On the Numerical Implementation of a Multi-Mechanism Cyclic Plasticity Model Associated to a Dilation Second Gradient Model Aiming Strain Localization Mitigation

  • A. FoucaultEmail author
  • F. Voldoire
  • A. Modaressi
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG, volume 11)


This paper deals with numerical simulations of granular soils, idealized by a cyclic multi-mechanism anisotropic non-associated plasticity constitutive model (Aubry et al. 1982; Hujeux 1985) coupled to a dilation second gradient model (Fernandes et al. 2008), under a finite elements method framework. This constitutive model is integrated through an implicit scheme into the Finite Element software Code_Aster(Foucault 2009). The use of this constitutive model, in case of strain localization, exhibits mesh sensitivity as for any strain-softening model. First we verify the ability of the dilation second gradient model to (1) circumvent the problem of mesh sensitivity with this model and to (2) describe the post-peak behaviour of the studied loading process. We studied a biaxial laboratory test, on Hostun sand, under drained conditions and monotonic loading. Second we develop a methodology to determine the values of the second gradient parameter – i.e. characteristic length – for different sets of soil model parameters. We have adapted a 1-D theoretical approach proposed by Chambon et al. (2001), applied to our constitutive model, whose comparison with our numerical results provides a characteristic length. To check the ability of the dilation second gradient model to ensure objective results with this soil constitutive model, we performed an extensive validation on a bearing capacity case with excavation.


Soil cyclic behavior model Multi-mechanism plasticity Softening Strain localization Second gradient dilation model 


  1. D. Aubry, J.C. Hujeux, F. Lassoudière, Y. Meimon, A double memory model with multiple mechanism for cyclic soil behaviour, in International Symposium on Numerical Models in Geomechanics, Zurich, 1982, pp. 3–13Google Scholar
  2. R. Chambon, D. Caillerie, T. Matsuchima, Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies. Int. J. Solids Struct. 38, 8503–8527 (2001)CrossRefGoogle Scholar
  3. Code_Aster,[-82pt] Open-Source FEM software.
  4. R. Fernandes, C. Chavant, R. Chambon, A simplified second gradient model for dilatant materials: theory and numerical implementation. Int. J. Solids Struct. 45, 5289–5307 (2008)CrossRefGoogle Scholar
  5. A. Foucault, R7.01.23: Loi de comportement cyclique de Hujeux pour les sols. Code_Aster documentation (2009),, 54 p
  6. A. Foucault, Modélisation du comportement cyclique des ouvrages en terre intégrant des techniques de régularisation. Ph.D. thesis, École Centrale de Paris, Paris, 2010Google Scholar
  7. J.C. Hujeux, Une loi de comportement pour le chargement cyclique des sols. Génie Parasismique, ed. by V. Davidovici (Presses ENPC, Paris, 1985) pp. 287–302Google Scholar
  8. F. Lopez-Caballero, A. Modaressi, F. Elmi, Identification of an elasto-plastic model parameters using laboratory and in situ tests. Deformation Characteristics of Geomaterials, IS Lyon, eds. by Di Benedetto, T. Doanh, H. Geoffroy, C. Sauzéat (Balkema, Rotterdam, 2003), pp. 1183–1190Google Scholar
  9. M.T. Manzari, R. Prachathananukit, On integration of a cyclic soil plasticity model. Int. J. Numer. Anal. Methods. Geomech. 25, 525–549 (2001)CrossRefGoogle Scholar
  10. R.D. Mindlin, Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–738 (1965)CrossRefGoogle Scholar
  11. S. Sica, L. Pagano, A. Modaressi, Influence of past loading history on the seismic response of earth dams. Comput. Geotech. 35, 61–85 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratoire MSSMatCNRS UMR 8579, École Centrale ParisChâtenay-MalabryFrance
  2. 2.Laboratoire LaMSIDUMR EDF/CNRS 2832ClamartFrance
  3. 3.Département Analyses Mécanique et AcoustiqueEDF Recherche et DéveloppementClamartFrance

Personalised recommendations