Skip to main content

Methods for the Preparation of Optically Active Chiral Compounds

  • Chapter
  • First Online:
Green Approaches To Asymmetric Catalytic Synthesis

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST,volume 4))

  • 845 Accesses

Abstract

The biological activity of chiral compounds is markedly affected by their chirality and there is a growing demand for the synthesis of such molecules in enantiopure form in order to limit and/or suppress adverse effects deriving from the use of the racemic mixtures. This tendency is in agreement with the objectives of “green chemistry”, that gives a central emphasis to the protection of human and environmental health through the design of new chemicals and processes. Among the different methods for the preparation of optically active compounds, racemic resolutions can be improved by addition of racemization step to recycle the unwanted enantiomer or by using automated chromatographic methodologies. In stoichiometric asymmetric synthesis the use of chiral substrates or auxiliary groups allows to control the stereochemical outcome of several reactions through intramolecular transfer of chirality. Although these methodologies continue to be widely employed, asymmetric catalysis has emerged as more sustainable option and some processes have been yet applied at industrial level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey J, Chrysostomou A, Hough JH, Gledhill TM, McCall A, Clark S, Menard F, Tamura M (1998) Science 281:672–674

    Article  CAS  Google Scholar 

  2. Griesbeck AG, Meierhenrich UJ (2002) Angew Chem Int Ed 41:3147–3154

    Google Scholar 

  3. Soloshonok VA, Ueki H, Yasumoto M, Mekala S, Hirschi J, Singleton DA (2007) J Am Chem Soc 129:1211–12113

    Google Scholar 

  4. Feringa BL, van Delden R (1999) Angew Chem Int Ed 38:3418–3438

    Article  Google Scholar 

  5. Soai K, Sato I, Shibata T (2001) The Chemical Record 1:321–332

    Article  CAS  Google Scholar 

  6. Sato I, Yamashima R, Kadowaki K, Yamamoto J, Shibata T, Soai K (2001) Angew Chem Int Ed 40:1096–1098

    Article  CAS  Google Scholar 

  7. Kawasaki T, Suzuki K, Hakoda Y, Soai K (2008) Angew Chem Int Ed 47:496–499

    Article  CAS  Google Scholar 

  8. Kasprzyk-Hordern B (2010) Chem Soc Rev 39:4466–4503

    Article  CAS  Google Scholar 

  9. Food and Drug Administration (1992), FDA’s policy statement for the development of new stereoisomeric drugs, 57 Fed. Reg., 22249

    Google Scholar 

  10. Nunez MC, Garcia-Rubino ME, Conejo GA, Cruz-Lopez O, Kimatrai M, Gallo MA, Espinosa A, Campos JM (2009) Curr Med Chem 16:2064–2074

    Article  CAS  Google Scholar 

  11. Marx S, Avnir D (2007) Acc Chem Res 40:768–776

    Article  CAS  Google Scholar 

  12. Amabilino DB (ed) (2009) Chirality at nanoscale: nanoparticles, surfaces, materials and more. Wiley-VCH, Weinheim

    Google Scholar 

  13. Anastas PT, Williamson TC (eds) (1998) Green Chemistry: frontiers in benign chemical syntheses and processes. Oxford University Press, New York

    Google Scholar 

  14. Anastas PT, Kirchhoff MM (2002) Acc Chem Res 35:686–694

    Article  CAS  Google Scholar 

  15. Sheldon RA (2007) Green Chem 9:1273–1283

    Article  CAS  Google Scholar 

  16. Trost BM (1995) Angew Chem Int Ed 34:259–281

    Article  CAS  Google Scholar 

  17. Cleaner technologies substitute assessment (CTSA) Chapter 5-Chemical & Process Information. http://www.epa.gov/dfe/pubs/tools/ctsa/ch5/ch5.htm

