The goal of this book is to enable realization of monolithic inductive DC-DC converters, having both maximal overall power conversion efficiency and a maximal power density. Therefore, the novel control schemes, together with practical circuit implementations, are used to increase the average performance. The combined knowledge of both inductive DC-DC converter and control techniques and systems, leads to the various practical chip realizations, which are described in this chapter. Thereby, the hands-on approach is continued, providing the designer the essential feeling of the various practical implementation and measurements issues. At the same time the reader is provided with the idea of what (and what not) is to be expected from monolithic inductive DC-DC converters in various standard CMOS technologies, performance wise. The practical implementation possibilities, involving the essential components of the DC-DC converter’s power stage: inductors, capacitors and switches, are discussed in Sect. 6.1. Comments on the main measurement principles and setups are provided in Sect. 6.2. The various practical implementations of monolithic inductive boost and buck converters are discussed in the respective Sects. 6.3 and 6.4. A side-by-side comparison of the measurements of the implementations discussed in this book and the implementations described in the literature is performed in Sect. 6.5. Finally, this chapter is concluded in Sect. 6.6.


Boost Converter Buck Converter Capacitance Density Output Capacitor Standard CMOS Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Abe07]
    S. Abedinpour, B. Bakkaloglu, S. Kiaei, A Multistage Interleaved Synchronous Buck Converter with Integrated Output Filter in 0.18 μm SiGe Process. IEEE Trans. Power Electron. 22(6), 2164–2175 (2007). doi: 10.1109/TPEL.2007.909288 CrossRefGoogle Scholar
  2. [Ahn96]
    C.H. Ahn, M.G. Allen, A Comparison of Two Micromachined Inductors (Bar- and Meander-Type) for Fully Integrated Boost DC/DC Power Converters. IEEE Trans. Power Electron. 11(2), 239–245 (1996). doi: 10.1109/63.486171 CrossRefGoogle Scholar
  3. [Ajr01]
    S. Ajram, G. Salmer, Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches. IEEE Trans. Power Electron. 16(5), 594–602 (2001). doi: 10.1109/63.949492 CrossRefGoogle Scholar
  4. [Ali07]
    M. Alimadadi, S. Sheikhaei, G. Lemieux, S. Mirabbasi, P. Palmer, A 3 GHz Switching DC-DC Converter Using Clock-Tree Charge-Recycling in 90 nm CMOS with Integrated Output Filter, in IEEE International Solid-State Circuits Conference ISSCC: Digest of Technical Papers, 2007, pp. 532–620. doi: 10.1109/ISSCC.2007.373529 Google Scholar
  5. [Ali09]
    M. Alimadadi, S. Sheikhaei, G. Lemieux, S. Mirabbasi, W.G. Dunford, P.R. Palmer, A Fully Integrated 660 MHz Low-Swing Energy-Recycling DC-DC Converter. IEEE Trans. Power Electron. 24(6), 1475–1485 (2009). doi: 10.1109/TPEL.2009.2013624 CrossRefGoogle Scholar
  6. [Apa02]
    R. Aparicio, A. Hajimiri, Capacity Limits and Matching Properties of Integrated Capacitors. IEEE J. Solid-State Circuits 37(3), 384–393 (2002). doi: 10.1109/4.987091 CrossRefGoogle Scholar
  7. [Ber08]
    H.J. Bergveld, R. Karadi, K. Nowak, An Inductive Down Converter System-in-package for Integrated Power Management in Battery-Powered Applications, in IEEE Power Electronics Specialists Conference PESC, 2008, pp. 3335–3341. doi: 10.1109/PESC.2008.4592470 Google Scholar
  8. [Ber09]
    H.J. Bergveld, K. Nowak, R. Karadi, S. Iochem, J. Ferreira, S. Ledain, E. Pieraerts, M. Pommier, A 65-nm-CMOS 100-MHz 87-Efficient DC-DC Down Converter Based on Dual-Die System-in-Package Integration, in IEEE Energy Conversion Congress and Exposition ECCE, 2009, pp. 3698–3705. doi: 10.1109/ECCE.2009.5316334 CrossRefGoogle Scholar
  9. [Bre09a]
