Skip to main content

Solar Energy

  • Chapter
  • First Online:
Energy Resources and Systems

Abstract

The sun is the main source of all alternative energies on the earth’s surface. Wind energy, bioenergy, ocean energy, and hydro energy are derived from the sun. However, the term solar energy refers to the energy that is harvested directly from the sun using solar cells, solar concentrators, etc. Although solar energy is abundant on the earth’s surface, harvesting it into a useful energy form is challenging and often costly. Among all of the alternative energy resources, solar energy is most costly for generation of electricity. Solar energy can be used either as a source of thermal energy when using solar concentrators, or for direct electricity generation when using photovoltaics. These systems are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazria E (1979) Passive solar energy book. Rodale Press, Emmaus

    Google Scholar 

  2. Stine WB, Harrigan RW (1985) Solar energy fundamentals and design. Wiley, New York

    Google Scholar 

  3. Kreith F, Kreider JF (1978) Principles of solar energy. Hemisphere Publishing, Washington, DC

    Google Scholar 

  4. Tiwari GN (2002) Solar energy: fundamentals, design, modeling and applications. CRC, New York

    Google Scholar 

  5. Page J (2008) Solar radiation: distribution an availability of solar energy. Solar Trust The Solar Energy Society Sheffield UK

    Google Scholar 

  6. Pidwirny M (2006) Earth-sun relationships and insolation. Fundamentals of physical geography, 2nd edn. http://www.physicalgeography.net/fundamentals/6i.html

  7. Energy Efficiency and Renewable Energy, US Department of Energy (1997) Photovoltaics: basic design principles and components. DOE/GO-10097-377 FS 231 March 1997

    Google Scholar 

  8. Solar energy center (2008) Solar radiation handbook. MNRE Indian Meteorological Society

    Google Scholar 

  9. Malik MAS, Tiwari GN, Kumar A, Sodha MS (1985) Solar distillation. Pergamon Press, New York

    Google Scholar 

  10. Meinel AB, Meinel MP (1976) Applied solar energy: an introduction. Addison-Wesley, Reading

    Google Scholar 

  11. Kreider JF, Kreith F (1977) Solar heating and cooling. McGraw-Hill, New York

    Google Scholar 

  12. Kalogirou S (1997) Solar water heating in Cyprus. Current status of technology and problems. Renew Energy 10:107–112

    Google Scholar 

  13. Stine WB (1987) Power from the sun: principles of high temperature solar thermal technology. Solar Energy Research Institute NAL/USDA, 9000648

    Google Scholar 

  14. Lysen E (2003) Photovoltaics: an outlook for the 21st century. Renew Energy World 6(1): 43–53

    Google Scholar 

  15. Energy Efficiency and Renewable Energy, US Department of Energy. http://www.nrel.gov/gis/images/map_csp_us_annual_may2004.jpg. Accessed 16 Nov 2010

  16. Meteotest. Database meteonorm. www.meteonorm.com. Accessed 16 Nov 2010

  17. REN21 (2009) Renewable global status report: 2009 update. REN21 Secretariat, Paris

    Google Scholar 

  18. Sherwood L (2009) US solar market trends 2008. Interstate Renewable Energy Council

    Google Scholar 

  19. Abdel Rehim ZS (1998) A new design of solar water heater. Proc Indian Acad Sci Chem Sci 110:373–384

    Google Scholar 

  20. De Beijer HA (1998) Product development in solar water heating. Renew Energy 15:201–204

    Google Scholar 

  21. Esbensen T (1992) Low-flow solar hot water system. Sol World Congr, Proc Bienn Congr Int Sol Energy Soc 2:1369–1371

    Google Scholar 

  22. Morrison G, Wood B (1999) Packaged solar water heating technology: twenty years of progress. In: Proceedings of ISES Solar World Congress, Jerusalem

    Google Scholar 

  23. Morrison GL, Gilliaert D, Tebaldi P (1992) Outdoor testing of solar water heaters – effects of load pattern and auxiliary boosting. Sol Energy 49:299–308

    Google Scholar 

  24. Roonprasang N, Namprakai P, Pratinthong N (2008) Experimental studies of a new solar water heater system using a solar water pump. Energy 33:639–646, Oxford, United Kingdom

    Google Scholar 

  25. Tiwari GN, Sinha S (1992) Design of a commercial solar hot water system. Int J Energy Res 16:285–300

    Google Scholar 

  26. Razavi J, Riazi MR, Mahmoodi M (2003) Rate of heat transfer in polypropylene tubes in solar water heaters. Sol Energy 74:441–445

    Google Scholar 

  27. Shah LJ (2001) Heat transfer correlations for vertical mantle heat exchangers. Sol Energy 69:157–171

    Google Scholar 

  28. Soo Too YC, Morrison GL, Behnia M (2009) Performance of solar water heaters with narrow mantle heat exchangers. Sol Energy 83:350–362

    Google Scholar 

  29. Zadgaonkar AS (1976) A suggestion for improving the heat transfer from solar heaters. Proc Natl Sol Energy Conv [1st]: 166–167

    Google Scholar 

  30. Ge X, Wittwer V (1991) The convective heat transfer coefficients from absorber plate to water in integrated and plastic bag solar water heaters. Rene Energy 1:299–302

    Google Scholar 

  31. Ismail SS, Siddiqui MA (1994) An experimental study for heat transfer and fluid flow in a thermosyphonic solar water heater. In: Heat and mass transfer 1994, Proceeding of 1st ISHMT-ASME Heat and Mass Transfer Conference, 12th National Heat and Mass Transfer Conference, pp 1007–1012