  18. Fogassy E, Nógraády M, Kozma D, Egri G, Pálovics E, Kiss V (2006) Org Biomol Chem 4:3011–3030

    Article  CAS  Google Scholar 

  19. Pellissier H (2008) Tetrahedron 64:1563–1601

    Article  CAS  Google Scholar 

  20. Faigl F, Fogassy E, Nógrádi M, Pálovics E, Schindler J (2008) Tetrahedron: Asymmetry 19:519–536

    Article  CAS  Google Scholar 

  21. Vries T, Wynberg H, van Echten E, Koek J, ten Hoeve W, Kellogg RM, Broxtermann QB, Minnaard A, Kaptein B, van der Sluis S, Hulshof L, Kooistra J (1998) Angew Chem Int Ed 37:2349–2354

    Article  CAS  Google Scholar 

  22. Bayley CR, Vaidya NA in Collins AN, Sheldrake GN, Crosby J (eds) (1992) Chirality in industry: the commercial manufacture and applications of optically active compound. Wiley Chichester, chapter 2, pp 69–77

    Google Scholar 

  23. Harrington PJ, Lodewijk E (1997) Org Process Res Dev 1:72–76

    Article  CAS  Google Scholar 

  24. Bortolini O, Fantin G, Fogagnolo M, Maietti S (2006) ARKIVOC (vi):40–48

    Google Scholar 

  25. Kodama K, Kobayashi Y, Saigo K (2007) Chem Eur J 13:2144–2152

    Article  CAS  Google Scholar 

  26. Hallett AJ, Kwant GJ, de Vries JG (2009) Chem Eur J 15:2111–2120

    Article  CAS  Google Scholar 

  27. Higuchi A, Tamai M, Ko YA, Tagawa YH, Wu YH, Freeman BD, Bing JT, Chang Y, Ling QD (2010) Polym Rev 50:113–143

    Article  CAS  Google Scholar 

  28. Okamoto Y, Yashima E (1998) Angew Chem Int Ed 37:1020–1043

    Article  Google Scholar 

  29. Perrin C, Vu VA, Matthijs N, Maftouh M, Massart DL, Heyden YV (2002) J Chrom A 947:69–83

    Article  CAS  Google Scholar 

  30. Perrin C, Matthijs N, Mngelings D, Granier-Loyaux C, Maftouh M, Massart DL, Vander Heyden Y (2002) J Chrom A 966:119–134

    Article  CAS  Google Scholar 

  31. Matthijs N, Maftouh M, Heyden YV (2006) J Chrom A 1111:48–61

    Article  CAS  Google Scholar 

  32. Francotte ER (2001) J Chrom A 906:379–397

    Article  CAS  Google Scholar 

  33. Rajendran A, Paredes G, Mazzotti M (2009) J Chrom A 1216:709–738

    Article  CAS  Google Scholar 

  34. Zaks A, Klibanov AM (1985) PNAS 82:3193–3196

    Article  Google Scholar 

  35. Klibanov AM (2001) Nature 409:241–246

    Article  CAS  Google Scholar 

  36. Carrea G, Riva S (2000) Angew Chem Int Ed 39:2226–2254

    Article  CAS  Google Scholar 

  37. Ghanem A, Aboul-Enein HY (2005) Chirality 17:1–15

    Article  CAS  Google Scholar 

  38. Carrea G, Riva S (eds) (2008) Organic synthesis with enzymes in non-aqueous media. Wiley-VCH, Weinheim

    Google Scholar 

  39. Cygler M, Grochulski P, Kazlauskas RJ, Schrag JD, Bouthillier F, Rubin B, Serreqi AN, Gupta AK (1994) J Am Chem Soc 116:3180–3186

    Article  CAS  Google Scholar 

  40. Schulz T, Pleiss J, Schmidt RD (2000) Protein Sci 9:1053–1062

    Article  CAS  Google Scholar 

  41. Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) J Am Chem Soc 104:7294–7299

