Skip to main content

The Performance of Viruliferous and Non-Viruliferous Cassava Biotype Bemisia tabaci on Amino Acid Diets

  • Chapter
  • First Online:
The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants

Abstract

The role of amino acids is examined through a determination of their ­influence on Bemisia tabaci survival, honeydew secretion and oviposition. B. tabaci showed better performance when feeding on a diet of 20 amino acids more mimicking cassava host plants (Manihot esculenta Crantz.) as opposed to elevated levels of the amino acids. On a concentration range, 80% survival was observed at 94 h on all concentrations of serine, alanine, proline and phenylalanine. At the higher concentrations, asparagine, glutamic acid, aspartic acid, arginine and tryptophan caused poor survival of whiteflies. Greater oviposition occurred on the lower concentrations of aspartic acid, glutamic acid, arginine and histidine but the reverse was true for asparagine. On the basis of B. tabaci survival, honeydew secretion and oviposition, the better amino acids assorted as follows: asparagine, serine, proline, glutamic acid, glutamine, ­threonine, alanine, aspartic acid/cysteine and glycine; and these were predominantly non-essential amino acids. Performance of viruliferous and non-viruliferous B. tabaci on four amino acid diets viz., asparagine, serine, proline and alanine showed that B. tabaci survival was influenced by an interaction effect between whitefly viruliferous status and diet type. This accounted for the significantly higher survival of ­viruliferous whiteflies on the asparagine diet, and non-viruliferous whiteflies on the serine diet as compared to other treatment combinations. Honeydew secretion was influenced by a main diet-type effect. Significantly more honeydew droplets were secreted when feeding occurred on the asparagine diet as compared to the proline and serine diets. Oviposition was not influenced by either an interactive or main effect. Based on analysis, oviposition was not significantly different between viruliferous and non-viruliferous whiteflies. The physiological basis of amino acids is discussed and an insight is presented on the possible role of other nutrients, plant semiochemicals and endosymbionts in the interaction of B. tabaci with its host and begomoviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajayi O (1986) The effect of barley yellow dwarf virus on the amino acid composition of spring wheat. Ann Appl Biol 108:145–149

    Article  CAS  Google Scholar 

  • Ajayi O, Dewar AM (1983) The effect of barley yellow dwarf virus on field populations of the cereal aphids Sitobion avenae and Metopolophium dirhodum. Ann Appl Biol 103:1–11

    Article  Google Scholar 

  • Akey DH, Beck SD (1971) Continuous rearing of the pea aphid, Acyrthosiphon pisum, on a holidic diet. Ann Entomol Soc Am 64:353–356

    Google Scholar 

  • Akey DH, Beck SD (1972) Nutrition of the pea aphid Acyrthosiphon pisum: requirements for trace metals, sulphur and cholesterol. J Insect Physiol 8:1901–1914

    Article  Google Scholar 

  • Antony B, Lisha VS, Palaniswami MS, Sugunan VS, Makeshkumar T, Henneberry TJ (2006) Bemisia tabaci (Homoptera: Aleyrodidae) and Indian cassava mosaic virus transmission. Int J Trop Insect Sci 26:176–182

    CAS  Google Scholar 

  • Blackmer JL, Byrne DN (1999) The effect of Bemisia tabaci on amino acid balance in Cucumis melo. Entomol Exp Appl 93:315–319

    CAS  Google Scholar 

  • Blackmer JL, Lee LL (2008) Nutritional factors influencing whitefly development and flight behaviour: the search for a suitable bioassay to test hypothesis. Bemisia international workshop proceedings. J Insect Sci 8:6–7

    Google Scholar 

  • Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schutz S, de Both MTJ, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato whitefly interaction. Plant Physiol 151:925–935

    Article  PubMed  CAS  Google Scholar 

  • Bragdon JC, Mittler TE (1963) Differential utilisation of amino acids by Myzus persicae (Sulzer) fed on artificial diets. Nature 198:209–210

    Article  Google Scholar 

  • Byrne DN, Hendrix DL, William LH III (2003) Presence of trehalulose and other oligosaccharides in hemipteran honeydew, particular Aleyrodidae. Physiol Entomol 28:144–149

    Article  CAS  Google Scholar 

  • Carter W (1927) A technique for use with Homopteran vectors of plant disease with special reference to the sugar beet leafhopper, Euttetix tenellus Baker. J Agric Res 34:449–451