    Google Scholar 

  32. Liu W, Davidson J, Mantell S (2000) Thermal analysis of polymer heat exchangers for solar water heating: a case study. J Sol Energy Eng 122:84–91

    Google Scholar 

  33. Chaurasia PBL (2000) Solar water heaters based on concrete collectors. Energy 25:703–716

    Google Scholar 

  34. Tiwari GN, Singh AK (1993) Thermal efficiency of collection-cum-storage solar water heater. Energy Convers Manage 34:147–152

    Google Scholar 

  35. Koffi EPM, Gbaha P, Sako MK et al (2007) Experimental thermal performance study on a thermosyphon solar water heater, with an internal exchanger, in Cote d’Ivoire. Glob J Pure Appl Sci 13:557–561

    Google Scholar 

  36. Karaghouli AA, Alnaser WE (2001) Experimental study on thermosyphon solar water heater in Bahrain. Renew Energy 24:389–396

    Google Scholar 

  37. Kalogirou SA, Papamarcou C (2000) Modeling of a thermosyphon solar water heating system and simple model validation. Renew Energy 21:471–493

    Google Scholar 

  38. Hussein HMS (2003) Optimization of a natural circulation two phase closed thermosyphon flat plate solar water heater. Energy Convers Manage 44:2341–2352

    Google Scholar 

  39. Sako MK, N’Guessan Y, Andoh HY, Koffi PME, Gbaha P, Sangare MK (2007) Economical and technical viability of a thermosyphon solar water heater in Cote D’ Ivoire. J Appl Sci 7:3977–3982

    Google Scholar 

  40. Shariah A, Shalabi B (1997) Optimal design for a thermosiphon solar water heater. Renew Energy 11:351–361

    Google Scholar 

  41. Faiman D, Hazan H, Laufer I (2001) Reducing the heat loss at night from solar water heaters of the integrated collector-storage variety. Sol Energy 71:87–93

    Google Scholar 

  42. Gertzos KP, Caouris YG (2008) Optimal arrangement of structural and functional parts in a flat plate integrated collector storage solar water heater (ICSSWH). Exp Therm Fluid Sci 32:1105–1117

    Google Scholar 

  43. Madhlopa A, Mgawi R, Taulo J (2006) Experimental study of temperature stratification in an integrated collector-storage solar water heater with two horizontal tanks. Sol Energy 80: 989–1002

    Google Scholar 

  44. Smyth M, Eames PC, Norton B (2006) Integrated collector storage solar water heaters. Renew Sustain Energy Rev 10:503–538

    Google Scholar 

  45. Bradley JM (1978) Development of a freeze-tolerant solar water heater using crosslinked polyethylene as a material of construction. Polyset, Inc., Manchester, MA

    Google Scholar 

  46. Davidson JH, Mantell SC, Jorgensen GJ (2003) Status of the development of polymeric solar water heating systems. Adv Sol Energy 15:149–186

    Google Scholar 

  47. Akyurt M (1984) Development of heat pipes for solar water heaters. Sol Energy 32:625–631

    Google Scholar 

  48. Chun W, Kang YH, Kwak HY, Lee YS (1999) An experimental study of the utilization of heat pipes for solar water heaters. Appl Therm Eng 19:807–817

    Google Scholar 

  49. Mathioulakis E, Belessiotis V (2002) A new heat-pipe type solar domestic hot water system. Sol Energy 72:13–20

    Google Scholar 

  50. Kalogirou S (2003) The potential of solar industrial process heat applications. Appl Energy 76:337–361

    Google Scholar 

  51. Benz N, Hasler W, Hetfleish J, Tratzky S, Klein B (1998) Flat-plate solar collector with glass TI. In: Proceedings of Eurosun’98 Conference, Portoroz, Slovenia

    Google Scholar 

  52. Li M, Wang RZ, Yun F, Shi F, Wang LL, Luo HL (2003) An effective flat plate solar heating and cooling hybrid system. Adsorpt Sci Technol 21:487–499

    Google Scholar 

  53. Yeary SM (1979) Computer simulation of flat plate solar collectors. Tech Bull Tex Eng Exp Stn 79(1):38–42

    Google Scholar 

  54. Tripanagnostopoulos Y, Souliotis M, Nousia Th (2000) Solar collectors with colored absorbers. Sol Energy 68:343–356

    Google Scholar 

  55. Wazwaz J, Salmi H, Hallak R (2002) Solar thermal performance of a nickel-pigmented aluminium oxide selective absorber. Renew Energy 27:277–292

    Google Scholar 

  56. Orel ZC, Gunde MK, Hutchins MG (2002) Spectrally selective solar absorbers in different non-black colours. In: Proceedings of WREC VII, Cologne

    Google Scholar 

  57. Wackelgard E, Niklasson GA, Granqvist CG (2001) Selective solar absorbing coatings. In: Gordon J (ed) Solar energy: the state of the art. ISES, Freiburg, pp 109–144

    Google Scholar 

  58. Selvam M, Srinivasan KN, Veeramani P, Raghavan M, John S (1989) Selective nickel-tin coatings for solar water heater. Bull Electrochem 5:822–823

    Google Scholar 

  59. Shawki S, Mikhail S (2000) Black nickel coatings for solar collectors. Mater Manuf Processes 15:737–746

    Google Scholar 

  60. Thangavelu PR, Rameshbapu GNK, John S, Ramana KVS (1993) Corrosion behavior of selective black cobalt coatings for solar hot water systems. Bull Electrochem 9:439–442