    Article  CAS  Google Scholar 

  42. Inagaki M, Hiratake J, Nishioka T, Oda J (1991) J Am Chem Soc 113:9360–9361

    Article  CAS  Google Scholar 

  43. Pàmies O, Bäckvall JE (2003) Chem Rev 103:3247–3261

    Article  Google Scholar 

  44. Martin-Matute B, Edin M, Bogár K, Kaynak FB, Bäckvall JE (2005) J Am Chem Soc 127:8817–8825

    Article  CAS  Google Scholar 

  45. Hanessian S (1983) Total synthesis of natural products: the ‘Chiron’ approach. Pergamon Press, Elmsford NY

    Google Scholar 

  46. Corbu A, Aquino M, Perez M, Gandara Z, Arseniyadis S (2009) Eur J Org Chem 6386–6392

    Google Scholar 

  47. Yadav JS, Rao RN, Somaiah R, Harikrishna V, Subba Reddy BV (2010) Helv Chim Acta 93:1366–1368

    Google Scholar 

  48. Liu JQ, Qian C, Chen XZ (2010) Synthesis 403–406

    Google Scholar 

  49. Nicolau KC, Pappo D, Tsang KY, Gibe R, Chen DYK (2008) Angew Chem Int Ed 47:944–946

    Article  Google Scholar 

  50. Prasad KR, Anbarasan P (2007) J Org Chem 72:3155–3157

    Article  CAS  Google Scholar 

  51. Van Draanen NA, Arseniyadis S, Crimmins MT, Heathcock CH (1991) J Org Chem 56:2499–2506

    Article  Google Scholar 

  52. Yamazaki T, Kawashita S, Kitazume T, Kubota T (2009) Chem Eur J 15:11461–11464

    Article  CAS  Google Scholar 

  53. Deng WP, Snieckus V, Metallinos C (2010). In: Dai LX, Hou XL (eds) Chiral ferrocenes in asymmetric catalysis. Wiley-VCH, Weinheim, pp 15–54

