitrate in the atmospheric surface layer. J Atmos Chem 18:319–357

    Article  Google Scholar 

  • Kramm G, Dlugi R, Dollard GJ, Mölders N, Müller H, Seiler W, Sievering H (1995) On the dry deposition of ozone and reactive nitrogen compounds. Atmos Environ 29:3209–3231

    Article  Google Scholar 

  • Kramm G, Beier N, Foken T, Müller H, Schröder P, Seiler W (1996) A SVAT scheme for NO, NO2, and O3- model description. Meteorol Atmos Phys 61:89–106

    Article  Google Scholar 

  • Lhomme J-P (1992) Energy balance of heterogeneous terrain: averaging the controlling parameters. Agric For Meteorol 61:11–21

    Article  Google Scholar 

  • Mahrt L, Sun J (1995) Dependence of exchange coefficients on averaging scale and grid size. Q J R Meteorol Soc 121:1835–1852

    Article  Google Scholar 

  • Mölders N (1999) Einfache und akkumulierte Landnutzungsänderungen und ihre Auswirkungen auf Evapotranspiration, Wolken- und Niederschlagsbildung. University of Leipzig, Leipzig

    Google Scholar 

  • Mölders N (2001) On the uncertainty in mesoscale modeling caused by surface parameters. Meteorol Atmos Phys 76:119–141

    Article  Google Scholar 

  • Mölders N, Raabe A (1996) Numerical investigations on the influence of subgrid-scale surface heterogeneity on evapotranspiration and cloud processes. J Appl Meteorol 35:782–795

    Article  Google Scholar 

  • Mölders N, Raabe A, Tetzlaff G (1996) A comparison of two strategies on land surface heterogeneity used in a mesoscale β meteorological model. Tellus 48A:733–749

    Google Scholar 

  • Mölders N, Haferkorn U, Döring J, Kramm G (2003) Long-term numerical investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS) – Part II: Evaluation, sensitivity, and uncertainty. Meteorol Atmos Phys 84:137–156

    Article  Google Scholar 

  • Mölders N, Jankov M, Kramm G (2005) Application of Gaussian error propagation principles for theoretical assessment of model uncertainty in simulated soil processes caused by thermal and hydraulic parameters. J Hydromet 6:1045–1062

    Article  Google Scholar 

  • Pielke RA (2002) Mesoscale meteorological modeling. Academic, New York

    Google Scholar 

  • Rosenberg NJ, McKenney MS, Martin P (1990) Evapotranspiration in a greenhouse-warmed world: a review and a simulation. Agric For Meteorol 47:303–320

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (1997) Atmospheric chemistry and physics, from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Seth A, Giorgi F, Dickinson RE (1994) Simulating fluxes from heterogeneous land surfaces: explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS). J Geophys Res 99:18651–18667

    Article  Google Scholar 

  • Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. I: Pure snow. J Atmos Sci 37:2712–2733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Mölders .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mölders, N. (2012). Physical and Chemical Principles. In: Land-Use and Land-Cover Changes. Atmospheric and Oceanographic Sciences Library, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1527-1_2

Download citation

Publish with us

Policies and ethics