    Google Scholar 

  61. National Renewable Energy Laboratory (2010) Resource assessment program. http://www.nrel.gov/rredc/solar_resource.html. Accessed 16 Nov 2010

  62. SunEarth Inc. (2010) http://sunearthinc.com/. Accessed 16 Nov 2010

  63. Energy Efficiency and Renewable Energy, USDOE. http://www1.eere.energy.gov/solar/sh_basics_collectors.html. Accessed 16 Nov 2010

  64. US Department of Energy (1977) Collation of quarterly reports on air flat plate collectors. 1977STIN 7817479

    Google Scholar 

  65. Yeh H-M, Lin T-T (1996) Efficiency improvement of flat plate solar collector. Energy 21(6):435–443

    Google Scholar 

  66. Karim MA, Hawlader MNA (2006) Performance investigation of flat plate, v-corrugated and finned air collectors. Energy 31(4):452–470

    Google Scholar 

  67. Ong KS (1995) Thermal performance of solar air heaters: mathematical model and solution procedures. Sol Energy 55(2):93–109

    Google Scholar 

  68. Ho CD, Yeh MH, Wang RC (2005) Heat transfer enhancement in double pass flat plate solar air heater with recycle. Energy 30(15):2796–2817

    Google Scholar 

  69. Han H, Kim JT, Ahn HT, Lee SJ (2008) A three-dimensional performance analysis of all-glass vacuum tubes with coaxial fluid conduit. Int Commun Heat Mass Transfer 35:589–596

    Google Scholar 

  70. Morrison GL, Budihardjo I, Behnia M (2004) Measurement and simulation of flow rate in a water-in-glass evacuated tube solar water heater. Sol Energy 78:257–267

    Google Scholar 

  71. Morrison GL, Budihardjo I, Behnia M (2004) Water-in-glass evacuated tube solar water heaters. Sol Energy 76:135–140

    Google Scholar 

  72. Budihardjo I, Morrison GL (2009) Performance of water-in-glass evacuated tube solar water heaters. Sol Energy 83(1):49–65

    Google Scholar 

  73. Kim Y, Seo T (2007) Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube. Renew Energy 32(5):772–795

    Google Scholar 

  74. Budihardjo I, Morrison GL, Behnia M (2007) Natural circulation flow through water-in-glass evacuated tube solar collectors. Sol Energy 81(12):1460–1472

    Google Scholar 

  75. Redpath DAG, Eames PC, Lo SNG, Griffiths PW (2009) Experimental investigation of natural convection heat exchange within a physical model of the manifold chamber of a thermosyphon heat-pipe evacuated tube solar water heater. Sol Energy 83(7):988–997

    Google Scholar 

  76. Seifert RD (2007) Active solar heating fact sheet. EEM-01256 Cooperative Extension Service, University of Alaska Fairbanks

    Google Scholar 

  77. Shukla A, Buddhi D, Sawhney RL (2009) Solar water heater with phase change material thermal energy storage medium: a review. Renew Sustain Energy Rev 13(8):2119–2125

    Google Scholar 

  78. Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev 11(6):1146–1166

    Google Scholar 

  79. Carboni C, Montanari R (2008) Solar thermal systems: advantages of domestic integration. Renew Energy 33(6):1364–1373

    Google Scholar 

  80. Asif M, Muneer T (2007) Solar water heating: domestic and industrial applications. In: Encyclopedia of energy engineering and technology. CRC Press, Boca Raton

    Google Scholar 

  81. Rosengarten G, Morrison G, Behnia M (1999) A second law approach to characterizing thermally stratified hot water storage with application to solar water heaters. J Sol Energy Eng 121:194–200

    Google Scholar 

  82. Sopian K, Syahri M, Abdullah S, Othman MY, Yatim B (2004) Performance of a non-metallic unglazed solar water heater with integrated storage system. Renew Energy 29:1421–1430

    Google Scholar 

  83. Souliotis M, Tripanagnostopoulos Y (2004) Experimental study of cpc type ics solar systems. Sol Energy 76:389–408

    Google Scholar 

  84. Tamimi A, Rawajfeh K (1991) Testing results of tubeless flat-plate phase-change solar collectors. Heat Transfer Eng 12:42–46

    Google Scholar 

  85. Tripanagnostopoulos Y, Souliotis M (2003) ICS solar systems with horizontal cylindrical storage tank and reflector of CPC or involute geometry. Renew Energy 29:13–38

    Google Scholar 

  86. Lunde PJ (1980) Solar thermal engineering: space heating and hot water systems. Wiley, New York

    Google Scholar 

  87. Rabil A, Nielsen C (1975) Solar ponds for space heating. Energy 17(1):1–12

    Google Scholar 

  88. Weiss WW (2003) Solar heating systems for houses: a design handbook for solar combisystems. International Energy Agency. James and James Ltd, London

    Google Scholar 

  89. Argiriou A, Klitsikas N, Balaras CA, Asimakopoulos DN (1997) Active solar space heating of residential buildings in northern hellas-a case study. Energy Build 26(2):215–221

    Google Scholar 

  90. Thur A, Furbo S, Shah LJ (2006) Energy savings for solar heating systems. Sol Energy 80(11):1463–1474

    Google Scholar 

  91. Khalifa AJN, Abbas EF (2009) A comparative performance study of some thermal storage materials used for solar space heating. Energy Build 41:407–415

    Google Scholar 

  92. Raffenel Y, Fabrizio E, Virgone J, Blanco E, Filippi M (2009) Integrated solar heating systems: from initial sizing procedure to dynamic simulation. Sol Energy 83(5):657–663