    T.V. Breussegem, M. Steyaert, A 82% Efficiency 0.5% Ripple 16-Phase Fully Integrated Capacitive Voltage Doubler, in IEEE Proceedings of the 2009 Symposium on VLSI Circuits, vol. 1, 2009, pp. 198–199 Google Scholar
  10. [Cra97]
    J. Craninckx, Low-Phase-Noise Fully Integrated CMOS Frequency Synthesizers, PhD thesis, ESAT-MICAS, K.U. Leuven, Belgium, 1997 Google Scholar
  11. [Gar07]
    D.S. Gardner, G. Schrom, P. Hazucha, F. Paillet, T. Karnik, S. Borkar, Integrated On-Chip Inductors with Magnetic Films. IEEE Trans. Magn. 43(6), 2615–2617 (2007). doi: 10.1109/TMAG.2007.893794 CrossRefGoogle Scholar
  12. [Gho04]
    M. Ghovanloo, K. Najafi, Fully Integrated Wideband High-Current Rectifiers for Inductively Powered Devices. IEEE J. Solid-State Circuits 39(11), 1976–1984 (2004). doi: 10.1109/JSSC.2004.835822 CrossRefGoogle Scholar
  13. [Haz05]
    P. Hazucha, G. Schrom, J. Hahn, B.A. Bloechel, P. Hack, G.E. Dermer, S. Narendra, D. Gardner, T. Karnik, V. De, S. Borkar, A 233-MHz 80-87 Efficient Four-Phase DC-DC Converter Utilizing Air-Core Inductors on Package. IEEE J. Solid-State Circuits 40(4), 838–845 (2005). doi: 10.1109/JSSC.2004.842837 CrossRefGoogle Scholar
  14. [Jin09]
    N. Jinhua, Z. Hong, B.Y. Liu, Improved On-Chip Components for Integrated DC-DC Converters in 0.13 m CMOS, in Proceedings of the European Solid-State Circuits Conference ESSCIRC, 2009, pp. 448–451. doi: 10.1109/ESSCIRC.2009.5325987 Google Scholar
  15. [Joh09]
    H. Johari, F. Ayazi, High-Density Embedded Deep Trench Capacitors in Silicon with Enhanced Breakdown Voltage. IEEE Trans. Compon. Packag. Technol. 32(4), 808–815 (2009). doi: 10.1109/TCAPT.2009.2024210 CrossRefGoogle Scholar
  16. [Kam94]
    M. Kamon, M.J. Tsuk, J.K. White, FASTHENRY: A Multipole-Accelerated 3-D Inductance Extraction Program. IEEE Trans. Microw. Theory Tech. 42(9), 1750–1758 (1994). doi: 10.1109/22.310584 CrossRefGoogle Scholar
  17. [Kur05]
    V. Kursun, G. Schrom, V.K. De, E.G. Friedman, S.G. Narendra, Cascode Buffer for Monolithic Voltage Conversion Operating at High Input Supply Voltages, in IEEE International Symposium on Circuits and Systems ISCAS, vol. 1, 2005, pp. 464–467. doi: 10.1109/ISCAS.2005.1464625 Google Scholar
  18. [Lam01]
    S. Lam, W.H. Ki, K.C. Kwok, M. Chan, Realization of Compact MOSFET Structure by Waffle-Layout, in Proceeding of the 31st European Solid-State Device Research Conference, 2001, pp. 119–122 Google Scholar
  19. [Le10]
    H.P. Le, M. Seeman, S.R. Sanders, V. Sathe, S. Naffziger, E. Alon, A 32 nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC Converter Delivering 0.55 W/mm2 at 81 Efficiency, in IEEE International Solid-State Circuits Conference ISSCC: Digest of Technical Papers, 2010, pp. 210–211. doi: 10.1109/ISSCC.2010.5433981 Google Scholar
  20. [Lu10]
    J. Lu, H. Jia, X. Wang, K. Padmanabhan, W.G. Hurley, Z.J. Shen, Modeling, Design, and Characterization of Multiturn Bondwire Inductors with Ferrite Epoxy Glob Cores for Power Supply System-on-Chip or System-in-Package Applications. IEEE Trans. Power Electron. 25(8), 2010–2017 (2010). doi: 10.1109/TPEL.2010.2045514 CrossRefGoogle Scholar
  21. [Mal00]
    S.Q. Malik, R.L. Geiger, Minimization of Area in Low-Resistance MOS Switches, in Proceedings of the IEEE Midwest Symposium on Circuits and Systems, vol. 3, 2000, pp. 1392–1395. doi: 10.1109/MWSCAS.2000.951473 Google Scholar
  22. [Mus05b]
    S. Musunuri, P.L. Chapman, J. Zou, L. Chang, Design Issues for Monolithic DC-DC Converters. IEEE Trans. Power Electron. 20(3), 639–649 (2005). doi: 10.1109/TPEL.2005.846527 CrossRefGoogle Scholar
  23. [Oni07]
    K. Onizuka, K. Inagaki, H. Kawaguchi, M. Takamiya, T. Sakurai, Stacked-Chip Implementation of On-Chip Buck Converter for Distributed Power Supply System in SiPs. IEEE J. Solid-State Circuits 42(11), 2404–2410 (2007). doi: 10.1109/JSSC.2007.906204 CrossRefGoogle Scholar
  24. [Per04]