    Google Scholar 

  54. Qiu L, Wu J, Chan S, Au-Yeung TTL, Ji JX, Guo R, Pai CC, Zhou Z, Li X, Fan QH, Chan ASC (2004) PNAS 101:5815–5820

    Article  CAS  Google Scholar 

  55. Bringmann G, Mortimer AJP, Keller PA, Gresser MJ, Garner J, Breuning M (2005) Angew Chem Int Ed 44:5384–5427

    Article  CAS  Google Scholar 

  56. Ager DJ, Prakash I, Schaad DR (1996) Chem Rev 96:835–875

    Article  CAS  Google Scholar 

  57. Boysen MMK (2007) Chem Eur J 13:8648–8659

    Article  CAS  Google Scholar 

  58. Jones S (2002) J Chem Soc Perkin Trans 11–21

    Google Scholar 

  59. Adam W, Zhang A (2005) Synlett 1047–1072

    Google Scholar 

  60. Roos G (2002) Compendium of chiral auxiliary applications. Academic Press, New York

    Google Scholar 

  61. Evans DA (1982) Aldrichim Acta 15:23–32

    CAS  Google Scholar 

  62. Ager DJ, Prakash I, Schaad DR (1997) Aldrichim Acta 30:3–12

    CAS  Google Scholar 

  63. Evans DA, Coleman PJ, Dias LC (1997) Angew Chem Int Ed 36:2738–2741

    Article  CAS  Google Scholar 

  64. Harried SS, Lee CP, Yang G, Lee TIH, Myles DC (2003) J Org Chem 68:6646–6660

    Article  CAS  Google Scholar 

  65. Bull SD, Davies SG, Nicholson RL, Sanganee HJ, Smith AD (2003) Org Biomol Chem 1:2886–2899

    Article  CAS  Google Scholar 

  66. Davies SG, Garner AC, Roberts PM, Smith AD, Sweet MJ, Thomson JE (2006) Org Biomol Chem 4:2753–2768

    Article  CAS  Google Scholar 

  67. Chernega AN, Davies SG, Goodwin CJ, Hepworth D, Kurosawa W, Roberts PM, Thomson JE (2009) Org Lett 11:3254–3257

    Article  CAS  Google Scholar 

  68. Tessier A, Pytkowicz J, Brigaud T (2006) Angew Chem Int Ed 45:3677–3681

    Article  CAS  Google Scholar 

  69. Oppolzer W, Blagg J, Rodriguez I, Walther E (1990) J Am Chem Soc 112:2767–2772

    Article  CAS  Google Scholar 

  70. Velázques F, Olivo HF (2002) Curr Org Chem 6:303–340

    Article  Google Scholar 

  71. Fecourt F, Lopez G, van Der Lee A, Martinez J, Dewynter G (2010) Tetrahedron: Asymmetry 21:2361–2366

    Article  CAS  Google Scholar 

  72. Ellman JA, Owens TD, Tang TP (2002) Acc Chem Res 35:984–995

    Article  CAS  Google Scholar 

  73. Zhou P, Chen BC, Davis FA (2004) Tetrahedron 60:8003–8030

    Article  CAS  Google Scholar 

  74. Lin GQ, Xu MH, Zhong YW, Sun XW (2008) Acc Chem Res 41:831–840

    Article  CAS  Google Scholar 

  75. Harold T, Hoffmann RW (1978) Angew Chem Int Ed 17:768–769

    Google Scholar 

  76. Roush WR, Walts AE, Hoong LK (1985) J Am Chem Soc 107:8186–8190

    Article  CAS  Google Scholar 

  77. Jadhav PK, Bhat KS, Perumal T, Brown HC (1986) J Org Chem 51:432–439

    Article  CAS  Google Scholar 

  78. Burgos CH, Canales E, Matos K, Soderquist JA (2005) J Am Chem Soc 127:8044–8049

    Article  CAS  Google Scholar 

  79. Brown HC, Ramachandran PVI (1991) Pure Appl Chem 63:307–316

    Article  CAS  Google Scholar 

  80. Paterson I (1992) Pure Appl Chem 64:1821–1830

    Article  CAS  Google Scholar 

  81. Masamune S, Sato T, Kim B, Wollmann TA (1986) J Am Chem Soc 108:8279–8281

    Article  CAS  Google Scholar 

  82. Corey EJ, Kim SS (1990) J Am Chem Soc 117:4976–4977

    Article  Google Scholar 

  83. Gonzalez AZ, Román JG, Gonzalez E, Martinez J, Medina JR, Matos K, Soderquist JA (2008) J Am Chem Soc 130:9218–9219

    Article  CAS  Google Scholar 

  84. Thomas SP, Aggarwal VK (2009) Angew Chem Int Ed 48:1896–1898

    Article  CAS  Google Scholar 

  85. Rasor PJ, Voss E (2001) Appl Catal A Gen 221:45–158

    Google Scholar 

  86. Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinsky T (2004) Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  87. Nozaki H, Moriuti S, Takaya H, Noyori R (1966) Tetrahedron Lett 7:5239–5244