    Google Scholar 

  93. Yildiz A, GĂ¼ngör A (2009) Energy and energy analyses of space heating in buildings. Appl Energy 86(10):1939–1948

    Google Scholar 

  94. Zhai XQ, Wang RZ (2008) Experiences on solar heating and cooling in China. Renew Sustain Energy Rev 12:1110–1128

    Google Scholar 

  95. Badescu V, Staicovici MD (2006) Renewable energy for passive house heating: model of the active solar heating system. Energy Build 38:129–141

    Google Scholar 

  96. Balcomb JD, Jones RW, Mc Farland RD, Wray WO (1984) Passive solar heating analysis: a design manual. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta

    Google Scholar 

  97. Kreider JF (1982) Solar heating design process: active and passive systems. McGraw Hill, New York

    Google Scholar 

  98. Sodha MS, Bansal NK, Bansal PK, Kumar A, Malik MAS (1986) Solar passive building. Science and design. Pergamon Press, New York

    Google Scholar 

  99. Badescu V (2005) Simulation analysis for the active solar heating system of a passive house. Appl Therm Eng 25:2754–2763

    Google Scholar 

  100. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) (1988) Active solar heating systems design manual. ASHRAE, Atlanta

    Google Scholar 

  101. Löf GOG (1955) Cooling with solar energy. In: Proceedings of congress of solar energy, Tucson, Arizona, pp 171–189

    Google Scholar 

  102. Henning H-M (2007) Solar assisted air conditioning of buildings – an overview. Appl Therm Eng 27:1734–1749

    Google Scholar 

  103. Kim DS, Infante Ferreira CA (2008) Solar refrigeration options – a state-of-the-art review. Int J Refrig 31:3–15

    Google Scholar 

  104. Zhai XQ, Wang RZ (2009) A review for absorption and adsorption solar cooling systems in China. Renewable Sustainable Energy Rev 13(6–7):1523–1531

    Google Scholar 

  105. Zheng D, Chen B, Qi Y, Jin H (2006) Thermodynamic analysis of a novel absorption power/cooling combined-cycle. Appl Energy 83:311–323

    Google Scholar 

  106. Masson SV, Qu M, Archer DH (2006) Performance modeling of a solar driven absorption cooling system for Carnegie Mellon University’s intelligent workplace. In: International conference for enhanced building operations ESL-IC-06-11-289

    Google Scholar 

  107. Balaras C, Grossman G, Henning H-M, Infante FC, Podesser E, Wang L, Wiemken E (2007) Solar air conditioning in Europe: an overview. Renew Sustain Energy Rev 11(2):299–314

    Google Scholar 

  108. Pietruschka D, Eicker U, Schumacher J, Hanby V (2006) Simulation based design methods and economical analysis for solar driven absorption cooling systems. In: Proceedings of the Eurosun 2006, Glasgow U.K., 27–30 June 2006

    Google Scholar 

  109. Eicker U, Pietruschka D (2009) Design and performance of solar powered absorption cooling systems in office buildings. Energy Build 41:81–91

    Google Scholar 

  110. Kabeel AE (2005) Augmentation of the performance of solar regenerator of open absorption cooling system. Renew Energy 30:327–338

    Google Scholar 

  111. Assilzadeh F, Kalogirou SA, Ali Y, Sopian K (2005) Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors. Renew Energy 30:1143–1159

    Google Scholar 

  112. Sözen A, Özalp M (2005) Solar-driven ejector-absorption cooling system. Appl Energy 80:97–113

    Google Scholar 

  113. Mazloumi M, Naghashzadegan M, Javaherdeh K (2008) Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector. Energy Convers Manage 49:2820–2832

    Google Scholar 

  114. Daou K, Wang RZ, Xia ZZ (2006) Desiccant cooling air conditioning: a review. Renew Sustain Energy Rev 10:55–77

    Google Scholar 

  115. Mei L, Dai YJ (2008) A technical review on use of liquid-desiccant dehumidification for air-conditioning application. Renew Sustain Energy Rev 12:662–689

    Google Scholar 

  116. Abu AM, Abdul WS, Goosen M (2006) Study of desiccant regeneration in a structured packed tower. Sep Sci Technol 41:1679–1695

    Google Scholar 

  117. Alizadeh S (2008) Performance of a solar liquid desiccant air conditioner – An experimental and theoretical approach. Sol Energy 82:563–572

    Google Scholar 

  118. Chung JD, Lee D-Y (2009) Effect of desiccant isotherm on the performance of desiccant wheel. Int J Refrig 32(4):720–726

    Google Scholar 

  119. Cui Q, Chen H, Tao G, Yao H (2005) Performance study of new adsorbent for solid desiccant cooling. Energy 30:273–279

    Google Scholar 

  120. Ge TS, Li Y, Wang RZ, Dai YJ (2009) Experimental study on a two-stage rotary desiccant cooling system. Int J Refrig 32:498–508

    Google Scholar 

  121. Gommed K, Grossman G (2007) Experimental investigation of a liquid desiccant system for solar cooling and dehumidification. Sol Energy 81:131–138

    Google Scholar 

  122. Jain S, Bansal PK (2007) Performance analysis of liquid desiccant dehumidification systems. Int J Refrig 30:861–872

    Google Scholar 

  123. Jia CX, Dai YJ, Wu JY, Wang RZ (2006) Analysis on a hybrid desiccant air-conditioning system. Appl Therm Eng 26:2393–2400

