Skip to main content

Removal of Trace Pollutants by Application of MBR Technology for Wastewater Treatment

  • Chapter
  • First Online:
Green Technologies for Wastewater Treatment

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

  • 2128 Accesses

Abstract

The number of MBR technology applications for municipal wastewater treatment has grown enormously during the last decade. These systems have several environmental advantages with respect to conventional activated sludge process (high effluent quality, reduced footprint, reduced sludge production etc.); recently, it has been demonstrated that they improve at higher extent effluent estrogenicity abatement, even though this positive effect may not be predicted based on trace pollutant concentrations, being for many substances similar to those obtained by conventional process. On the other hand, higher environmental costs, mainly due to membrane fabrication/installation and energy consumption for plant operation, have to be carefully evaluated in order to assess if MBR can be considered to be a green technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey J, Bemberis I, Presti J (1971) Phase I final report—shipboard sewage treatment system. General Dynamics Electric Boat Division NTIS

    Google Scholar 

  2. Bemberis I, Hubbard PJ, Leonard FB (1971) Membrane sewage treatment systems potential for complete wastewater treatment. In: American society for agricultural engineering winter meeting, pp 871–878

    Google Scholar 

  3. Judd S, Judd C (2011) The MBR book. Principles and applications of memrane bioreactors for water and wastewater treatment, 2nd edn. IWA Publishing, Elsevier, Oxford. ISBN 978-1-84-339518-8

    Google Scholar 

  4. Tonelli FA, Behmann H (1996) Aerated membrane bioreactor process for treating recalcitrant compounds. US Pat: 410730

    Google Scholar 

  5. Tonelli FA, Canning RP (1993) Membrane bioreactor system for treating synthetic metal-working fluids and oil based products. USA Pat: 5204001

    Google Scholar 

  6. Sipma J, Osuna B, Collado N, Monclus H, Ferrero G, Comas J et al (2010) Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination 250:653–659

    Article  CAS  Google Scholar 

  7. Clara M, Strenn B, Ausserleitner M, Kreuzinger N (2004) Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant. Water Sci and Technol 50(5):29–36

    CAS  Google Scholar 

  8. Cirja M, Ivashechkin P, Schaffer A, Corvini PFX (2008) Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev Environ Sci Biotechnol 7(1):61–78

    Article  CAS  Google Scholar 

  9. Bernhard M, Muller J, Knepper TP (2006) Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res 40:3419–3428

    Article  CAS  Google Scholar 

  10. Kimura K, Hara H, Watanabe Y (2005) Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs). Desalination 178:135–140

    Article  CAS  Google Scholar 

  11. Radjenovic J, Petrovic M, Barcelò D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem 387:1365–1377

    Article  CAS  Google Scholar 

  12. Radjenovic J, Petrovic M, Barcelò D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43(3):831–841

    Article  CAS  Google Scholar 

  13. Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J, Peart T (2006) Occurrence and reduction of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci Tot Environ 367:544–558

    Article  CAS  Google Scholar 

  14. Vieno N, Tuhkanen T, Kronberg N (2007) Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res 41:1001–1012

    Article  CAS  Google Scholar 

  15. Zhang Y, Geissen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161

    Article  CAS  Google Scholar 

  16. Joss S, Zabczynski A, Gobel B, Hoffmann D, Loffler CS, McArdell TA (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 4:1686–1696

    Article  Google Scholar 

  17. Batt AL, Kim S, Aga DS (2006) Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environt Sci Tehnol 40:7367–7373

    Article  CAS  Google Scholar 

  18. Perez S, Eichhorn P, Aga DS (2005) Evaluating the biodegradability of sulphamenthazine, sulphamethoxzole and trimethoprin at different stages of sewage treatment. Environ Toxicol Chem 24(6):1361–1367

    Article  CAS  Google Scholar 

  19. Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD, Surampalli RY (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem 41(3):525–539

    Article  CAS  Google Scholar 

  20. Koh YKK, Chiu TY, Boobis A, Cartmell E, Scrimshaw MD, Lester JN (2008) Treatment and removal strategies for estrogens from wastewater. Environ Technol 29(3):245–267

    Article  CAS  Google Scholar 

  21. Bjorkblom C, Salste L, Katsiadaki I, Wiklund T, Kronberg L (2008) Detection of estrogenic activity in municipal wastewater effluent using primary cell cultures from three-spined stickleback and chemical analysis. Chemosphere 73(7):1064–1070

    Article  CAS  Google Scholar 

  22. Hjelmborg PS, Ghisari M, Bonefeld-Jorgensen EC (2006) SPE-HPLC purification of endocrine-disrupting compounds from human serum for assessment of xenoestrogenic activity. Anal Bioanal Chem 385(5):875–887

    Article  CAS  Google Scholar 

  23. Mnif W, Dagnino S, Escande A, Pillon A, Fenet H, Gomez E, Casellas C, Duchesne M, Hernandez-Raquet G, Cavaillés V, Balaguer P, Bartegi A (2010) Biological analysis of endocrine-disrupting compounds in Tunisian sewage treatment plants. Arch Environ Contam Toxicol 59(1):1–12

