Advertisement

Stability Analysis of Creeping Faults: The Role of Chemical Decomposition of Minerals

  • Jean SulemEmail author
  • Nicolas Brantut
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG, volume 11)

Abstract

The stability of creeping faults is studied under the effect of shear heating, pore fluid pressurization and mineral decomposition. Such reactions enhance the pore fluid pressurization because they release fluid, but they limit the temperature rise because they are endothermic. The stability of stationary slip is investigated by performing a linear perturbation analysis. It is shown that chemical reactions change a stable behaviour into an unstable one when the pore pressure effect is larger than the endothermic effect. It is shown that the opposite effect can also be observed when the dehydration reactions can trigger an arrest of the fault. Mineral decomposition can thus strongly modify the nucleation of seismic slip.

Keywords

Fault mechanics Shear heating Dehydration of minerals Chemo-mechanical couplings Seismic slip 

References

  1. N. Brantut, A. Schubnel, J. Corvisier, J. Sarout, Thermo-chemical pressurization of faults during coseismic slip. J. Geophys. Res. 115, B05314 (2010). doi:10.1029/2009JB006533CrossRefGoogle Scholar
  2. N. Brantut, J. Sulem, A. Schubnel, Effect of dehydration reactions on earthquake nucleation: stable sliding, slow transcients and unstable slip. J. Geophys. Res. 116, B05304 (2011). doi:10.1029/2010JB007876CrossRefGoogle Scholar
  3. D.I. Garagash, J.W. Rudnicki, Shear heating of a fluid-saturated slip-weakening dilatant fault zone 1. limiting regimes. J. Geophys. Res. 108(B2), 2121 (2003)Google Scholar
  4. A.H. Lachenbruch, Frictional heating, fluid pressure and the resistance to fault motion. J. Geophys. Res. 85, 6097–6112 (1980)zbMATHCrossRefGoogle Scholar
  5. A.H. Lachenbruch, J.H. Sass, Heat flow and energetics of the San Andreas fault zone. J. Geophys. Res. 85, 6185–6223 (1980)CrossRefGoogle Scholar
  6. J.R. Rice, Heating and weakening of faults during earthquake slip. J. Geophys. Res. 111, B05311 (2006)CrossRefGoogle Scholar
  7. J.G. Solum, S.H. Hickman, D.A. Lockner, D.E. Moore, B.A. van der Pluijm, A.M. Schleicher, J.P. Evans, Mineralogical characterization of protolith and fault rocks from the Safod main hole. Geophys. Res. Lett. 33, L21314 (2006)CrossRefGoogle Scholar
  8. J. Sulem, V. Famin, Thermal decomposition of carbonates in fault zones: slip-weakening and temperature-limiting effects. J. Geophys. Res. 114, B03309 (2009)CrossRefGoogle Scholar
  9. J. Sulem, I. Vardoulakis, H. Ouffroukh, M. Boulon, J. Hans, Experimental characterization of the thermo-poro-mechanical properties of the Aegion fault gouge. C. R. Geo-Sci. 336(4–5), 455–466 (2004)CrossRefGoogle Scholar
  10. J. Sulem, I. Vardoulakis, H. Ouffroukh, V. Perdikatsis, Thermo-poro-mechanical properties of the Aigion fault clayey gouge – application to the analysis of shear heating and fluid pressurization. Soils Found. 45(2) 97–108 (2005)Google Scholar
  11. J. Sulem, P. Lazar, I. Vardoulakis, Thermo-Poro-Mechanical Properties of Clayey Gouge and Application to Rapid Fault Shearing. Int. J. Num. Anal. Meth. Geomech. 31(3), 523–540 (2007)zbMATHCrossRefGoogle Scholar
  12. I. Vardoulakis, Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Géotechnique 52(3), 157–171 (2002)CrossRefGoogle Scholar
  13. I. Vardoulakis, J. Sulem, Bifurcation Analysis in Geomechanics (Blackie Academic and Professional, Glasgow, 1995)Google Scholar
  14. E. Veveakis, I. Vardoulakis, G. Di Toro, Ther-moporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy. J. Geophys. Res. 112, F03026 (2007)CrossRefGoogle Scholar
  15. B. Voight, C. Faust, Frictional heat and strength loss in some rapid landslides. Géotechnique 32, 43–54 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.CERMES UR NavierCNRS UMR 8205, Ecole des Ponts ParisTechMarne-la-ValléeFrance
  2. 2.Laboratoire de GéologieCNRS UMR 8538, Ecole Normale SupérieureParisFrance

Personalised recommendations