    Google Scholar 

  124. Jia CX, Dai YJ, Wu JY, Wang RZ (2007) Use of compound desiccant to develop high performance desiccant cooling system. Int J Refrig 30:345–353

    Google Scholar 

  125. Kabeel AE (2007) Solar powered air conditioning system using rotary honeycomb desiccant wheel. Renew Energy 32:1842–1857

    Google Scholar 

  126. Adsten M, Helgesson A, Karlsson B (2005) Evaluation of cpc-collector designs for stand-alone, roof- or wall installation. Sol Energy 79:638–647

    Google Scholar 

  127. Bean JR, Diver RB (1993) Performance of the cpg 7.5-kWe dish-stirling system. In: Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, pp 2, 627–622, 632

    Google Scholar 

  128. Chatten AJ, Barnham KWJ, Buxton BF, Ekins-Daukes NJ, Malik MA (2004) Quantum dot solar concentrators. Semiconductors (Translation of Fizika i Tekhnika Poluprovodnikov (Sankt-Peterburg)) 38: 909–917

    Google Scholar 

  129. Corrigan RD, Ehresman DT (1987) Solar concentrator advanced development project. In: Proceedings of the 22nd Intersociety Energy Conversion Engineering Conference, pp 156–161

    Google Scholar 

  130. Corrigan RD, Peterson TT, Ehresman DT (1989) Update of the solar concentrator advanced development project. In: Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, pp 2617–2622

    Google Scholar 

  131. Dang A (1986) Concentrators: a review. Energy Convers Manage 26:11–26

    Google Scholar 

  132. Fend T, Hoffschmidt B, Jorgensen G, Kuster H, Kruger H, Pitz-Paal R, Reitbrock P, Rifflemann KJ (2003) Comparative assessment of solar concentrator materials. Sol Energy 74:149–155

    Google Scholar 

  133. Flores C (1987) III–V concentrator cells for space and terrestrial applications. CISE, Milan, pp 759–765

    Google Scholar 

  134. Green MA, Blakers AW, Zhao J, Taouk M, Narayanan S, Campbell P (1987) High-efficiency silicon concentrator solar cells. In: Joint Microelectronics Research Centre, Kensington, p 128

    Google Scholar 

  135. Gregory GG, Koshel RJ (2006) Modeling the operating conditions of solar concentrator systems. In: Proceedings of SPIE-The International Society for Optical Engineering 6197: 61970 J/61971-61970 J/61911

    Google Scholar 

  136. Hasuike H, Yoshizawa Y, Suzuki A, Tamaura Y (2006) Study on design of molten salt solar receivers for beam-down solar concentrator. Sol Energy 80:1255–1262

    Google Scholar 

  137. Heath AR Jr, Hoffman EL (1967) Recent gains in solar concentrator technology. J Spacecr Rockets 4:621–624

    Google Scholar 

  138. Hinsch A, Zastrow A, Wittwer V (1990) Sol-gel glasses: a new material for solar fluorescent planar concentrators? Sol Energy Mater 21:151–164

    Google Scholar 

  139. Irshid MI, Othman MO (1988) V-troughs with high concentration ratios for photovoltaic concentrator cells. Sol Cells 23:159–172

    Google Scholar 

  140. Isshiki N, Watanabe H, Shishido K, Ohtomo M, Watanabe K (1993) Studies on solar-dish heated stirling engines TNT-3, NAS-2. In: Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, pp 2, 645–642, 650

    Google Scholar 

  141. Jacobson E, Ketjoy N, Nathakaranakule S, Rakwichian W (2006) Solar parabolic trough simulation and application for a hybrid power plant in Thailand. ScienceAsia 32:187–199

    Google Scholar 

  142. Jeter SM (1986) The distribution of concentrated solar radiation in paraboloidal collectors. J Sol Energy Eng 108:219–225

    Google Scholar 

  143. Kribus A, Huleihil M, Timinger A, Ben-Mair R (2000) Performance of a rectangular secondary concentrator with an asymmetric heliostat field. Sol Energy 69:139–151

    Google Scholar 

  144. Li M, Wang LL (2006) Investigation of evacuated tube heated by solar trough concentrating system. Energy Convers Manage 47:3591–3601

    Google Scholar 

  145. Maccari A, Montecchi M (2007) An optical profilometer for the characterization of parabolic trough solar concentrators. Sol Energy 81:185–194

    Google Scholar 

  146. Maish AB (1986) PV concentrator array field performance measurement. Sol Cells 18: 363–371

    Google Scholar 

  147. Morel DE, Ayers SR, Gulino DA, Tennyson RC, Egger RA (1986) Solar concentrator materials development. In: Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, pp 2032–2038

    Google Scholar 

  148. Palavras I, Bakos GC (2006) Development of a low-cost dish solar concentrator and its application in zeolite desorption. Renew Energy 31:2422–2431

    Google Scholar 

  149. Pandey KK, Pant TC (1991) Solar energy concentrator based on uranyl-doped PMMA. Sol Energy Mater 21:327–334

    Google Scholar 

  150. Prabhakarachary D, Ramachandraiah A, Reddy KL, Raghavachari S (1996) A low – cost solar dish from a nonbiodegradable solid waste. Indian J Environ Prot 16:537–539

    Google Scholar 

  151. Rowan B, McCormack S, Doran J, Norton B (2007) Quantum dot solar concentrators: an investigation of various geometries. Proceedings of SPIE-The International Society for Optical Engineering 6649: 66490A/66491-66490A/66498