    Google Scholar 

  • Colvin J, Otim-Nape GW, Holt J, Omongo C, Seal S, Stevenson P, Gibson G, Cooter RJ, Thresh JM (1999) Factors driving the current epidemic of severe cassava mosaic disease in East Africa. In: VIIth international plant virus epidemiology symposium. Plant virus epidemiology: current status and future prospects, Aguadulce (Almeria)

    Google Scholar 

  • Costa HS, Brown JK, Byrne DN (1991) Life history traits of the whitefly, Bemisia tabaci (Homoptera: Aleyrodidae), on six virus-infected or healthy plant species. Environ Entomol 20:1102–1107

    Google Scholar 

  • Costa HS, Henneberry TJ, Toscano NC (1997) Effects of antibacterial materials on Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition, growth, survival and sex ratio. Ann Entomol Soc Am 90:333–339

    CAS  Google Scholar 

  • Crafts-Brandner SJ (2002) Plant nitrogen status rapidly alters amino acid metabolism and excretion in Bemisia tabaci. J Insect Physiol 48:33–41

    Article  PubMed  CAS  Google Scholar 

  • Dadd RH, Krieger DL (1968) Dietary amino acid requirements of the aphid Myzus persicae. J Insect Physiol 14:741–764

    Article  CAS  Google Scholar 

  • Davidson EW, Patron RB, Lacey LA, Frutos R, Vey A, Hendrix DL (1996) Activity of natural toxins against the silverleaf whitefly, Bemisia argentifolii using a novel feeding bioassay system. Entomol Exp Appl 79:25–32

    Article  CAS  Google Scholar 

  • Dorschner KW (1993) Survival, growth and reproduction of two aphid species on sucrose solutions containing host and non host honeydews. Entomol Exp Appl 68:31–41

    Article  Google Scholar 

  • Douglas AE (1993) The nutritional quality of phloem sap utilised by natural aphid populations. Ecol Entomol 18:31–38

    Article  Google Scholar 

  • Douglas AE, Prosser WA (1992) Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis. J Insect Physiol 38:565–568

    Article  CAS  Google Scholar 

  • Ehrhardt P (1968) Die Wirkung Verschiedener Spurenelemente auf Wachstum, Reproduktion und Symbionten von Neomyzus circumflexus Buckt (Aphidae, Homoptera, Insecta) bei Kunstlicher Ernahrung. Z Vergl Physiol 58:47–75

    Article  Google Scholar 

  • Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194

    Article  Google Scholar 

  • Elbert A, Nauen R (1996) Bioassays for imidacloprid for resistance monitoring against the whitefly Bemisia tabaci. In: Brighton crop protection conference: pests and diseases, vol 2, Proceedings of an international conference. Brighton, 18–21 Nov, pp 731–738

    Google Scholar 

  • Fujita A, Mitsuhashi J (1995) Effects of dietary amino acids on the production of sexual morphs by the green peach aphid Myzus persicae. Arch Insect Biochem Physiol 29:259–268

    Article  CAS  Google Scholar 

  • Harpaz I, Applebaum SW (1961) Accumulation of asparagine in maize plants infected by maize rough dwarf virus and its significance in plant virology. Nature 192:780–782

    Article  CAS  Google Scholar 

  • Hopkins RJ, Birch ANE, Griffiths DW, Baur R, Stadler E, Mc Kinlay RG (1997) Leaf surface compounds and oviposition preference of turnip root fly Delia floralis. The role of glucosinolate and nonglucosinolate compounds. J Chem Ecol 23:629–643

    Article  CAS  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  PubMed  CAS  Google Scholar 

  • Isaacs R, Byrne DN, Hendrix DL (1998) Feeding rates and carbohydrate metabolism by Bemisia tabaci (Homoptera: Aleyrodidae) on different quality phloem sap. Physiol Entomol 23:241–248

    Article  CAS  Google Scholar 

  • Jancovich JK, Davidson EW, Lavine M, Hendrix DL (1997) Feeding chamber and diet for culture of nymphal Bemisia argentifolii (Homoptera: Aleyrodidae). J Econ Entomol 90:628–633

    Google Scholar 

  • Jimenez N, Gonzalez-Candelas F, Silva FJ (2000) Prephenate dehydratase from the aphid endosymbiont (Buchnera) displays changes in the regulatory domain that suggests its desensitization to inhibition by phenylalanine. J Bacteriol 182:2967–2969

    Article  PubMed  CAS  Google Scholar 

  • Kehr J (2006) Phloem sap proteins, their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 57:767–774

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Koh H-S, Fukami H (1985) Isolation of C-glycosyl flavones as probing stimulants of plant hoppers in rice plant. J Chem Ecol 11:441–453

