Skip to main content

Integrated Agri-Aquaculture Systems

  • Chapter
  • First Online:
Genetics, Biofuels and Local Farming Systems

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 7))

Abstract

The integration of aquaculture within wider farming systems has been promoted as a way of increasing food production, conserving the environment and ensuring food security. Such systems are known as integrated agri-aquaculture systems (IAAS), which are characterized by their capacity to generate synergies between farm enterprises. Agri-aquaculture systems are generally family farming systems, comprised of three major sub-systems: aquaculture, agriculture and household. In this chapter, most of the common positive interactions of agri-aquaculture systems are reviewed, such as: (1) the use of animal manure as pond fertilizer, (2) the use of crop by-products as supplementary feed for fish, (3) the use of pond sediments as terrestrial crop fertilizers, and (4) the use of aquaculture wastewater for crop irrigation. Other indirect positive interactions between farm components on agri-aquaculture systems are also reviewed, such as the control of pests and weeds by fish in rice fields, the control of malaria, and the use of on-farm substrates for periphyton growth. This review shows how synergies are usually tested through controlled experiments that do not provide sound information about the behavior of the system as a whole. When integrated farming systems are analyzed, trade-off becomes evident among farming components, and therefore the opportunities for positive interactions that they generate. These trade-offs make difficult the inclusion of different kinds of synergies within the same farm. Approaches for the analysis of agri-aquaculture systems must involve broader scales, and as such, resilience theory provides a useful framework for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adger NW (2000) Social and ecological resilience: are they related? Prog Hum Geogr 24(3):347–364

    Google Scholar 

  • Aditya G, Pal S, Saha GK (2010) An assessment of fish species assemblages in rice fields in West Bengal, India: implications for management. J Appl Icthtyol 26:535–539. doi:10.1111/j.1439-0426.2010.01460.x

    Google Scholar 

  • Ahmed N, Garnett ST (2010) Sustainability of freshwater prawn farming in rice fields in southwest Bangladesh. J Sustain Agric 34:659–679. doi:10.1080/10440046.2010.493397

    Google Scholar 

  • Ahmed M, Lorica MH (2002) Improving developing country food security through aquaculture development – lessons from Asia. Food Policy 27(2):125–141. doi:10.1016/S0306-9192(02)00007-6

    Google Scholar 

  • Ahmed N, Demaine H, Muir JF (2008a) Freshwater prawn farming in Bangladesh: history, present status and future prospects. Aquacult Res 39(8):806–819. doi:10.1111/j.1365-2109.2008.01931.x

    Google Scholar 

  • Ahmed N, Brown JH, Muir JF (2008b) Freshwater prawn framing in gher systems in southwest Bangladesh. Aquac Econ Manage 12:207–223

    Google Scholar 

  • Ahmed N, Ellison EH, Muir JF (2010) Rice fields to prawn farms: a blue revolution in southwest Bangladesh? Aquac Int 18:555–574. doi:10.1007/s10499-009-9276-0

    Google Scholar 

  • Al-Jaloud AA, Hussian G, Karimulla S, Al-Hamidi AH (1996) Effect of irrigation and nitrogen on yield and yield components of two rapeseed cultivars. Agric Water Manage 30(1):57–68

    Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Google Scholar 

  • Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 1971:1–24

    Google Scholar 

  • Amilhat E, Lorenzen K, Morales EJ, Yakupitiyage A, Little DC (2009) Fisheries production in Southeast Asian farmer-managed aquatic systems (FMAS). I. Characterisation of systems. Aquaculture 296:219–226. doi:10.1016/j.aquaculture.2009.08.014

    Google Scholar 

  • Arthur RI, Lorenzen K, Homekingkeo P, Sidavong K, Sengvilaikham B, Garaway CJ (2010) Assessing impacts of introduced aquaculture species on native fish communities: Nile tilapia and major carps in SE Asian freshwaters. Aquaculture 299:81–88. doi:10.1016/j.aquaculture.2009.11.022

    Google Scholar 

  • Avnimelech Y, Ritvo G (2003) Shrimp and fish pond soils: processes and management. Aquaculture 220:549–567

    Google Scholar 

  • Avnimelech Y, Verdegem MCJ, Kurup M, Keshavanath P (2008) Sustainable land-based aquaculture: rational utilization of water, land and feed resources. Mediterr Aquac J 1(1):45–55

    Google Scholar 

  • Azim ME, Wahab MA, van Dam AA, Beveridge MCM, Verdegem MCJ (2001) The potential of periphyton-based culture of two Indian major carps, rohu Labeo rohita (Hamilton) and gonia Labeo gonius (Linnaeus). Aquac Res 32(3):209–216. doi:10.1046/j.1365-2109.2001.00549.x

    CAS  Google Scholar 

  • Azim ME, Wahab MA, Verdegem MCJ, van Dam AA, van Rooij JM, Beveridge MCM (2002) The effects of artificial substrates on freshwater pond productivity and water quality and the implications for periphyton-based aquaculture. Aquat Living Resour 15:231–241

    Google Scholar 

  • Azim ME, Verdegem MCJ, Mantigh I, van Dam AA, Beveridge MCM (2003) Ingestion and utilization of periphyton grown on artificial substrates by Nile tilapia, Oreochromis niloticus L. Aquac Res 34:85–92

    Google Scholar 

  • Bailey C (2008) Human dimensions of an ecosystem approach to aquaculture. In: Soto D, Aguilar-Manjarrez J, Hishamunda N (eds) Building an ecosystem approach to aquaculture. FAO, Rome, pp 37–46

    Google Scholar 

  • Bairagi A, Ghosh KS, Sen SK, Ray AK (2002) Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresour Technol 85:17–24

    PubMed  CAS  Google Scholar 

  • Belton B, Little DC (2008) The development of aquaculture in central Thailand: domestic demand versus export-led production. J Agrarian Change 8(1):123–143

    Google Scholar 

  • Berg H (2001) Pesticide use in rice and rice–fish farms in the Mekong Delta, Vietnam. Crop Prot 20:897–905

    CAS  Google Scholar 

  • Berg H (2002) Rice monoculture and integrated rice-fish farming in the Mekong Delta, Vietnam-economic and ecological considerations. Ecol Econ 41:95–107

    Google Scholar 

  • Bergquist DA (2007) Sustainability and local people’s participation in coastal aquaculture: regional differences and historical experiences in Sri Lanka and the Philippines. Environ Manage 40:787–802. doi:10.1007/s00267-006-0108-y

    PubMed  Google Scholar 

  • Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment: a review. Bioresour Technol 100(22):5444–5453. doi:10.1016/j.biortech.2008.11.027

    PubMed  CAS  Google Scholar 

  • Bhakta JN, Sarkar D, Jana S, Jana BB (2004) Optimizing fertilizer dose for rearing stage production of carps under polyculture. Aquaculture 239:125–139. doi:10.1016/j.aquaculture.2004.03.006

    Google Scholar 

  • Bolognesi Da Silva L, Barcellos LJG, Quevedo RM, de Souza SMG, Kreutz LC, Ritter F, Finco JA, Bedin AC (2006) Alternative species for traditional carp polyculture in southern South America: initial growing period. Aquaculture 255(1–4):417–428. doi:10.1016/j.aquaculture.2005.12.024

    Google Scholar 

  • Bondad-Reantaso MG, Bueno P, Demaine H, Pongthanapanich T (2009) Development of an indicator system for measuring the contribution of small-scale aquaculture to sustainable rural development. In: Bondad-Reantaso MG, Prein M (eds) Measuring the contribution of small-scale aquaculture: an assessment. FAO Fisheries and Aquaculture Technical Paper 534. FAO, Rome, pp 161–179

    Google Scholar 

  • Bosma RH (2007) Using fuzzy logic models to reveal farmers’ motives to integrate livestock, fish, and crops. Ph.D. thesis, Wageningen University, Wageningen

    Google Scholar 

  • Bosma RH, Phong LT, Kaymak U, Van Den Berg J, Udo HMJ, Van Mensvoort MEF, Tri LQ (2006) Assessing and modelling farmers’ decision making on integrating aquaculture into agriculture in the Mekong Delta. NJAS 53(3–4):281–300