    Google Scholar 

  152. Schiel W, Benz R, Keck T (1990) Parabolic concentrator with stirling engine. A modular system for solar-thermal electricity generation. Brennstoff-Waerme-Kraft (1949–1999) 42: 108–112, 115

    Google Scholar 

  153. Singh P, Liburdy JA (1993) A solar concentrator design for uniform flux on a flat receiver. Energy Convers Manage 34:533–543

    Google Scholar 

  154. Sokolsky I, Brown MA (1998) Naval research laboratory solar concentrator program. AIP Conf Proc 420:282–287

    Google Scholar 

  155. Steinmann WD, Eck M, Laing D (2003) Solar-thermal parabolic trough power plants with integrated storage. VDI Ber 1746:425–436

    Google Scholar 

  156. Tchinda R (2008) Thermal behavior of solar air heater with compound parabolic concentrator. Energy Convers Manage 49:529–540

    Google Scholar 

  157. Tecpoyotl-Torres M, Campos-Alvarez J, Tellez-Alanis F, Escobedo-Alatorre J, Quinones-Aguilar J, Sanchez-Mondragon J (2007) RF control system of a parabolic solar concentrator. In: Proceedings of SPIE-The International Society for Optical Engineering 6649: 66490 H/66491-66490 H/66410

    Google Scholar 

  158. Tecpoyotl-Torres M, Campos-Alvarez J, Tellez-Alanis F, Sanchez-Mondragon J (2006) Parabolic solar concentrator. In: Proceedings of SPIE-The International Society for Optical Engineering 6330: 63300 H/63301-63300 H/63310

    Google Scholar 

  159. Valade FH (1988) Solar concentrator advanced development program update. In: Proceedings of the 23rd Intersociety Energy Conversion Engineering Conference, pp 351–356

    Google Scholar 

  160. Wong WA, Geng SM, Castle CH, Macosko RP (2000) Design, fabrication and test of a high efficiency refractive secondary concentrator for solar applications. In: Proceedings of the 35th Intersociety Energy Conversion Engineering Conference, pp 1117–1125

    Google Scholar 

  161. Bakos J, Miyamoto HK (2006) Solar hydrogen production: renewable hydrogen production by dry fuel reforming. In: Proceedings of SPIE-The International Society for Optical Engineering 6340: 634014/634011-634014/634018

    Google Scholar 

  162. Baykara SZ (2004) Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency. Int J Hydrogen Energy 29:1451–1458

    Google Scholar 

  163. Mori M, Kagawa H, Nagayama H, Saito Y (2004) Current status of study on hydrogen production with space solar power systems (SSPS). European Space Agency, [Special Publication] SP SP-567: 3–9

    Google Scholar 

  164. US Department of Energy (2001) Concentrating solar power: energy from mirrors. DOE/GO-102001-1147 PS 128 Mar 2001

    Google Scholar 

  165. Bradshaw RWP, Siegel NP (2008) Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems. Proceedings of ES2008 Energy Sustainability 2008 August 10–14, 2008, Jacksonville, Florida, USA. Paper ES2008-54274

    Google Scholar 

  166. Dincer I (2002) On thermal energy storage systems and applications in buildings. Energy Build 34:377–388

    Google Scholar 

  167. Gokon N, Nakano D, Inuta S, Kodama T (2008) High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes. Sol Energy 82:1145–1153

    Google Scholar 

  168. Hatamachi T, Kodama T, Isobe Y, Nakano D, Gokon N (2006) Double-walled reactor tube with molten salt thermal storage for solar tubular reformers. J Sol Energy Eng 128:134–138

    Google Scholar 

  169. Herrmann U, Kelly B, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants. Energy 29:883–893

    Google Scholar 

  170. Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J (2003) Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energy Eng 125:170–176

    Google Scholar 

  171. Kearney D, Kelly B, Herrmann U, Cable R, Pacheco J, Mahoney R, Price H, Blake D, Nava P, Potrovitza N (2004) Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy 29:861–870

    Google Scholar 

  172. Kelly B, Kearney D (2006) Thermal storage commercial plant design study for a 2-tank indirect molten salt system: Final report, 13 May 2002–31 Dec 2004. In: Related information: work performed by Nexant, Inc, San Francisco, California and Kearney & Associates, Vashon, Washington, p Medium: ED; Size: 32 pp

    Google Scholar 

  173. Lata JM, Rodriguez M, de Lara MA (2008) High flux central receivers of molten salts for the new generation of commercial stand-alone solar power plants. J Sol Energy Eng 130: 21002–21005

    Google Scholar 

  174. Michels H, Pitz-Paal R (2007) Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy 81:829–837

    Google Scholar 

  175. Mills D (2004) Advances in solar thermal electricity technology. Sol Energy 76:19–31

    Google Scholar 

  176. Moens L, Blake DM, Rudnicki DL, Hale MJ (2003) Advanced thermal storage fluids for solar parabolic trough systems. J Sol Energy Eng 125:112–116

    Google Scholar 

  177. Montes MJ, AbĂ¡nades A, MartĂ­nez-Val JM (2009) Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Sol Energy 83(5):679–689

    Google Scholar 

  178. Olson LC, Ambrosek JW, Sridharan K, Anderson MH, Allen TR (2009) Materials corrosion in molten LiF-NaF-KF salt. J Fluorine Chem 130:67–73

    Google Scholar 

  179. Ortega JI, Burgaleta JI, Tellez FM (2008) Central receiver system solar power plant using molten salt as heat transfer fluid. J Sol Energy Eng 130:024501–024506