    Article  CAS  Google Scholar 

  24. Fernandez MP, Buchanan ID, Ikonomou MG (2008) Seasonal variability of the reduction in estrogenic activity at a municipal WWTP. Water Res 42(12):3075–3081

    Article  CAS  Google Scholar 

  25. Hashimoto T, Onda K, Nakamura Y, Tada K, Miya A, Murakami T (2007) Comparison of natural estrogen removal efficiency in the conventional activated sludge process and the oxidation ditch process. Water Res 41(10):2117–2126

    Article  CAS  Google Scholar 

  26. Mispagel C, Allinson G, Allinson M, Shiraishi F, Nishikawa M, Moore MR (2009) Observations on the estrogenic activity and concentration of 17β-estradiol in the discharges of 12 wastewater treatment plants in southern Australia. Arch Environ Contam Toxicol 56(4):631–637

    Article  CAS  Google Scholar 

  27. Svenson A, Allard AS (2003) Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Res 37(18):4433–4443

    Article  CAS  Google Scholar 

  28. Céspedes R, Petrovic M, Raldúa D, Saura U, Piña B, Lacorte S, Viana P, Barceló D (2003) Integrated procedure for determination of endocrine-disrupting activity in surface waters and sediments by use of the biological technique recombinant yeast assay and chemical analysis by LC–ESI-MS. Anal Bioanal Chem 378(3):697–708

    Google Scholar 

  29. Creusot N, Kinani S, Balaguer P, Tapie N, LeMenach K, Maillot-Marechal E, Porcher JM, Budzinski H, Ait-Aissa S (2010) Evaluation of an hPXR reporter gene assay for the detection of aquatic emerging pollutants: screening of chemicals and application to water samples. Anal Bioanal Chem 396(2):569–583

    Article  CAS  Google Scholar 

  30. Fernandez MP, Noguerol TN, Lacorte S, Buchanan I, Pina B (2009) Toxicity identification fractionation of environmental estrogens in waste water and sludge using gas and liquid chromatography coupled to mass spectrometry and recombinant yeast assay. Anal Bioanal Chem 393(3):957–968

    Article  CAS  Google Scholar 

  31. Harris CA, Henttu P, Parker MG, Sumpter JP (1997) The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 105(8):802–811

    Article  CAS  Google Scholar 

  32. Isobe T, Shiraishi H, Yasuda M, Shinoda A, Suzuki H, Morita M (2003) Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography–tandem mass spectrometry. J Chromatography A 984(2):195–202

    Article  CAS  Google Scholar 

  33. Jugan ML, Oziol L, Bimbot M, Huteau V, Tamisier-Karolak S, Blondeau JP, Levi Y (2009) In vitro assessment of thyroid and estrogenic endocrine disruptors in wastewater treatment plants, rivers and drinking water supplies in the greater Paris area (France). Sci Tot Environ 407(11):3579–3587

    Article  CAS  Google Scholar 

  34. Korner W, Vinggaard AM, Terouanne B, Ma R, Wieloch C, Schlumpf M, Sultan C, Soto AM (2004) Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals. Environ Health Perspect 112(6):695–702

    Google Scholar 

  35. Sousa A, Schonenberger R, Jonkers N, Suter MJF, Tanabe S, Barroso CM (2010) Chemical and biological characterisation of estrogenicity in effluents from WWTPs in Ria de Aveiro (NW Portugal). Arch Environ Contam Toxicol 58(1):1–8

    Article  CAS  Google Scholar 

  36. Tan BLL, Hawker DW, Muller JF, Leusch FDL, Tremblay LA, Chapman HF (2007) Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia. Environ Int 33(5):654–669

    Article  CAS  Google Scholar 

  37. Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D (2011) Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Res 45:2473–2484

    Article  CAS  Google Scholar 

  38. Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005) The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39(1):97–106

    Article  CAS  Google Scholar 

  39. Koh YKK, Chiu TY, Boobis A, Scrimshaw MD, Bagnall JP, Soares A, Pollard S, Cartmell E, Lester JN (2009) Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes. Environm Sci Technol 43(17):6646–6654

    Article  CAS  Google Scholar 

  40. Cicek N, Franco JP, Suidan MT, Urbain V, Manem J (1999) Characterisation and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds. Water Environ Res 71(1):64–70

    Article  CAS  Google Scholar 

  41. Clouzot L, Doumenq P, Roche N, Marrot B (2010) Kinetic parameters for 17 alpha-ethinylestradiol removal by nitrifying activated sludge developed in a membrane bioreactor. Bioresour Technol 101(16):6425–6431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Bertanza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Bertanza, G., Pedrazzani, R. (2012). Removal of Trace Pollutants by Application of MBR Technology for Wastewater Treatment. In: Lofrano, G. (eds) Green Technologies for Wastewater Treatment. SpringerBriefs in Molecular Science(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1430-4_3

Download citation

Publish with us

Policies and ethics