    Google Scholar 

  • Bosma RH, Udo HMJ, Verreth JAJ, Visser LE, Nam CQ (2007) Agriculture diversification in the Mekong Delta: farmers’ motives and contributions to livelihoods. Asian J Agric Dev 2(1–2): 49–66

    Google Scholar 

  • Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R (2010) Aquaculture: global status and trends. Phil Trans R Soc B 365:2897–2912. doi:10.1098/rstb.2010.0170

    PubMed  Google Scholar 

  • Boyd CE (1995) Bottom soils, sediment, and pond aquaculture. Chapman & Hall, New York

    Google Scholar 

  • Boyd CE, Bowman JR (1997) Pond bottom soils. In: Egna HS, Boyd CE (eds) Dynamics of pond aquaculture. CRC Press, Boca Raton, pp 135–162

    Google Scholar 

  • Breine JJ, Teugels GG, Podoor N, Ollevier F (1996) First data on rabbit dung as a water fertilizer in tropical fish culture and its effect on the growth of Oreochromis niloticus (Teleostei, Cichlidae). Hydrobiologia 321(2):101–107. doi:10.1007/BF00023167

    Google Scholar 

  • Brookfield H, Parsons H (2007) Family farms: survival and prospect: a worldwide analysis. Routledge, London

    Google Scholar 

  • Brummett RE (1999) Integrated aquaculture in sub-Saharan Africa. Environ Dev Sustain 1:315–321

    Google Scholar 

  • Brummett RE, Williams MJ (2000) The evolution of aquaculture in African rural and economic development. Ecol Econ 33(2):193–203. doi:10.1016/S0921-8009(99)00142-1

    Google Scholar 

  • Casaca JM (2008) Policultivos de peixes integrados à produção vegetal: avaliação econômica e sócio ambiental (peixe-verde). Ph.D. thesis, UNESP, Jaboticabal

    Google Scholar 

  • Cassman KG, Wood S, Choo PS, Cooper HD, Devendra C, Dixon J, Gaskell J, Kahn S, Lal SR, Lipper L, Pretty J, Primavera J, Ramankutty N, Viglizzo E, Wiebe K (2005) Cultivated systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1, Millennium ecosystem assessment series. Island Press, Washington, DC, pp 745–794

    Google Scholar 

  • Cavalett O, Queiroz JF, Ortega E (2006) Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil. Ecol Modell 193:205–224

    Google Scholar 

  • Chikafumbwa FJKT, Costa-Pierce BA, Jamu DM, Kadongola WK, Balarin JD (1993) Investigations on the use of on-farm resources as pond inputs to culture Tilapia rendalli and Oreochromis shiranus on smallholder farms in rural Malawi. Aquaculture 117:261–271

    Google Scholar 

  • Chopin T, Troell M, Reid GK, Knowler D, Robinson SMC, Neori A, Buschmann AH, Pang SJ, Fang J (2010) Integrated multi-trophic aquaculture. In: Advancing the aquaculture Agenda: workshop proceedings. OECD, Paris, pp 195–218, http://www.sourceoecd.org/agriculture/9789264088719

  • Coates D (1984) A survey of the fish fauna of Sudanese irrigation systems with reference to the use of fishes in the management of ecological problems (the control of aquatic weeds, malaria and infective schistosomiasis). Fish Manage 15(3):81–96

    Google Scholar 

  • Conway G (1987) The properties of agroecosystems. Agric Syst 24:95–117

    Google Scholar 

  • Costa-Pierce BA (1987) Initial feasibility of integrated aquaculture on lava soils in Hawaii. Aquacult Eng 6:171–182

    Google Scholar 

  • Costa-Pierce BA (2002) Ecological aquaculture: the evolution of the blue revolution. Blackwell, Oxford

    Google Scholar 

  • Dalsgaard JPT, Oficial RT (1997) A quantitative approach for assessing the productive performance and ecological contributions of smallholder farms. Agric Syst 55(4):503–533

    Google Scholar 

  • Dalsgaard JPT, Lightfoot C, Christensen B (1995) Towards quantification of ecological sustainability in farming systems analysis. Ecol Eng 4:181–189

    Google Scholar 

  • Das SK, Jana BB (2003) Pond fertilization regimen: state of the art. J Appl Aquac 13(1–2):35–66

    Google Scholar 

  • Dashu N, Jianhuo W (1996) Material cycles and economic returns in ricefish ecosystem. In: Mackay KT (ed) Rice-fish culture in China. IDRC, Ottawa, pp 177–182

    Google Scholar 

  • Datta A, Nayak DR, Sinhababu DP, Adhya TK (2009) Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of Eastern India. Agric Ecosyst Environ 129(1–3):228–237. doi:10.1016/j.agee.2008.09.003

    CAS  Google Scholar 

  • De Silva SS (1993) Supplementary feeding in semi-intensive aquaculture systems. In: New MB, Tacon AGJ, Csavas I (eds) Farm-made aquafeeds. Proceedings of the FAO/AADCP regional expert consultation on farm-made aquafeeds, 14–18 Dec 1992, Bangkok. FAO-RAPA/AADCP, Bangkok, pp 24–60

    Google Scholar 

  • De Silva SS, Davy FB (2010) Success stories in Asian aquaculture. Springer, Dordrecht

    Google Scholar 

  • De Silva SS, Davy FB, Phillips MJ (2010) Synthesis and lessons learned. In: De Silva SS, Davy FB (eds) Success stories in Asian aquaculture. Springer, Ottawa, pp 187–199

    Google Scholar 

  • De Silva SS, Nguyen TTT, Turchini GM, Amarasinghe US, Abery NW (2009) Alien species in aquaculture and biodiversity: a paradox in food production. Ambio 38(1):24–28

    PubMed  Google Scholar 

  • Delgado CL, Wada N, Rosegrant MW, Meijer S, Ahmed M (2003) Fish to 2020: supply and demand in changing global markets. IFPRI/World Fish Center, Washington, DC

    Google Scholar 

  • Demaine H (2009) Rural aquaculture: reflections ten years on. In: Bondad-Reantaso MG, Prein M (eds) Measuring the contribution of small-scale aquaculture: an assessment. FAO, Rome, pp 45–58

    Google Scholar 

  • Devendra C, Thomas D (2002a) Crop–animal interactions in mixed farming systems in Asia. Agric Syst 71:27–40

    Google Scholar 

  • Devendra C, Thomas D (2002b) Smallholder farming systems in Asia. Agric Syst 71:17–25

    Google Scholar 

  • Dey MM, Kambewa P, Prein M, Jamu D, Paraguas FJ, Pemsl DE, Briones RM (2007) WorldFish centre- impact of the development and dissemination of integrated aquaculture–agriculture technologies in Malawi. In: Waibel H, Zilberman D (eds) International research on natural resource management: advances in impact assessments. FAO/CAB International, Wallingford, pp 118–146

    Google Scholar 

  • Dey MM, Paraguas FJ, Kambewa P, Pemsl DE (2010) The impact of integrated aquaculture–agriculture on small-scale farms in Southern Malawi. Agric Econ 41:67–79. doi:10.1111/j.1574-0862.2009.00426.x

    Google Scholar 

  • Diana JS (2009) Aquaculture production and biodiversity conservation. Bioscience 59(1):27–38. doi:10.1525/bio.2009.59.1.7

    Google Scholar 

  • Diana JS, Szyper JP, Batterson TR, Boyd CE, Piedrahita RH (1997) Water quality in ponds. In: Egna HS, Boyd CE (eds) Dynamics of pond aquaculture. CRC Press, Boca Raton, pp 53–71

    Google Scholar 

  • Dongmeza E, Steinbronn S, Francis G, Focken U, Becker K (2009) Investigations on the nutrient and antinutrient content of typical plants used as fish feed in small scale aquaculture in the mountainous regions of Northern Vietnam. Anim Feed Sci Technol 149:162–178