    Google Scholar 

  180. Pacheco JE, Showalter SK, Kolb WJ (2002) Development of a molten-salt thermocline thermal storage system for parabolic trough plants. J Sol Energy Eng 124:153–159

    Google Scholar 

  181. Price H, Lupfert E, Kearney D et al (2002) Advances in parabolic trough solar power technology. J Sol Energy Eng 124:109–125

    Google Scholar 

  182. Qiang P (2008) High-temperature thermal stability of molten salt materials. Int J Energy Res 32:1164–1174

    Google Scholar 

  183. Zalba B, Marın JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Google Scholar 

  184. Herrmann U, Geyer M, Kearney D (2002) Overview on thermal storage systems. In: Workshop on thermal storage for trough power systems, 20–21 Feb 2002

    Google Scholar 

  185. Messenger RA, Ventre J (2005) Photovoltaic system engineering, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  186. Luque A, Hegedus S (2003) Handbook of photovoltaic science and engineering. Wiley, Chichester

    Google Scholar 

  187. Goetzberger A, Hoffmann VU (2005) Photovoltaic solar energy generation. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  188. Patel MR (1999) Wind and solar power systems. CRC, Boca Raton

    Google Scholar 

  189. Wurfel P (2002) Thermodynamic limitations to solar energy conversion. Phys E 14(1–2): 18–26

    Google Scholar 

  190. Landsberg PT, Markvart T (1998) The Carnot factor in solar-cell theory. Solid State Electron 42(4):657–659

    Google Scholar 

  191. Sahin AD, Dincer I, Rosen MA (2007) Thermodynamic analysis of solar photovoltaic cell systems. Sol Energy Mater Sol Cells 9:153–163

    Google Scholar 

  192. Petrova-Koch V, Goetzberger A, Hezel R (2008) High-efficient low-cost photovoltaics. Springer, Berlin

    Google Scholar 

  193. Goswami DY (2007) Advances in solar energy. Earthscan, London

    Google Scholar 

  194. Feltrin A, Freundlich A (2008) Material considerations for terawatt level deployment of photovoltaics. Renew Energy 33:180–185

    Google Scholar 

  195. Brown GF, WU J (2009) Third generation photovoltaics. Laser Photonics Rev 3(4):394–405

    Google Scholar 

  196. Gessert TA (2008) Review of photovoltaic energy production using CdTe thin-film modules: Report No. NREL/AB-520-44128, September 2008

    Google Scholar 

  197. Green M (2007) Thin-film solar cells: review of materials, technologies and commercial status. J Mater Sci Mater Electron 18:15–19

    Google Scholar 

  198. Naoya M, Yukiko S, Naoto K, Yoshitaka O, Masafumi Y (2006) Fabrication of GaInNAs-based solar cells for application to multi-junction tandem solar cells. In: Photovoltaic energy conversion, conference record of the 2006 IEEE 4th world conference on, pp 869–872

    Google Scholar 

  199. Rey-Stolle I, Garcia I, Galiana B, Algora C (2007) Improvements in the MOVPE growth of multi-junction solar cells for very high concentration. J Cryst Growth 298:762–766

    Google Scholar 

  200. Bosi M, Pelosi C (2007) The potential of III-V semiconductors as terrestrial photovoltaic devices. Prog Photovoltaics Res Appl 15:51–68

    Google Scholar 

  201. Tian B, Kempa TJ, Lieber CM (2009) Single nanowire photovoltaics. Chem Soc Rev 38: 16–24

    Google Scholar 

  202. Slaoui A, Collins RT (2007) Advanced inorganic materials for photovoltaics. MRS Bull 32(3):211–214

    Google Scholar 

  203. Radziemska E (2003) Thermal performance of Si and GaAs based solar cells and modules: a review. Prog Energy Combust Sci 29:407–424

    Google Scholar 

  204. Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954–985

    Google Scholar 

  205. Sun S-S, Sariciftci NS (2006) Organic photovoltaics: mechanism, materials, and devices. CRC, New York

    Google Scholar 

  206. André Moliton J-MN (2006) How to model the behavior of organic photovoltaic cells. Polym Int 55:583–600

    Google Scholar 

  207. Backer SA, Sivula K, Kavulak DF, Frechet JMJ (2007) High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives. Chem Mater 19:2927–2929

    Google Scholar 

  208. Marsh RA, McNeill CR, Abrusci A, Campbell AR, Friend RH (2008) A unified description of current and voltage characteristics in organic and hybrid photovoltaics under low light intensity. Nano Lett 8:1393–1398

    Google Scholar 

  209. Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233–1271

    Google Scholar 

  210. Koumura N, Wang Z-S, Mori S, Miyashita M, Suzuki E, Hara K (2008) Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J Am Chem Soc 130:4202–4203

    Google Scholar 

  211. Celik AN, Muneer T, Clarke P (2009) A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15. Renew Energy 34:849–856

    Google Scholar 

  212. Charalambous PG, Maidment GG, Kalogirou SA, Yiakoumetti K (2007) Photovoltaic thermal (PV/T) collectors: a review. Appl Therm Eng 27:275–286

    Google Scholar 

  213. Green MA (2000) Photovoltaics: technology overview. Energy Policy 28:989–998

    Google Scholar 

  214. Joshi AS, Dincer I, Reddy BV (2009) Performance analysis of photovoltaic systems: a review. Renewable Sustainable Energy Rev 13(8):1884–1897

    Google Scholar 

  215. Kazmerski LL (1997) Photovoltaics: a review of cell and module technologies. Renewable Sustainable Energy Rev 1:71–170

