Advertisement

Numerical Modelling of Interaction Between Snow Avalanche and Protective Structures

  • M. Wawra
  • Y. Wang
  • W. Wu
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG, volume 11)

Abstract

A numerical study of the interaction between granular flow and an obstacle on an inclined plane is presented. A depth-averaged, two-dimensional Savage-Hutter-type model is used. The underlying differential equations are usually solved by finite difference. The model, which has been proved to perform well for steady granular flow, turns out to be inappropriate for the interaction between granular flow and obstacles. In this paper, the quality of the numerical solution is significantly improved by grid refinement. We make use of the Adaptive Mesh Refinement, where only local grid refinement around the obstacle is needed.

Keywords

Granular flow Obstacle Savage-Hutter model Finite differences Grid refinement 

Notes

Acknowledgements

We thank the Austrian Science Fund (FWF) for the financial support. We thank S. P. Pudasaini for fruitful discussions.

References

  1. M.J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)zbMATHCrossRefGoogle Scholar
  2. M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  3. M.-C. Chiou, Modelling dry granular avalanches past different obstructions. Ph.D. thesis, University of Darmstadt, Darmstadt, 2006Google Scholar
  4. M.-C. Chiou, Y. Wang, K. Hutter, Influence of obstacles on rapid granular flows. Acta Mech. 175, 105–122 (2005)zbMATHCrossRefGoogle Scholar
  5. J.M.N.T. Gray, M. Wieland, K. Hutter, Gravity driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. Lond. A 455, 1841–1874 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. J.M.N.T. Gray, Y.-C. Tai, S. Noelle, Shock waves, dead zones and particle free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161–181 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. R. Greve, T. Koch, K. Hutter, Unconfined flow of granular avalanches along a partly curved surface. Part I: theory. Proc. R. Soc. Lond. A 445, 399–413 (1994)zbMATHCrossRefGoogle Scholar
  8. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  9. K. Hutter, M. Siegel, S.B. Savage, Y. Nohguchi, Two-dimensional spreading of a granular avalanche down an inclined plane. Part I: theory. Acta Mech. 100, 37–68 (1993)MathSciNetzbMATHGoogle Scholar
  10. K.A. Lie, S. Noelle, An improved quadrature rule for the flux-computation in staggered central difference schemes in multidimensions. J. Sci. Comp. 18, 69–80 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  12. H. Nessyahu, E. Tadmor, Nonoscillatory central for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19, 1892–1917 (1998)MathSciNetCrossRefGoogle Scholar
  13. S.P. Pudasaini, K. Hutter, Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. S.B. Savage, K. Hutter, The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  15. S.B. Savage, K. Hutter, The dynamics of avalanches of granular materials from initiation to run-out. I. Analysis. Acta Mech. 86, 201–223 (1991)MathSciNetzbMATHGoogle Scholar
  16. Y.-C. Tai, J.M.N.T. Gray, K. Hutter, S. Noelle, Flow of dense avalanches past obstructions. Ann. Glaciol. 32, 281–284 (2001)CrossRefGoogle Scholar
  17. Y. Wang, K. Hutter, Comparison of numerical methods with respect to convectively-dominated problems. Int. J. Numer. Meth. Fluids 37, 721–745 (2001)zbMATHCrossRefGoogle Scholar
  18. Y. Wang, K. Hutter, S.P. Pudasaini, The Savage-Hutter theory: a system of partial differential equations for avalanche flows of snow, debris and mud. J. Appl. Math. Mech. 84, 507–527 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Wawra
    • 1
  • Y. Wang
    • 1
  • W. Wu
    • 1
  1. 1.Institut für GeotechnikUniversität für BodenkulturViennaAustria

Personalised recommendations