    CAS  Google Scholar 

  • Dongmeza E, Francis G, Steinbronn S, Focken U, Becker K (2010) Investigations on the digestibility and metabolizability of the major nutrients and energy of maize leaves and barnyard grass in grass carp (Ctenopharyngodon idella). Aquac Nutr 16(3):313–326. doi:10.1111/j.1365-2095.2009.00667.x

    CAS  Google Scholar 

  • Duc NM (2008) Farmers’ satisfaction with aquaculture – a logistic model in Vietnam. Ecol Econ 68:525–531. doi:10.1016/j.ecolecon.2008.05.009

    Google Scholar 

  • Duc NM (2009) Economic contribution of fish culture to farm income in Southeast Vietnam. Aquac Int 17:15–29. doi:10.1007/s10499-008-9176-8

    Google Scholar 

  • Edwards P (1993) Environmental issues in integrated agriculture-aquaculture and wastewater-fed fish culture system. In: Pullin RSV, Rosenthal H, Maclean JL (eds) Environment and aquaculture in developing countries. ICLARM Conference Proceedings 31. ICLARM, Manila, pp 139–170

    Google Scholar 

  • Edwards P (1998) A systems approach for the promotion of integrated aquaculture. Aquac Econ Manage 2(1):1–12

    Google Scholar 

  • Edwards P (1999) Towards increased impact of rural aquaculture. Discussion paper prepared for the first meeting of the APFIC ad-hoc working group of experts on rural aquaculture. FAO Regional Office for Asia and the Pacific (RAP), Bangkok

    Google Scholar 

  • Edwards P (2008) From integrated carp polyculture to intensive monoculture in the Pearl River Delta, South China. Aquac Asia 13(2):3–7

    Google Scholar 

  • Edwards P, Pullin RSV, Gartner JA (1988) Research and education for the development of integrated crop-livestock-fish farming systems in the tropics. ICLARM studies and reviews 16. ICLARM, Manila

    Google Scholar 

  • Ellis EC, Wang SM (1997) Sustainable traditional agriculture in the Tai Lake Region of China. Agric Ecosyst Environ 61:177–193

    Google Scholar 

  • Fagbenro O (1998) Apparent digestibility of legume seeds by Nile tilapia. Aquac Int 6:83–87

    Google Scholar 

  • Fagbenro O (1999) Apparent digestibility of various cereal grain by-products in common carp diets. Aquac Int 7:277–281

    CAS  Google Scholar 

  • FAO (1997) Expert consultation on small-scale rural aquaculture. FAO Fisheries Report 458. FAO Committee on Fisheries, Rome, 28–31 May 1996

    Google Scholar 

  • FAO (2003) Report of the second session of the sub-committee on aquaculture. FAO Fisheries Report 716. FAO Committee on Fisheries, Trondheim, 7–11 Aug 2003

    Google Scholar 

  • FAO (2007a) The role of aquaculture in sustainable development. Thirty-fourth Session, 17–24 Nov. FAO, Rome

    Google Scholar 

  • FAO (2007b) The state of world fisheries and aquaculture. FAO, Rome

    Google Scholar 

  • FAO (2008) Glossary of aquaculture. FAO, Rome

    Google Scholar 

  • FAO (2009a) Foods security and agricultural mitigation in developing countries: options for capturing synergies. FAO, Rome

    Google Scholar 

  • FAO (2009b) The state of food insecurity in the world 2009: economic crises – impacts and lessons learned. FAO, Rome

    Google Scholar 

  • FAO (2009c) The state of world fisheries and aquaculture. FAO, Rome

    Google Scholar 

  • FAO/IIRR/WorldFish Center (2001) Integrated agriculture-aquaculture: a primer. FAO Fisheries Report 407, Rome

    Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJM, Fischhoff DA, Hodges CN, Knauf VC, Lobell D, Mazur BJ, Molden D, Reynolds MP, Ronald PC, Rosegrant MW, Sanchez PA, Vonshak A, Zhu J-K (2010) Radically rethinking agriculture for the 21st century. Science 327(5967): 833–834. doi:10.1126/science.1186834

    PubMed  CAS  Google Scholar 

  • Fernando CH, Halwart M (2000) Possibilities for the integration of fish farming into irrigation systems. Fish Manage Ecol 7:45–54

    Google Scholar 

  • Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199(3–4):197–227. doi:10.1016/S0044-8486(01)00526-9

    CAS  Google Scholar 

  • Frei M, Becker K (2005) Integrated rice-fish culture: coupled production saves resources. Nat Resour Forum 29:135–143

    Google Scholar 

  • Frei MMA, Razzak MM, Hossain M, Oehme SD, Becker K (2007a) Performance of common carp, Cyprinus carpio L. and Nile tilapia, Oreochromis niloticus (L.) in integrated ricefish culture in Bangladesh. Aquaculture 262:250–259. doi:10.1016/j.aquaculture.2006.11.019

    Google Scholar 

  • Frei M, Khan MAM, Razzak MA, Hossain MM, Dewan S, Becker K (2007b) Effects of a mixed culture of common carp, Cyprinus carpio L., and Nile tilapia, Oreochromis niloticus (L.), on terrestrial arthropod population, benthic fauna, and weed biomass in rice fields in Bangladesh. Biol Control 41:207–213. doi:10.1016/j.biocontrol.2007.02.001

    Google Scholar 

  • Gabriel UU, Akinrotimi OA, Bekibele DO, Onunkwo DN, Anyanwu PE (2007) Locally produced fish feed: potentials for aquaculture development in subsaharan Africa. Afr J Agric Res 2(7):287–295

    Google Scholar 

  • Garg SK, Bhatnagar A (2000) Effect of fertilization frequency on pond productivity and fish biomass in still water ponds stocked with Cirrhinus mrigala (Ham.). Aquac Res 31(5): 409–414. doi:10.1046/j.1365-2109.2000.00422.x

    Google Scholar 

  • Garg SK, Kalla A, Bhatnagar A (2002) Evaluation of raw and hydrothermically processed leguminous seeds as supplementary feed for the growth of two Indian major carp species. Aquac Res 33(3):151–163

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(812):812–818. doi:10.1126/science.1185383

    PubMed  CAS  Google Scholar 

  • Gomiero T, Giampietro M, Bukens SGF, Paoletti MG (1997) Biodiversity use and technical performance of freshwater fish aquaculture in different socioeconomic contexts: China and Italy. Agric Ecosyst Environ 2:169–185

    Google Scholar 

  • Goyal S, Dhull SK, Kapoor KK (2005) Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour Technol 96(14): 1584–1591. doi:10.1016/j.biortech.2004.12.012

    PubMed  CAS  Google Scholar 

  • Gozlan RE (2008) Introduction of non-native freshwater fish: is it all bad? Fish Fish 9:106–115

    Google Scholar 

  • Gozlan RE, Britton JR, Cowx I, Copp GH (2010) Current knowledge on non-native freshwater fish introductions. J Fish Biol 76:751–786. doi:10.1111/j.1095-8649.2010.02566.x

    Google Scholar 

  • Gunderson LH, Holling CS (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, DC

    Google Scholar 

  • Guo JY, Bradshaw AD (1993) The flow of nutrient and energy through a Chinese farming system. J Appl Ecol 30:86–94

    Google Scholar 

  • Gurung TB, Wagle SK (2005) Revisiting underlying ecological principles of rice-fish integrated farming for environmental, economical and social benefits. Our Nat 3:1–12

    Google Scholar 

  • Halwart M, Gupta MV (eds) (2004) Culture of fish in rice fields. FAO/The WorldFish Center, Rome

    Google Scholar 

  • Halwart M, Borlinghaus M, Kaule G (1996) Activity pattern of fish in rice fields. Aquaculture 145:159–170

    Google Scholar 

  • Hambrey J (2004) A brief review of small-scale aquaculture in Asia, its potential for poverty alleviation, with a consideration of the merits of investment and specialization. In: Halwart M, Moehl JF (eds) Regional technical expert workshop on cage culture in Africa. Fisheries proceedings 6. FAO, Rome