    Article  Google Scholar 

  88. Knowles WS, Sabacky MJ, Vineyard BD (1977) US Patent 4005127, 25 January 1977

    Google Scholar 

  89. Knowles WS (2002) Angew Chem Int Ed 41:1998–2007 (Nobel Lecture)

    Article  CAS  Google Scholar 

  90. Noyori R (2002) Angew Chem Int Ed 41:2008–2022 (Nobel Lecture)

    Article  CAS  Google Scholar 

  91. Sharpless BK (2002) Angew Chem Int Ed 41:2024–2032 (Nobel Lecture)

    Article  CAS  Google Scholar 

  92. Knowles WS (1983) Acc Chem Res 16:106–112

    Article  CAS  Google Scholar 

  93. Tang W, Zhang X (2003) Chem. Rev 103:3029–3069

    CAS  Google Scholar 

  94. Noyory R, Ohkuma T (2001) Angew Chem Int Ed 40:40–73

    Article  Google Scholar 

  95. Katsuki T, Sharpless BK (1980) J Am Chem Soc 102:5976–5978

    Article  Google Scholar 

  96. Gao Y, Hanson RM, Klunder JM, Ko SY, Masamune H, Sharpless KB (1987) J Am Chem Soc 109:5765–5780

    Article  CAS  Google Scholar 

  97. Kolb HC, VanNieuwenhze MS, Sharpless KB (1994) Chem Rev 94:2483–2547

    Article  CAS  Google Scholar 

  98. Halpern J (1982) Science 217:401–407

    Article  CAS  Google Scholar 

  99. Giovannetti JS, Kelly CM, Landis CR (1993) J Am Chem Soc 115:4040–4057

    Article  CAS  Google Scholar 

  100. Gridnev ID, Imamoto T (2009) Chem Commun 7447–7464

    Google Scholar 

  101. Koenig KE, Sabacky MJ, Bachman GL, Christopfel WC, Barnstorff HD, Friedman RB, Knowles WS, Stults BR, Vineyard BD, Weinkauff DJ (1980) Ann N Y Acad Sci 333:16–22

    Article  CAS  Google Scholar 

  102. Giagou T, Meyer MP (2010) Chem Eur J 16:10616–10628

    Article  CAS  Google Scholar 

  103. Sandoval CA, Ohkuma T, Muñiz K, Noyori R (2003) J Am Chem Soc 125:13490–13503

    Article  CAS  Google Scholar 

  104. Wu YD, Lai DKW (1995) J Am Chem Soc 117:11327–11336

    Article  CAS  Google Scholar 

  105. Alonso DA, Brandt P, Nordin SJM, Andersson PG (1999) J Am Chem Soc 121:9580–9588

    Article  CAS  Google Scholar 

  106. Mikami K, Terada M (1992) Tetrahedron 48:5671–5680

    CAS  Google Scholar 

  107. Trost BM, Crawley ML (2003) Chem Rev 103:2921–2943

    Article  CAS  Google Scholar 

  108. Shimizu H, Nagasaki I, Matsumura K, Sayo N, Saito T (2007) Acc Chem Res 40:1385–1393

    Article  CAS  Google Scholar 

  109. Saudan LA (2007) Acc Chem Res 40:1309–1319

    Article  CAS  Google Scholar 

  110. Blaser HU, Pugin B, Spindler F (2005) J Mol Catal A Chem 231:1–20

    Article  CAS  Google Scholar 

  111. Blaser HU, Federsel HJ (eds) (2010) Asymmetric catalysis on industrial scale. Challenges, approaches and solutions. Wiley-VCH Weinheim

    Google Scholar 

  112. Blaser HU (2002) Adv Synth Catal 344:17–31

    Article  CAS  Google Scholar 

  113. Cotton H, Elebring T, Larsson M, Li L, Sörensen H, von Unge S (2000) Tetrahedron:Asymmetry 11:3819–3825

    Article  CAS  Google Scholar 

  114. Akutagawa S in Collins AN, Sheldrake GN, Crosby J (eds) (1992) Chirality in industry: the commercial manufacture and applications of optically active compound. Wiley Chichester, chapter 16, pp 313–323

    Google Scholar 

  115. Shum WP, Cannarsa MJ in Collins AN, Sheldrake GN, Crosby J (eds) (1997) Chirality in industry II: developments in the commercial manufacture and applications of optically active compound. Wiley New York, chapter 18, pp 1367–1376

    Google Scholar 

  116. Klingler FD (2007) Acc Chem Res 40:1367–1376

    Article  CAS  Google Scholar 

  117. Jacobsen EN, Pfaltz A, Yamamoto H (eds) (1999) Comprehensive asymmetric catalysis, vol 1–3 and supplements. Springer, Berlin

    Google Scholar 

  118. Ojima I (ed) (2000) Catalytic asymmetric synthesis. Wiley-VCH Inc.

    Google Scholar 

  119. Mikami K, Lautens M (eds) (2007) New frontiers in asymmetric catalysis. John Wiley & Sons, Inc.

    Google Scholar 

  120. Caprio V, Williams J (eds) (2009) Catalysis in asymmetric synthesis. John Wiley & Sons Ltd, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Patti .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Angela Patti

About this chapter

Cite this chapter

Patti, A. (2011). Methods for the Preparation of Optically Active Chiral Compounds. In: Green Approaches To Asymmetric Catalytic Synthesis. SpringerBriefs in Molecular Science(), vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1454-0_1

Download citation

Publish with us

Policies and ethics