Advertisement

Abstract

The control system is responsible for the second important task of the DC-DC converter: Regulating the output voltage to the desired level. For the purpose of monolithic DC-DC converters a new set of challenges emerge, both in terms of the control strategy and the basic design of the control system. This is due to the requirement of high switching frequencies and short switching times, needed to guarantee the optimal performance of the monolithic DC-DC converter. Therefore, novel control strategies are proposed in this chapter. These discussions include the principle of the control strategies and the circuits used in the practical chip implementations discussed in this book. In this chapter the two conventional control strategies PWM and PFM are discussed and compared to each other in Sect. 5.1. The Constant On/Off-Time (COOT) control strategy, together with implementation examples for single-phase, single-output and multi-output converters, is explained in Sect. 5.2. The Semi-Constant On/Off-Time (SCOOT) control strategy, together with implementation examples for multi-phase and multiple-output converters, is explained in Sect. 5.3. The Feed-Forward Semi-Constant On/Off-Time (F2-SCOOT) control strategy, together with an implementation example, is discussed in Sect. 5.4. The aspect of start-up, in combination with some start-up circuit implementations, is discussed in Sect. 5.5. Finally, the chapter is concluded in Sect. 5.6.

Keywords

Pulse Width Modulation Boost Converter Switching Cycle Buck Converter Pulse Frequency Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AH09]
    W. Al-Hoor, J.A. Abu-Qahouq, L. Huang, W.B. Mikhael, I. Batarseh, Adaptive Digital Controller and Design Considerations for a Variable Switching Frequency Voltage Regulator. IEEE Trans. Power Electron. 24(11), 2589–2602 (2009). doi: 10.1109/TPEL.2009.2031439 CrossRefGoogle Scholar
  2. [Dav07]
    A. Davoudi, J. Jatskevich, Parasitics Realization in State-Space Average-Value Modeling of PWM DC-DC Converters Using an Equal Area Method. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(9), 1960–1967 (2007). doi: 10.1109/TCSI.2007.904686 CrossRefGoogle Scholar
  3. [Dav09]
    A. Davoudi, J. Jatskevich, P.L. Chapman, Numerical Dynamic Characterization of Peak Current-Mode-Controlled DC-DC Converters. IEEE Trans. Circuits Syst. II, Express Briefs 56(12), 906–910 (2009). doi: 10.1109/TCSII.2009.2035272 CrossRefGoogle Scholar
  4. [Dei78]
    C. Deisch, Simple Switching Control Method Changes Power Converter into a Current Source, in IEEE Power Electronics Specialists Conference, 1978, pp. 300–306 Google Scholar
  5. [Ham88]
    D.C. Hamill, D.J. Jeffries, Subharmonics and Chaos in a Controlled Switched-Mode Power Converter. IEEE Trans. Circuits Syst. 35(8), 1059–1061 (1988). doi: 10.1109/31.1858 MathSciNetCrossRefGoogle Scholar
  6. [Haz07]
    P. Hazucha, S.T. Moon, G. Schrom, F. Paillet, D. Gardner, S. Rajapandian, T. Karnik, High Voltage Tolerant Linear Regulator with Fast Digital Control for Biasing of Integrated DC-DC Converters. IEEE J. Solid-State Circuits 42(1), 66–73 (2007) CrossRefGoogle Scholar
  7. [Hon00]
    S.S. Hong, B. Choi, Technique for Developing Averaged Duty Ratio Model for DC-DC Converters Employing Constant On-Time Control. IEEE Electron. Lett. 36(5), 397–399 (2000). doi: 10.1049/el:20000331 CrossRefGoogle Scholar
  8. [Kaz99]
    M.K. Kazimierczuk, L.A. Starman, Dynamic Performance of PWM DC-DC Boost Converter with Input Voltage Feedforward Control. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46(12), 1473–1481 (1999). doi: 10.1109/81.809549 CrossRefGoogle Scholar
  9. [Ki98]
    W.H. Ki, Analysis of Subharmonic Oscillation of Fixed-Frequency Current-Programming Switch Mode Power Converters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45(1), 104–108 (1998). doi: 10.1109/81.660771 CrossRefGoogle Scholar
  10. [Kwo09]
    D. Kwon, G.A. Rinćon-Mora, Single-Inductor-Multiple-Output Switching DC-DC Converters. IEEE Trans. Circuits Syst. II 59(8), 614–618 (2009) CrossRefGoogle Scholar
  11. [Le07]
    H.P. Le, C.S. Chae, K.C. Lee, S.W. Wang, G.H. Cho, G.H. Cho, A Single-Inductor Switching DC-DC Converter with Five Outputs and Ordered Power-Distributive Control. IEEE J. Solid-State Circuits 42(12), 2706–2714 (2007). doi: 10.1109/JSSC.2007.908767 CrossRefGoogle Scholar