    Google Scholar 

  • Hambrey J, Edwards P, Belton B (2008) An ecosystem approach to freshwater aquaculture: a global review. In: Soto D, Aguilar-Manjarrez J, Hishamunda N (eds) Building an ecosystem approach to aquaculture. FAO Fisheries and Aquaculture Proceedings 14. FAO/Universitat de les Illes Balears Experts Workshop, 7–11 May 2007, Mallorca Spain. FAO, Rome, pp 117–221

    Google Scholar 

  • Hassan S, Edwards P, Little DC (1997) Comparison of Tilapia monoculture and carp polyculture in fertilized earthen ponds. J World Aquac Soc 28(3):268–274

    Google Scholar 

  • Hazell P, Wood S (2008) Drivers of change in global agriculture. Phil Trans R Soc B 363:495–515. doi:10.1098/rstb.2007.2166

    PubMed  Google Scholar 

  • Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA, Bossio D, Dixon J, Peters M, van de Steeg J, Lynam J, Parthasarathy Rao P, Mcmillan S, Gerard B, McDermott J, Serand C, Rosegrant M (2010) Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327:822–825. doi:10.1126/science.1183725

    PubMed  CAS  Google Scholar 

  • Hishamunda N, Ridler NB (2002) Macro policies to promote sustainable commercial aquaculture. Aquac Int 10:491–505

    Google Scholar 

  • Hishamunda N, Ridler NB (2006) Farming fish for profits: a small step towards food security in sub-Saharan Africa. Food Policy 31:401–414

    Google Scholar 

  • Hishamunda N, Jolly CM, Engle C (1998) Evaluation of small-scale aquaculture with intra-rural household trade as an alternative enterprise for limited resource farmers: the case of Rwanda. Food Policy 23(2):143–154

    Google Scholar 

  • Holling CS (2001) Understanding the complexity of economic, ecological, and social systems. Ecosystems 4:390–405. doi:10.1007/s10021-001-0101-5

    Google Scholar 

  • Horstkotte-Wesseler G (1999) Socioeconomics of rice-aquaculture and IPM in the Philippines: synergies, potential and problems. ICLARM Technical Report 57. ICLARM, Manila

    Google Scholar 

  • Hossain MA, Islam MS (2006) Optimization of stocking density of freshwater prawn Macrobrachium rosenbergii (de Man) in carp polyculture in Bangladesh. Aquac Res 37:994–1000. doi:10.1111/j.1365-2109.2006.01518.x

    Google Scholar 

  • Hossain MA, Focken U, Becker K (2001) Evaluation of an unconventional legume seed, Sesbania aculeata, as a dietary protein source for common carp, Cyprinus carpio L. Aquaculture 198:129–140

    Google Scholar 

  • Howard AFV, Omlin FX (2008) Abandoning small-scale fish farming in western Kenya leads to higher malaria vector abundance. Acta Trop 105:67–73. doi:10.1016/j.actatropica.2007.09.010

    PubMed  Google Scholar 

  • Hussain G, Al-Jaloud AA (1995) Effect of irrigation and nitrogen on water use efficiency of wheat in Saudi Arabia. Agric Water Manage 27:143–153

    Google Scholar 

  • Hussain G, Al-Jaloud AA (1998) Effect of irrigation and nitrogen on yield, yield components and water use efficiency of barley in Saudi Arabia. Agric Water Manage 36:55–70

    Google Scholar 

  • IAASTD (2009) Agriculture as a crossroads: global report. Island Press, Washington, DC

    Google Scholar 

  • Ijumba JN, Lindsay SW (2001) Impact of irrigation on malaria in Africa: paddies paradox. Med Vet Entomol 15:1–11

    PubMed  CAS  Google Scholar 

  • Irz X, Stevenson JR, Tanoy A, Villarante P, Morissens P (2007) The equity and poverty impacts of aquaculture: insights from the Philippines. Dev Policy Rev 25(4):495–516

    Google Scholar 

  • Jewel MAS, Affan MA, Khan S (2003) Fish mortality due to cyanobacterial bloom in an aquaculture pond in Bangladesh. Pak J Biol Sci 6(12):1046–1050

    Google Scholar 

  • Jianguo W, Dashu N (1995) A comparative study of the ability of fish to catch mosquito larva. In: Mackay KT (ed) Rice-fish culture in China. IDRC, Ottawa, pp 217–222

    Google Scholar 

  • Kadir A, Kundu RS, Milstein A, Wahab MA (2006) Effects of silver carp and small indigenous species on pond ecology and carp polycultures in Bangladesh. Aquaculture 261(3):1065–1076. doi:10.1016/j.aquaculture.2006.09.010

    Google Scholar 

  • Kadir A, Wahab MA, Milstein A, Hossain MA, Seraji MTI (2007) Effects of silver carp and the small indigenous fish mola Amblypharyngodon mola and punti Puntius sophore on fish polyculture production. Aquaculture 273:520–531. doi:10.1016/j.aquaculture.2007.07.012

    Google Scholar 

  • Kaggwa R, van Dam A, Balirwa J, Kansiime F, Denny P (2008) Increasing fish production from wetlands at Lake Victoria, Uganda using organically manured seasonal wetland fish ponds. Wetlands Ecol Manage 17(3):257–277. doi:10.1007/s11273-008-9105-7

    Google Scholar 

  • Kalita P, Mukhopadhyay PK, Mukherjee AK (2007) Evaluation of the nutritional quality of four unexplored aquatic weeds from northeast India for the formulation of cost-effective fish feeds. Food Chem 103:204–209. doi:10.1016/j.foodchem.2006.08.007

    CAS  Google Scholar 

  • Karapanagiotidis IT, Yakupitiyage A, Little DC, Bell MV, Mente E (2009) The nutritional value of lipids in various tropical aquatic animals from rice-fish farming systems in northeast Thailand. J Food Compos Anal 23(1):1–8. doi:10.1016/j.jfca.2009.08.001

    Google Scholar 

  • Kautsky N, Berg H, Folke C, Larsson J, Troell M (1997) Ecological footprint for assessment of resource use and development limitations in shrimp and tilapia aquaculture. Aquac Res 28: 753–766

    Google Scholar 

  • Kawarazuka N (2010) The contribution of fish intake, aquaculture, and small-scale fisheries to improving nutrition: a literature review. The WorldFish Center Working Paper No. 2106. The WorldFish Center, Penang

    Google Scholar 

  • Keshavanath P, Shivanna, Gangadhara B (2006) Evaluation of sugarcane by-product pressmud as a manure in carp culture. Bioresour Technol 97:628–634. doi:10.1016/j.biortech.2005.03.019

    PubMed  CAS  Google Scholar 

  • Kestemont P (1995) Different systems of carp production and their impact on the environment. Aquaculture 129:347–372

    Google Scholar 

  • Kipkemboi J, van Dam AA, Ikiara MM, Denny P (2007) Integration of smallholder wetland aquaculture–agriculture systems (fingerponds) into riparian farming systems on the shores of Lake Victoria, Kenya: socio-economics and livelihoods. Geogr J 173:257–272

    Google Scholar 

  • Knud-Hansen CF (1998) Pond fertilization: ecological approach and practical application. Pond Dynamics/Aquaculture CRSP, Corvalis, 135 p

    Google Scholar 

  • Knud-Hansen CF, Batterson TR, McNabba CD, Harahat IS, Sumantadinata K, Eidman HM (1991) Nitrogen input, primary productivity and fish yield in fertilized freshwater ponds in Indonesia. Aquaculture 94:49–63

    Google Scholar 

  • Knudsen LG, Phuc PD, Hiep NT, Samuelsen H, Jensen PK, Dalsgaard A, Raschid-Sally L, Konradsen F (2008) The fear of awful smell: risk perceptions among farmers in Vietnam using wastewater and human excreta in agriculture. Southeast Asian J Trop Med Public Health 39(2):341–353

    PubMed  Google Scholar 

  • Kumaresan A, Pathak KA, Bujarbaruah KM, Vinod K (2009) Analysis of integrated animal-fish production system under subtropical hill agro ecosystem in India: growth performance of animals, total biomass production and monetary benefit. Trop Anim Health Prod 41:385–391