    Article  CAS  Google Scholar 

  • Koyama K (1984) Nutritional Physiology of the brown plant hopper, Nilaparvata lugens Stal. (Hemiptera: Delphacidae). Chin J Entomol 4:93–107

    Google Scholar 

  • Krieger DL (1971) Rearing several aphid species on synthetic diet. Ann Entomol Soc Am 64:1176–1177

    Google Scholar 

  • Kunkel H (1976) Membrane feeding systems in aphid research. In: Harris KF, Maramorosch K (eds) Aphids as virus vectors. Academic, New York

    Google Scholar 

  • Law JH, Ribeiro JMC, Wells MA (1992) Biochemical insights derived from insect diversity. Annu Rev Biochem 61:87–111

    Article  PubMed  CAS  Google Scholar 

  • Matthews REF (1981) Plant virology, 2nd edn. Academic, New York

    Google Scholar 

  • Mitsuhashi J (1979) Artificial rearing and aseptic rearing of leafhopper vectors: applications in virus and MLO research. In: Maramorosch K, Harris KF (eds) Leafhopper vectors and plant disease agents. Academic, New York

    Google Scholar 

  • Mittler TE (1967) Gustation of dietary amino acids by the aphid Myzus persicae. Entomol Exp Appl 10:87–96

    Article  CAS  Google Scholar 

  • Mittler TE, Koski P (1976) Development of meridic and oligidic diets for rearing the aphid Myzus persicae. J Insect Physiol 22:1135–1141

    Article  CAS  Google Scholar 

  • Sandstrom J (1994) Performance of pea aphid (Acyrthosiphon pisum) clones on host plants and synthetic diets mimicking the same plants phloem amino acid composition. J Insect Physiol 40:1051–1057

    Article  Google Scholar 

  • Sasaki T, Hayashi H, Ishikawa H (1991) Growth and reproduction of the symbiotic and asymbiotic pea aphids, Acyrthosiphon pisum maintained on artificial diets. J Insect Physiol 37:749–756

    Article  CAS  Google Scholar 

  • Simpson SJ, Abisgold JD, Douglas AE (1995) Response of the pea aphid Acyrthosiphon pisum to variation in dietary levels of sugar and amino acids- the significance of amino acid quality. J Insect Physiol 41:71–75

    Article  CAS  Google Scholar 

  • Sogowa K (1974) Studies on the feeding habits of the brown planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae). IV. probing stimulant. Appl Entomol Zool 9:204

    Google Scholar 

  • Spaulding AW, von Dohlen CD (1998) Phylogenetic characterization and molecular evolution of bacterial endosymbionts in Psyllids (Hemiptera: Sternorrhyncha). Mol Biol Evol 15:1506–1513

    PubMed  CAS  Google Scholar 

  • Srivastava PN, Auclair JL (1971) Influence of sucrose concentration on diet uptake and performance by the pea aphid Acyrthosiphon pisum. Ann Entomol Soc Am 64:739–743

    CAS  Google Scholar 

  • Thao ML, Baumann P (2004) Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol 70:3401–3406

    Article  PubMed  CAS  Google Scholar 

  • Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P (2000) Cospeciation of Psyllids and their prokaryotic endosymbionts. Appl Environ Microbiol 66:2898–2905

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, Adams DG, Nessler CL, Brown JK, Bohnert HJ (1995) Tryptophan decarboxylase, tryptamine, and reproduction of the whitefly. Plant Physiol 109:717–720

    PubMed  CAS  Google Scholar 

  • Thompson WMO (2002) Comparison of Bemisia tabaci (Homoptera: Aleyrodidae) development on uninfected cassava plants and cassava plants infected with East African cassava mosaic virus. Ann Entomol Soc Am 95:387–394

    Article  Google Scholar 

  • Thompson WMO (2006) Influence of amino acids on cassava biotype Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) when feeding on an artificial system. J Entomol 3:198–203

    Article  CAS  Google Scholar 

  • Van Emden HF, Bashford MA (1971) The performance of Brevicoryne brassicae and Myzus ­persicae in relation to plant age and leaf amino acids. Entomol Exp Appl 14:349–360

    Article  Google Scholar 

  • von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug β proteobacterial endosymbionts contain γ- proteobacterial symbionts. Nature 412:433–436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winston M. O. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Thompson, W.M.O. (2011). The Performance of Viruliferous and Non-Viruliferous Cassava Biotype Bemisia tabaci on Amino Acid Diets. In: Thompson, W. (eds) The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1524-0_8

Download citation

Publish with us

Policies and ethics