    A.M. Pernia, M.J. Prieto, J.M. Lopera, J. Reilly, S.S. Linton, C. Quinones, Thick-Film Hybrid Technology for Low-Output-Voltage DC/DC Converter. IEEE Trans. Ind. Appl. 40(1), 86–93 (2004). doi: 10.1109/TIA.2003.821814 CrossRefGoogle Scholar
  25. [Rec88]
    W. Reczek, W. Pribyl, Guidelines for Latch-Up Characterization Techniques, in Proceedings of the 1988 IEEE International Conference on Microelectronic Test Structures ICMTS, 1988, pp. 120–125 Google Scholar
  26. [Ric04]
    A. Richelli, L. Collalongo, M. Quarantelli, M. Caramina, Z.M. Kovaćs-Vanja, A Fully-Integrated Inductor-Based 1.8-6-V Step-Up Converter. IEEE J. Solid-State Circuits 39(1), 242–245 (2004) CrossRefGoogle Scholar
  27. [Sam98]
    H. Samavati, A. Hajimiri, A.R. Shahani, G.N. Nasserbakht, T.H. Lee, Fractal Capacitors. IEEE J. Solid-State Circuits 33(12), 2035–2041 (1998). doi: 10.1109/4.735545 CrossRefGoogle Scholar
  28. [Sav03]
    A. Savio, A. Richelli, L. Colalongo, Z.M. Kowacs-Vajna, A Fully-Integrated Self-Tuned Transformer Based Step-Up Converter, in IEEE Proceedings of the International Symposium on Circuits and Systems, vol. 1, 2003, pp. 357–360 Google Scholar
  29. [Ser05]
    B. Serneels, T. Piessens, M. Steyaert, W. Dehaene, A High-Voltage Output Driver in a 2.5-V 0.25 μm CMOS Technology. IEEE J. Solid-State Circuits 40(3), 576–583 (2005). doi: 10.1109/JSSC.2005.843599 CrossRefGoogle Scholar
  30. [Ser07]
    B. Serneels, High Voltage Line Drivers for XDSL in Nanometer CMOS, PhD thesis, ESAT-MICAS, K.U. Leuven, Belgium, 2007 Google Scholar
  31. [Til96]
    H.A.C. Tilmans, K. Baert, A. Verbist, R. Puers, CMOS Foundry-Based Micromachining. IEEE J. Micromech. Microeng. 6(1), 122–127 (1996) CrossRefGoogle Scholar
  32. [Wen07]
    M. Wens, K. Cornelissens, M. Steyaert, A Fully-Integrated 0.18 μm CMOS DC-DC Step-Up Converter, Using a Bondwire Spiral Inductor, in IEEE Proceedings of the European Solid-State Circuits Conference, vol. 33, 2007, pp. 268–271 Google Scholar
  33. [Wen08a]
    M. Wens, M. Steyaert, A Fully-Integrated 0.18 μm CMOS DC-DC Step-Down Converter, Using a Bondwire Spiral Inductor, in IEEE Proceedings of the Custom Integrated Circuits Conference, vol. 30, 2008, pp. 17–20 Google Scholar
  34. [Wen08b]
    M. Wens, M. Steyaert, A Fully-Integrated 130 nm CMOS DC-DC Step-Down Converter, Regulated by a Constant On/Off-Time Control System, in IEEE Proceedings of the European Solid-State Circuits Conference, vol. 34, 2008, pp. 62–65 Google Scholar
  35. [Wen09a]
    M. Wens, J.M. Redoute, T. Blanchaert, N. Bleyaert, M. Steyaert, An Integrated 10 A, 2.2 ns Rise-Time Laser-Diode Driver for Lidar Applications, in IEEE Proceedings of the European Solid-State Circuits Conference, vol. 35, 2009, pp. 144–147 Google Scholar
  36. [Wen09b]
    M. Wens, M. Steyaert, An 800 mW Fully-Integrated 130 nm CMOS DC-DC Step-Down Multi-Phase Converter, with On-Chip Spiral Inductors and Capacitors, in IEEE Energy Conversion Congress and Exposition, vol. 1, 2009, pp. 3706–3709 CrossRefGoogle Scholar
  37. [Wib08]
    J. Wibben, R. Harjani, A High-Efficiency DC-DC Converter Using 2 nH Integrated Inductors. IEEE J. Solid-State Circuits 43(4), 844–854 (2008) CrossRefGoogle Scholar
  38. [Wu09]
    J.C. Wu, M.E. Zaghloul, Robust CMOS Micromachined Inductors with Structure Supports for Gilbert Mixer Matching Circuits. IEEE Trans. Circuits Syst. II, Express Briefs 56(6), 429–433 (2009). doi: 10.1109/TCSII.2009.2020925 CrossRefGoogle Scholar
  39. [Zha06]
    F. Zhang, P.R. Kinget, Design of Components and Circuits Underneath Integrated Inductors. IEEE J. Solid-State Circuits 41(10), 2265–2271 (2006). doi: 10.1109/JSSC.2006.881547 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.ESAT-MICAS, Dept. ElektrotechniekK.U. LeuvenLeuvenBelgium
  2. 2.ESAT-MICAS, Dept. ElektrotechniekK.U. LeuvenHeverleeBelgium

Personalised recommendations