    PubMed  CAS  Google Scholar 

  • Kunda M, Azim ME, Wahab MA, Dewan S, Roos N, Thilsted SH (2008) Potential of mixed culture of freshwater prawn (Macrobrachium rosenbergii) and self-recruiting small species mola (Amblypharyngodon mola) in rotational ricefish/prawn culture systems in Bangladesh. Aquac Res 39(5):506–517. doi:10.1111/j.1365-2109.2008.01905.x

    CAS  Google Scholar 

  • Kunda M, Azim ME, Wahab MA, Dewan S, Majid MA, Thilsted SH (2009) Effects of including catla and tilapia in a freshwater prawnmola polyculture in a rotational ricefish culture systems. Aquac Res 40(9):1089–1098. doi:10.1111/j.1365-2109.2009.02204.x

    Google Scholar 

  • Lazard J, Baruthio A, Mathé S, Rey-Valette H, Chia E, Clément O, Aubin J, Morissens P, Mikolasek O, Legendre M, Levang P, Blancheton J-P, René F (2010) Aquaculture system diversity and sustainable development: fish farms and their representation. Aquat Living Resour 23:187–193. doi:10.1051/alr/2010018

    Google Scholar 

  • Lebel L, Lebel P, Garden P, Giap D, Khrutmuang S, Nakayama S (2008) Places, chains, and plates: governing transitions in the shrimp aquaculture production-consumption system. Globalizations 5(2):211–226. doi:10.1080/14747730802057589

    Google Scholar 

  • Lebel L, Mungkung R, Gheewala SH, Lebel P (2010) Innovation cycles, niches and sustainability in the shrimp aquaculture industry in Thailand. Environ Sci Policy 13(4):291–302. doi:10.1016/j.envsci.2010.03.005

    Google Scholar 

  • Lewis D (1997) Rethinking aquaculture for resource-poor farmers: perspectives from Bangladesh. Food Policy 22(6):533–546

    Google Scholar 

  • Li D, Hu X (2009) Fish and its multiple human health effects in times of threat to sustainability and affordability: are there alternatives? Asia Pac J Clin Nutr 18(4):553–563

    PubMed  Google Scholar 

  • Lightfoot C, Prein M, Lopez T (1994) Bioresource flow modeling with farmers. ILEIA Newsl 10(3):22–23

    Google Scholar 

  • Lin CK, Teichert-Coddington DR, Green BW, Veverica KL (1997) Fertilization regimes. In: Egna HS, Boyd CE (eds) Dynamics of pond aquaculture. CRC Press, Boca Raton, pp 73–107

    Google Scholar 

  • Little DC, Edwards P (2003) Integrated livestock-fish farming systems. FAO Inland Water Resources and Aquaculture Service Animal Production Service, Rome

    Google Scholar 

  • Little DC, Surintaraseree P, Innes-Taylor N (1996) Fish culture in rainfed rice fields of northeast Thailand. Aquaculture 140:295–321

    Google Scholar 

  • Little DC, Barman BK, Haque MM, Wahab MA (2007a) Descentralised Nile tilapia seed production. In: van der Zijpp AJ, Verreth JAJ, Le Quang Tri, van Mensvoort MEF, Bosma RH, Beveridge MCM (eds) Fishponds in farming systems. Proceedings of a symposium held in Can Tho City, 28–30 Apr 2006, organized by Can Tho University. Vietnam and Wageningen University, Wangeningen, pp 49–58

    Google Scholar 

  • Little DC, Karim M, Turongrouang D, Morales EJ, Murray FJ, Barman BK, Hague MM, Kundu N, Belton B, Faruque ASG, Azim ME, Islam FU, Pollock L, Verdegem MCJ, Young JA, Leschen W, Wahab MA (2007b) Livelihood impacts of ponds in Asia- opportunities and constraints. In: van der Zijpp AJ, Verreth JAJ, Le Quang Tri, van Mensvoort MEF, Bosma RH, Beveridge MCM (eds) Fishponds in farming systems. Proceedings of a symposium held in Can Tho City, 28–30 Apr 2006, organized by Can Tho University. Vietnam and Wageningen University, Wangeningen, pp 177–202

    Google Scholar 

  • Liu J, Cai Q (1998) Integrated aquaculture in Chinese lakes and paddy fields. Ecol Eng 11:49–59

    Google Scholar 

  • Lo CP (1996) Environmental impact on the development of agricultural technology in China: the case of the dike-pond (‘jitang’) system of integrated agriculture-aquaculture in the Zhujiang Delta of China. Agric Ecosyst Environ 60:183–195

    Google Scholar 

  • Lu J, Li X (2006) Review of ricefish-farming systems in China – one of the Globally Important Ingenious Agricultural Heritage Systems (GIAHS). Aquaculture 260:106–113. doi:10.1016/j.aquaculture.2006.05.059

    Google Scholar 

  • Mahimairaja S, Bolan NS, Hedley MJ (1995) Denitrification losses of N from fresh and composted manures. Soil Biol Biochem 27(9):1223–1225

    CAS  Google Scholar 

  • Markewich HA, Pell AN, Mbugua DM, Cherney DJR, van Es HM, Lehmann J, Robertson JB (2010) Effects of storage methods on chemical composition of manure and manure decomposition in soil in small-scale Kenyan systems. Agric Ecosyst Environ 139(1–2):134–141. doi:10.1016/j.agee.2010.07.010

    Google Scholar 

  • Martinez-Espinosa M (1992) Rural aquaculture: from myth to reality. FAO Aquac Newsl 2:13–15

    Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    PubMed  CAS  Google Scholar 

  • Michielsens CGJ, Lorenzen K, Philips MJ, Gauthier R (2002) Asian carp farming systems: towards a typology and increased resource use efficiency. Aquac Res 33:403–413

    Google Scholar 

  • Middendorp AJ, Verreth JAJ (1986) The potential of and constraints to fish culture in integrated farming systems in the Lam Pao Irrigation Project, Northeast Thailand. Aquaculture 56(1): 63–78

    Google Scholar 

  • Milstein A (1992) Ecological aspects of fish species interactions in polyculture ponds. Hydrobiologia 231:177–186

    Google Scholar 

  • Milstein A, Kadir A, Wahab MA (2008) The effects of partially substituting Indian carps or adding silver carp on polycultures including small indigenous fish species (SIS). Aquaculture 279(1–4):92–98. doi:10.1016/j.aquaculture.2008.04.009

    Google Scholar 

  • Milstein A, Wahab MA, Kadir A, Sagor MFH, Islam MA (2009) Effects of intervention in the water column and/or pond bottom through species composition on polycultures of large carps and small indigenous species. Aquaculture 286:246–253. doi:10.1016/j.aquaculture.2008.09.036

    Google Scholar 

  • Mizanur R, Yakupitiyage A, Ranamukhaarachchi SL (2004) Agricultural use of fishpond sediment for environmental amelioration. Thammasat Int J Sci Technol 9(4):1–10

    Google Scholar 

  • Mohanty RK, Verma HN, Brahmanand PS (2004) Performance evaluation of ricefish integration system in rainfed medium land ecosystem. Aquaculture 230:125–135. doi:10.1016/S0044-8486(03)00423-X

    Google Scholar 

  • Moll HAJ (2005) Costs and benefits of livestock systems and the role of market and nonmarket relationships. Agricultural Economics 32:181–193

    Google Scholar 

  • Morales EJ, Little DC, Imminka A, Demaine H, Yakupitayage A, Amilhat E, Lorenzen K (2006) Project report: contribution of self-recruiting species produced in farmer-managed aquatic systems in rural areas of Southeast Asia to food consumption. J Food Compos Anal 19:759–760. doi:10.1016/j.jfca.2006.03.003

    Google Scholar 

  • Muendo PN (2006) The role of fish ponds in the nutrient dynamics of mixed farming systems. Ph.D. thesis, Wageningen University, Wageningen