  12. [Leu05]
    C.Y. Leung, P.K.T. Mok, K.N. Leung, A 1-V Integrated Current-Mode Boost Converter in Standard 3.3/5-V CMOS Technologies. IEEE J. Solid-State Circuits 40(11), 2265–2274 (2005). doi: 10.1109/JSSC.2005.857374 CrossRefGoogle Scholar
  13. [Li07]
    H. Li, Z. Li, W.A. Halang, B. Zhang, G. Chen, Analyzing Chaotic Spectra of DC-DC Converters Using the Prony Method. IEEE Trans. Circuits Syst. II, Express Briefs 54(1), 61–65 (2007). doi: 10.1109/TCSII.2006.883100 CrossRefGoogle Scholar
  14. [Mak91]
    D. Maksimovic, S. Cuk, Switching Converters with Wide DC Conversion Range. IEEE Trans. Power Electron. 6(1), 151–157 (1991) CrossRefGoogle Scholar
  15. [Pap04]
    G.A. Papafotiou, N.I. Margaris, Calculation and Stability Investigation of Periodic Steady States of the Voltage Controlled Buck DC-DC Converter. IEEE Trans. Power Electron. 19(4), 959–970 (2004). doi: 10.1109/TPEL.2004.830040 CrossRefGoogle Scholar
  16. [Qiu06]
    Y. Qiu, M. Xu, K. Yao, J. Sun, F.C. Lee, Multifrequency Small-Signal Model for Buck and Multiphase Buck Converters. IEEE Trans. Power Electron. 21(5), 1185–1192 (2006). doi: 10.1109/TPEL.2006.880354 CrossRefGoogle Scholar
  17. [Red09]
    R. Redl, S. Jian, Ripple-Based Control of Switching Regulators, An Overview. IEEE Trans. Power Electron. 24(12), 2669–2680 (2009). doi: 10.1109/TPEL.2009.2032657 CrossRefGoogle Scholar
  18. [Sah07]
    B. Sahu, G.A. Rincon-Mora, An Accurate, Low-Voltage, CMOS Switching Power Supply with Adaptive On-Time Pulse-Frequency Modulation (PFM) Control. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(2), 312–321 (2007). doi: 10.1109/TCSI.2006.887472 CrossRefGoogle Scholar
  19. [Sch64]
    B.P. Schweitzer, A.B. Rosenstein, Free Running-Switching Mode Power Regulator: Analysis and Design. IEEE Trans. Aerosp. 2(4), 1171–1180 (1964). doi: 10.1109/TA.1964.4319737 CrossRefGoogle Scholar
  20. [Ser05]
    B. Serneels, T. Piessens, M. Steyaert, W. Dehaene, A High-Voltage Output Driver in a 2.5-V 0.25 μm CMOS Technology. IEEE J. Solid-State Circuits 40(3), 576–583 (2005). doi: 10.1109/JSSC.2005.843599 CrossRefGoogle Scholar
  21. [Ser07]
    B. Serneels, High Voltage Line Drivers for XDSL in Nanometer CMOS, PhD thesis, ESAT-MICAS, K.U. Leuven, Belgium, 2007 Google Scholar
  22. [Sun02]
    J. Sun, Small-Signal Modeling of Variable-Frequency Pulsewidth Modulators. IEEE Trans. Aerosp. Electron. Syst. 38(3), 1104–1108 (2002). doi: 10.1109/TAES.2002.1039428 CrossRefGoogle Scholar
  23. [Wen07]
    M. Wens, K. Cornelissens, M. Steyaert, A Fully-Integrated 0.18 μm CMOS DC-DC Step-Up Converter, Using a Bondwire Spiral Inductor, in IEEE Proceedings of the European Solid-State Circuits Conference, vol. 33, 2007, pp. 268–271 Google Scholar
  24. [Wen08a]
    M. Wens, M. Steyaert, A Fully-Integrated 0.18 μm CMOS DC-DC Step-Down Converter, Using a Bondwire Spiral Inductor, in IEEE Proceedings of the Custom Integrated Circuits Conference, vol. 30, 2008, pp. 17–20 Google Scholar
  25. [Wen08b]
    M. Wens, M. Steyaert, A Fully-Integrated 130 nm CMOS DC-DC Step-Down Converter, Regulated by a Constant On/Off-Time Control System, in IEEE Proceedings of the European Solid-State Circuits Conference, vol. 34, 2008, pp. 62–65 Google Scholar
  26. [Wen09b]
    M. Wens, M. Steyaert, An 800 mW Fully-Integrated 130 nm CMOS DC-DC Step-Down Multi-Phase Converter, with On-Chip Spiral Inductors and Capacitors, in IEEE Energy Conversion Congress and Exposition, vol. 1, 2009, pp. 3706–3709 CrossRefGoogle Scholar
  27. [Wes73]
    G.W. Wester, R.D. Middlebrook, Low-Frequency Characterization of Switched DC-DC Converters. IEEE Trans. Aerosp. Electron. Syst. AES-9(3), 376–385 (1973). doi: 10.1109/TAES.1973.309723 CrossRefGoogle Scholar
  28. [Wu98]
    T.F. Wu, Y.K. Chen, Modeling PWM DC/DC Converters out of Basic Converter Units. IEEE Trans. Power Electron. 13(5), 870–881 (1998). doi: 10.1109/63.712294 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.ESAT-MICAS, Dept. ElektrotechniekK.U. LeuvenLeuvenBelgium
  2. 2.ESAT-MICAS, Dept. ElektrotechniekK.U. LeuvenHeverleeBelgium

Personalised recommendations