    Google Scholar 

  • Muir J (2005) Managing to harvest? Perspectives on the potential of aquaculture. Phil Trans R Soc B 360:191–218. doi:10.1098/rstb.2004.1572

    PubMed  Google Scholar 

  • Murshed-e-Jahan K, Ahmed M, Belton B (2010) The impacts of aquaculture development on food security: lessons from Bangladesh. Aquac Res 41:481–495. doi:10.1111/j.1365-2109.2009.02337.x

    Google Scholar 

  • Nalim S (1994) The impact of fish in enhancing rice field ecosystems. In: Dela Cruz CR (ed) Role of fish in enhancing ricefield ecology and in integrated pest management. ICLARM conference proceedings 43. ICLARM, Manila

    Google Scholar 

  • Naylor RL (2008) Managing food production systems for resilience. In: Chapin FS, Kofinas GP, Folke C (eds) Principles of natural resource stewardship: resilience-based management in a changing world. Springer, New York, pp 259–280

    Google Scholar 

  • Naylor RL, Burke M (2005) Aquaculture and ocean resources: raising tigers of the sea. Annu Rev Environ Resour 30:185–218

    Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024. doi:10.1038/35016500

    PubMed  CAS  Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci USA 106(36):15103–15110. doi:10.1073/pnas.0905235106

    PubMed  CAS  Google Scholar 

  • Negesse T, Makkar HPS, Becker K (2009) Nutritive value of some non-conventional feed resources of Ethiopia determined by chemical analyses and an in vitro gas method. Anim Feed Sci Technol 154:204–217. doi:10.1016/j.anifeedsci.2009.09.010

    CAS  Google Scholar 

  • Ng WK, Wee KL (1989) The nutritive value of cassava leaf meal in pelleted feed for Nile tilapia. Aquaculture 83(1–2):45–58. doi:10.1016/0044-8486(89)90059-8

    Google Scholar 

  • Nhan DK, Milstein A, Verdegem MCJ, Verreth JAV (2006) Food inputs, water quality and nutrient accumulation in integrated pond systems: a multivariate approach. Aquaculture 261:160–173. doi:10.1016/j.aquaculture.2006.07.015

    CAS  Google Scholar 

  • Nhan DK, Phong LT, Verdegem MJC, Duong LT, Bosma RH, Little DC (2007) Integrated freshwater aquaculture, crop and livestock production in the Mekong delta, Vietnam: determinants and the role of the pond. Agric Syst 94:445–458. doi:10.1016/j.agsy.2006.11.017

    Google Scholar 

  • Nhan DK, Verdegem MCJ, Binh NT, Duong LT, Milstein A, Verreth JAJ (2008) Economic and nutrient discharge tradeoffs of excreta-fed aquaculture in the Mekong Delta, Vietnam. Agric Ecosyst Environ 124:259–269. doi:10.1016/j.agee.2007.10.005

    Google Scholar 

  • Nobre AM, Robertson-Andersson D, Neori A, Sankar K (2010) Ecologicaleconomic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture 306:116–126. doi:10.1016/j.aquaculture.2010.06.002

    Google Scholar 

  • Ogunwande GA, Osunade JA, Adekalu KO, Ogunjimi LAO (2008) Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency. Bioresour Technol 99(16):7495–7503. doi:10.1016/j.biortech.2008.02.020

    PubMed  CAS  Google Scholar 

  • Pant J, Demaine H, Edwards P (2004) Assessment of the aquaculture subsystem in integrated agriculture–aquaculture systems in Northeast Thailand. Aquac Res 35:289–298

    Google Scholar 

  • Pant J, Demaine H, Edwards P (2005) Bio-resource flow in integrated agriculture-aquaculture systems in a tropical monsoonal climate: a case study in Northeast Thailand. Agric Syst 83:203–219

    Google Scholar 

  • Parkinson R, Gibbs P, Burchett S, Misselbrook T (2004) Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresour Technol 91:171–178. doi:10.1016/S0960-8524(03)00174-3

    PubMed  CAS  Google Scholar 

  • Perrings C (1998) Resilience in the dynamics of economy-environment systems. Environ Resour Econ 11(3–4):503–520

    Google Scholar 

  • Phan-Van M, Rosseau D, De Pauw N (2008) Effects of fish bioturbation on the vertical distribution of water temperature and dissolved oxygen in a fish culture- integrated waste stabilization pond system in Vietnam. Aquaculture 281(1–4):28–33. doi:10.1016/j.aquaculture.2008.04.033

    Google Scholar 

  • Phillips MJP, De Silva SS (2006) Finfish cage culture in Asia: an overview of status, lessons learned and future developments. In: Halwart M, Moehl JF (eds) FAO Regional Technical Expert Workshop on Cage Culture in Africa. Entebbe, Uganda, 20–23 October 2004. FAO, Rome, pp 49–72

    Google Scholar 

  • Phong LT, van Dam AA, Udo HMJ, van Mensvoort MEF, Tri LQ, Steenstra FA, van der Zijpp AJ (2010) An agro-ecological evaluation of aquaculture integration into farming systems of the Mekong Delta. Agric Ecosyst Environ 138(3–4):232–241. doi:10.1016/j.agee.2010.05.004

    Google Scholar 

  • Phuong ND, Tuan VD, Toan TD (2006) Farmers practices in organic and inorganic fertilization on crops, trees and vegetables. In: Porphyre V, Coi NQ (eds) Pig production development, animal waste management and environmental protection: a case study in Thai Binh Province, Northern Vietnam. PRISE Publications, Hanoi, pp 145–163

    Google Scholar 

  • Pilarski F, Tomazelli Jnior O, Casaca JM, Mello Garcia FR, Tomazelli IB, dos Santos IR (2004) Integrated fish/pig systems: environmental feature and fish quality. R Bras Zootec 33(2):267–276. doi:10.1590/S1516-35982004000200001

    Google Scholar 

  • Pingali P (2007) Westernization of Asian diets and the transformation of food systems: implications for research and policy. Food Policy 32(3):281–298. doi:10.1016/j.foodpol.2006.08.001

    Google Scholar 

  • Poot-López GR, Hernández JM, Gasca-Leyva E (2010) Input management in integrated agriculture–aquaculture systems in Yucatan: tree spinach leaves as a dietary supplement in tilapia culture. Agric Syst 103:98–104. doi:10.1016/j.agsy.2009.11.003

    Google Scholar 

  • Prein M (2002) Integration of aquaculture into cropanimal systems in Asia. Agric Syst 71:127–146

    Google Scholar 

  • Prein M (2007) Comparative analysis of material flows in low input carp and poultry farming: an overview of concepts and methodology. In: Bartley DM, Brugre C, Soto D, Gerber P, Harvey B (eds) Comparative assessment of the environmental costs of aquaculture and other food production sectors: methods for meaningful comparisons. FAO/WFT Expert Workshop, 24–28 Apr 2006, Vancouver. FAO fisheries proceedings No. 10. FAO, Rome, pp 183–200

    Google Scholar 

  • Prein M, Ahmed M (2000) Integration of aquaculture into smallholder farming systems for improved food security and household nutrition. Food Nutr Bull 21(4):466–472

    Google Scholar 

  • Prein M, Lightfoot C, Pullin RSV (1998) ICLARM’s approach to the integration of aquaculture into sustainable farming systems. In: ADB/NACA. Report on a regional study and workshop on aquaculture sustainability and the environment. Network of Aquaculture Centres in Asia, Bangkok, Thailand and the Asian Development Bank, Manila, pp 257–265

    Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Phil Trans R Soc B 363:447–465. doi:10.1098/rstb.2007.2163

    PubMed  Google Scholar 

  • Pretty JN, Morison JIL, Hine RE (2003) Reducing food poverty by increasing agricultural sustainability in developing countries. Agric Ecosyst Environ 95(1):217–234. doi:10.1016/S0167-8809(02)00087-7.

    Google Scholar 

  • Primavera JH (2005) Mangroves, fishponds, and the quest for sustainability. Science 310:57–59

    PubMed  CAS  Google Scholar 

  • Pullin RSV (1998) Aquaculture, integrated resources management and the environment. In: Mathias JA, Charles AT, Baotong H (eds) Integrated fish farming. Proceedings of a workshop on integrated fish farming, 11–15 October 1994, Wuxi, Jiangsu Province. CRC Press, Boca Raton, pp 19–43

    Google Scholar 

  • Pullin R, Froese R, Pauly D (2007) Indicators for the sustainability of aquaculture. In: Bert TM (ed) Ecological and genetic implications of aquaculture activities. Springer, Dordrecht, pp 53–72

    Google Scholar 

  • Rahman MM, Verdegem MCJ, Nagelkerke LAJ, Wahab MA, Milstein A, Verreth JAJ (2006) Growth, production and food preference of rohu Labeo rohita (H.) in monoculture and in polyculture with common carp Cyprinus carpio (L.) under fed and non-fed ponds. Aquaculture 257:359–372. doi:10.1016/j.aquaculture.2006.03.020

    Google Scholar 

  • Rahman MM, Jo Q, Gong YG, Miller SA, Hossai MY (2008) A comparative study of common carp (Cyprinus carpio L.) and calbasu (Labeo calbasu Hamilton) on bottom soil resuspension, water quality, nutrient accumulations, food intake and growth of fish in simulated rohu (Labeo rohita Hamilton) ponds. Aquaculture 285(1–4):78–83. doi:10.1016/j.aquaculture.2008.08.002

    Google Scholar 

  • Rai S, Yi Y, Wahab MA, Bart AN, Diana JS (2008) Comparison of rice straw and bamboo stick substrates in periphyton-based carp polyculture systems. Aquac Res 39:464–473. doi:10.1111/j.1365-2109.2008.01898.x

    Google Scholar 

  • Rangacharyulu PV, Giri SS, Paul BN, Yashoda KP, Jagannatha Rao R, Mahendrakar NS, Mohanty SN, Mukhopadhyay PK (2003) Utilization of fermented silkworm pupae silage in feed for carps. Bioresour Technol 86:29–32

    PubMed  CAS  Google Scholar 

  • Ritvo G, Kochba M, Avnimelech Y (2004) The effects of common carp bioturbation on fish pond bottom soil. Aquaculture 242(1):345–356

    Google Scholar 

  • Rivera-Ferré MG (2009) Can export-oriented aquaculture in developing countries be sustainable and promote sustainable development? The shrimp case. J Agric Environ Ethics 22(4):301–321. doi:10.1007/s10806-009-9148-7

    Google Scholar 

  • Ross LG, Martinez-Palacios CA, Morales EJ (2008) Developing native fish species for aquaculture: the interacting demands of biodiversity, sustainable aquaculture and livelihoods. Aquac Res 39(7):675–683. doi:10.1111/j.1365-2109.2008.01920.x

    Google Scholar 

  • Rothuis AJ, Nhan DK, Richter CJJ, Ollevier F (1998) Rice with fish culture in the semi-deep waters of the Mekong Delta, Vietnam: a socio-economical survey. Aquac Res 29:47–57

    Google Scholar 

  • Rothuis AJ, Vromant N, Xuan VT, Richter CJJ, Ollevier F (1999) The effect of rice seeding rate on rice and fish production, and weed abundance in direct-seeded ricefish culture. Aquaculture 172:255–274. doi:10.1016/S0044-8486(98)00396-2

    Google Scholar 

  • Ruddle K (1996) Households and community factors affecting development of small-scale fish farming in Africa. In: Bailey C, Jentoft S, Sinclair P (eds) Aquaculture development: social dimensions of an emerging industry. Westview Press, Boulder

    Google Scholar 

  • Ruddle K, Prein M (1997) Assessing potential nutritional and household economic benefits of developing integrated farming systems. In: Mathias J, Charles AT, Hu B (eds) Integrated fish farming. Proceedings of the international workshop held in Wuxi, Peoples Republic of China, 11–15 October 1994. CRC Press, Boca Raton/New York, pp 111–121

    Google Scholar 

  • Ruddle K, Deng H, Liang G (1986) Energy exchanges and the energy efficiency of household ponds in the dike-pond system of the Zhujiang Delta, China. Bull Natl Mus Ethnol 11(1):323–343

    Google Scholar 

  • Rudel TK, Schneider L, Uriarte M, Turner BL II, DeFriesc R, Lawrence D, Geoghegan J, Hecht S, Ickowitzf A, Lambin EF, Birkenholtz T, Baptista S, Grau R (2009) Agricultural intensification and changes in cultivated areas, 1970–2005. Proc Natl Acad Sci USA 106(49):20675–20680. doi:10.1073/pnas.0812540106

    PubMed  CAS  Google Scholar 

  • Rufino MC, Rowe EC, Delve RJ, Giller KE (2006) Nitrogen cycling efficiencies through resource-poor African croplivestock systems. Agric Ecosyst Environ 112(4):261–282. doi:10.1016/j.agee.2005.08.028

    Google Scholar 

  • Sagoo EJR, Williams BJ, Chambers LO, Boyles RM, Chadwick DR (2007) Integrated management practices to minimise losses and maximise the crop nitrogen value of broiler litter. Biosystems Eng 97(4):512–519. doi:10.1016/j.biosystemseng.2007.03.032

    Google Scholar 

  • Saikia SK, Das DN (2009) Potentiality of periphyton-based aquaculture technology in rice-fish environment. J Sci Res 1(3):624–634. doi:10.3329/jsr.v1i3.2114

    Google Scholar 

  • Shang YC, Costa-Pierce B (1983) Integrated aquaculture-agriculture farming systems: some economic aspects. J World Maric Soc 14:523–530

    Google Scholar 

  • Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Phil Trans R Soc B 363:717–739

    PubMed  Google Scholar 

  • Sikawa DC, Yakupitiyage A (2010) The hydroponic production of lettuce (Lactuca sativa L) by using hybrid catfish (Clarias macrocephalus x C. gariepinus) pond water: potentials and constraints. Agric Water Manage 97(9):1317–1325. doi:10.1016/j.agwat.2010.03.013

    Google Scholar 

  • Silva Castro R, Borges Azevedo CMS, Bezerra-Neto F (2006) Increasing cherry tomato yield using fish effluent as irrigation water in Northeast Brazil. Sci Hortic 110:44–50

    Google Scholar 

  • Sin TS (2006) Evaluation of different species of fish for biological control of golden apple snail Pomacea canaliculata (Lamarck) in rice. Crop Prot 25:1004–1012

    Google Scholar 

  • Singh K, Garg SK, Kalla A, Bhatnagar A (2003) Oilcakes as protein sources in supplementary diets for the growth of Cirrhinus mrigala (Ham.) fingerlings: laboratory and field studies. Bioresour Technol 86:283–291

    PubMed  Google Scholar 

  • Smardon RC (2006) Heritage values and functions of wetlands in Southern Mexico. Landsc Urban Plan 74:296–312. doi:10.1016/j.landurbplan.2004.09.009

    Google Scholar 

  • Soliman AK, El-Horbeety AA, Essa MAR, Kosba MA, Kariony IA (2000) Effects of introducing ducks into fish ponds on water quality, natural productivity and fish production together with the economic evaluation of the integrated and non-integrated systems. Aquac Int 8:315–326

    CAS  Google Scholar 

  • Sommer SG, Petersen SO, Srensen P, Poulsen HD, Mller HB (2007) Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutr Cycl Agroecosyst 78(1):27–36. doi:10.1007/s10705-006-9072

    CAS  Google Scholar 

  • Stonich SC, Vandergeest P (2001) Violence, environment, and industrial shrimp farming. In: Pelusso NL, Watts M (eds) Violent environments. Cornell University Press, Ithaca, pp 260–289

    Google Scholar 

  • Tacon AGJ, Metian M, Turchini GM, De Silva SS (2010) Responsible aquaculture and trophic level implications to global fish supply. Rev Fish Sci 18(1):94–105

    Google Scholar 

  • Tapia M, Zambrano L (2003) From aquaculture goals to real social and ecological impacts: carp introduction in rural Central Mexico. Ambio 32(4):252–257

    PubMed  Google Scholar 

  • Terziyski D, Grozev G, Kalchev R, Stoeva A (2007) Effect of organic fertilizer on plankton primary productivity in fish ponds. Aquac Int 15:181–190. doi:10.1007/s10499-007-9086-1

    Google Scholar 

  • Thilsted S, Roos N, Hassan N (1997) The role of small indigenous fish species in food and nutrition security in Bangladesh. NAGA The ICLARM Quarterly JulyDecember, pp 82–84

    Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80(5):1455–1474

    Google Scholar 

  • Tipraqsa P, Craswell ET, Noble AD, Schmidt-Vogt D (2007) Resource integration for multiple benefits: multifunctionality of integrated farming systems in Northeast Thailand. Agric Syst 94:694–703. doi:10.1016/j.agsy.2007.02.009

    Google Scholar 

  • Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang J-G (2009) Ecological engineering in aquaculture – potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297:1–9. doi:10.1016/j.aquaculture.2009.09.010

    Google Scholar 

  • Uddin S, Ekram-Ul-Azim M, Wahab A, Verdegem MCJ (2006) The potential of mixed culture of genetically improved farmed tilapia (Oreochromis niloticus) and freshwater giant prawn (Macrobrachium rosenbergii) in periphyton-based systems. Aquac Res 37:241–247. doi:10.1111/j.1365-2109.2005.01424

    Google Scholar 

  • Ulloa JB, Verreth JAJ (2003) Growth of Oreochromis aureus fed with diets containing graded levels of coffee pulp and reared in two culture systems. Aquaculture 217:275–283

    Google Scholar 

  • Ulloa JB, van Weerd JH, Huisman EA, Verreth JAJ (2004) Tropical agricultural residues and their potential uses in fish feeds: the Costa Rican situation. Waste Manage 24:87–97. doi:10.1016/j.wasman.2003.09.003

    CAS  Google Scholar 

  • van Dam AA, Beveridge MCM, Azim ME, Verdegem MCJ (2002) The potential of fish production based on periphyton. Rev Fish Biol Fish 12:1–31

    Google Scholar 

  • Veerina SS, Nandeesha MC, De Silva SS, Ahmed M (1999) An analysis of production factors in carp farming in Andhra Pradesh, India. Aquac Res 30:805–814

    Google Scholar 

  • Vidotti RM, Carneiro DJ, Viegas E (2002) Growth rate of Pacu, Piaractus mesopotamicus, fingerlings fed diets containing co-dried fish silage as replacement of fish meal. J Appl Aquac 12(4):77–88. doi:10.1300/J028v12n04_07

    Google Scholar 

  • Virk P, Saxena K (2003) Potential of Amaranthus seeds in supplementary feed and its impact on growth in some carps. Bioresour Technol 86(1):25–27. doi:10.1016/S0960-8524(02)00139-6

    PubMed  CAS  Google Scholar 

  • Vromant N, Chau NTH (2005) Overall effect of rice biomass and fish on the aquatic ecology of experimental rice plots. Agric Ecosyst Environ 111:153–165. doi:10.1016/j.agee.2005.06.015

    Google Scholar 

  • Vromant N, Rothuis AJ, Cuc NTT, Ollevier F (1998) The effect of fish on the abundance of the rice caseworm Nymphula depunctalis (Guenée) (Lepidoptera: Pyralidae) in direct seeded, concurrent rice fish yields. Biocontrol Sci Technol 8:539–546. doi:10.1080/09583159830054

    Google Scholar 

  • Vromant N, Nhan DK, Chau NTH, Ollevier F (2002) Can fish control planthopper and leafhopper populations in intensive rice culture? Biocontrol Sci Technol 12:695–703. doi:10.1080/0958315021000039879

    Google Scholar 

  • Vu TKV, Tran MT, Dang TTS (2007) A survey of manure management on pig farms in Northern Vietnam. Livest Sci 112:288–297

    Google Scholar 

  • Wahab MA, Azim ME, Ali MH, Beveridge MCM, Khan S (1999) The potential of periphyton-based culture of the native major carp calbaush, Labeo calbasu (Hamilton). Aquac Res 30:409–419. doi:10.1046/j.1365-2109.1999.00337.x

    Google Scholar 

  • Wahab MA, Alim MA, Milstein A (2004) Effects of adding the small fish punti (Puntius sophore) and/or mola (Amblypharyngodon mola) to a polyculture of large carp. Aquac Res 35(2):124–133. doi:10.1111/j.1365-2109.2004.00990.x

    Google Scholar 

  • Wahab MA, Kunda M, Azim ME, Dewan S, Thilsted SH (2008) Evaluation of freshwater prawn-small fish culture concurrently with rice in Bangladesh. Aquac Res 39(14):1524–1532. doi:10.1111/j.1365-2109.2008.02025.x

    Google Scholar 

  • Webb C, Bodin O (2008) A network perspective on modularity and control of flow in robust systems. In: Norberg J, Cumming GS (eds) Complexity theory for a sustainable future. Columbia University Press, New York, pp 95–118

    Google Scholar 

  • Wee KL, Ng LT (1986) Use of cassava as an energy source in a pelleted feed for the tilapia, Oreochromis niloticus L. Aquac Res 17(2):129–138. doi:10.1111/j.1365 -2109.1986.tb00094.x

    Google Scholar 

  • Weimin M (2010) Recent developments in rice-fish culture in China: a holistic approach for livelihood improvement in rural areas. In: De Silva SS, Davy B (eds) Success stories in Asian aquaculture. Springer, Dordrecht, pp 27–40

    Google Scholar 

  • Weng Q (2007) A historical perspective of river basin management in the Pearl River Delta of China. J Environ Manage 85:1048–1062. doi:10.1016/j.jenvman.2006.11.008

    PubMed  Google Scholar 

  • Wetengere K (2009) Socio-economic factors critical for adoption of fish farming technology: the case of selected villages in Eastern Tanzania. Int J Fish Aquac 1(3):28–37

    Google Scholar 

  • WHO (2009) World malaria report 2009. World Health Organization, Geneva

    Google Scholar 

  • Yan YS, Shang W, Fu WH, An KD, Rong KM, Zhai WQ (1995) Ability of fish to control rice diseases, pests, and weeds. In: Mackay KT (ed) Rice-fish culture in China. IDRC, Ottawa, pp 223–229

    Google Scholar 

  • Yang Y, Hang H, Xiao-jun HU, Dai Q, Zang Y (2006) Characteristics of growth and yield formation of rice in rice-fish farming system. Agric Sci China 5(2):103–110

    Google Scholar 

  • Yee AWC (1999) New developments in integrated dike-pond agriculture-aquaculture in the Zhujiang Delta, China: ecological implications. Ambio 28(6):529–533

    Google Scholar 

  • Yi Y, Lin CK, Diana JS (2002) Recycling pond mud nutrients in integrated lotus-fish culture. Aquaculture 212:217–230

    Google Scholar 

  • You L, Ringler C, Nelson G, Wood-Sichra U, Robertson R, Wood S, Guo Z, Zhu T, Sun Y (2010) What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. IFPRI Discussion Paper 993. IFPRI, Washington, DC

    Google Scholar 

  • Yuvanatemiya V, Boyd CE (2006) Physical and chemical changes in aquaculture pond bottom soil resulting from sediment removal. Aquacult Eng 35:199–205. doi:10.1016/j.aquaeng.2006.02.001

    Google Scholar 

  • Zajdband AD (2009) Integrando actividades en la Provincia de Misiones. Rev LEISA de Agroecol 25(1):31–33

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Laura J. Hess for her invaluable help, as well as the two anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel D. Zajdband .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zajdband, A.D. (2011). Integrated Agri-Aquaculture Systems. In: Lichtfouse, E. (eds) Genetics, Biofuels and Local Farming Systems. Sustainable Agriculture Reviews, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1521-9_4

Download citation

Publish with us

Policies and ethics