    Google Scholar 

  216. Kjaer SB, Pedersen JK, Blaabjerg F (2005) A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans Ind application 41:1292–1306

    Google Scholar 

  217. Maycock PD, Stirewalt EN (1981) Photovoltaics: sunlight to electricity in one step. Brick House, Andower

    Google Scholar 

  218. Mellit A, Kalogirou SA, Hontoria L, Shaari S (2009) Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew Sustain Energy Rev 13:406–419

    Google Scholar 

  219. Thomas MG, Post HN, Deblasio R (1999) Photovoltaic systems: an end-of-millennium review. Prog Photovoltaics Res Appl 7:1–19

    Google Scholar 

  220. Quan L, Wolfs P (2008) A review of the single phase photovoltaic module integrated converter topologies with three different dc link configurations. IEEE Trans Power Electron 23: 1320–1333

    Google Scholar 

  221. Salas V, Olıas E, Barrado A, Lzaro A (2006) Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol Energy Mater Sol Cells 90:1555–1578

    Google Scholar 

  222. Skoplaki E, Palyvos JA (2009) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83(5):614–624

    Google Scholar 

  223. Wadia C, Alivisatos AP, Kammen DM (2009) Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ Sci Technol 43:2072–2077

    Google Scholar 

  224. Solarbuzz LLC. www.solarbuzz.com. Accessed 16 Nov 2010

  225. Naval Research Laboratory. Lattice crystal structure. http://cst-www.nrl.navy.mil/lattice/index.html. Accessed 28 July 2010

  226. Exell RHB (2000) The physics of photovoltaics cells. http://www.jgsee.kmutt.ac.th/exell/Solar/PVCells.html

  227. Prelas MA, Charlson EJ, Boody FP, Miley GH (1990) Advanced nuclear energy conversion using a two step photon intermediate technique. Prog In Nucl Energy 23(3):223–240

    Google Scholar 

  228. Highest silicon solar cell efficiency ever reached. ScienceDaily. 24 Oct 2008. http://www.sciencedaily.com/releases/2008/10/081023100536.htm. Retrieved 28 July 2010

  229. Loferski, J (1972) An introduction to the physics of solar cells. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720019407_1972019407.pdf. Retrieved 25 May 2011

  230. Newport. Introduction to solar radiation. http://www.newport.com/images/webDocuments- EN/images/12298.pdf. Accessed 16 Nov 2010

  231. Yamaguchi M, Nishimura K-I, Sasaki T, Suzuki H, Arafune K, Kojima N, Ohsita Y, Okada Y, Yamamoto A, Takamoto T, Araki K (2008) Novel materials for high-efficiency III-V multi-junction solar cells. Sol Energy 82(2):173–180

    Google Scholar 

  232. Barnett A, Kirkpatrick D, Honsberg C, Moore D, Wanlass M, Emery K, Schwartz R, Carlson C, Bowden S, Aiken D, Gray A, Kurtz S, Kazmerski L, Moriarty T, Steiner M, Gray J, Davenport T, Buelow R, Takacs L, Shatz N, Bortz J, Jani O, Goossen K, Kiamilev F, Doolittle A, Ferguson I, Unger B, Greg Schmidt G, Christensen E, Salzman D (2007) Milestones toward 50% efficient solar cell modules. In: 22nd European photovoltaic solar energy conference, Milan, 3 Sep 2007

    Google Scholar 

  233. King RR, Law DC, Edmondson KM, Fetzer CM, Kinsey GS, Yoon H, Sherif RA NH (2007) 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett 90(18):183–516

    Google Scholar 

  234. National Renewable Energy laboratory. Best research cell efficiency. National Center for Photovoltaics. www.nrel.gov/pv/thin_film/docs/kaz_best_research_cells.ppt. Accessed 16 Nov 2010

  235. Wu MC (2008) EE232 lightwave devices, lecture 2 basic semiconductor physics and optical process. University of California, Berkeley

    Google Scholar 

  236. State Energy Conservation Office. Introduction to photovoltaic systems. SECO fact sheet no 11, Texas

    Google Scholar 

  237. Van Zeghbroeck B (2007) Principles of semiconductor devices. http://ecee.colorado.edu/~bart/book/welcome.htm. Accessed 16 Nov 2010

  238. Dimroth F, Baur C, Bett AW, Meusel M, Strobl G (2005) 3–6 junction photovoltaic cells for space and terrestrial concentrator applications. In: Photovoltaic specialists conference, 2005 conference record of the Thirty-first IEEE, pp 525–529

    Google Scholar 

  239. Gilot J, Wienk MM, Janssen RAJ (2007) Double and triple junction polymer solar cells processed from solution. Appl Phys Lett 90:143512–143513

    Google Scholar 

  240. King RR, Boca A, Hong W et al (2008) High-efficiency multijunction photovoltaics for low-cost solar electricity. In: IEEE Lasers and Electro-Optics Society, 2008. 21st annual meeting of the LEOS, pp 2–3

    Google Scholar 

  241. Kinsey GS, Pien P, Hebert P, Sherif RA (2009) Operating characteristics of multijunction solar cells. Sol Energy Mater Sol Cells 93(6–7):950–951

    Google Scholar 

  242. Kurtz S (2008) A comparison of theoretical efficiencies of multi-junction concentrator solar cells. Prog Photovoltaics Res Appl 16:537–546

    Google Scholar 

  243. Yamaguchi M, Takamoto T, Araki K, Ekins-Daukes N (2005) Multi-junction III-V solar cells: current status and future potential. Sol Energy 79:78–85

    Google Scholar 

  244. Hadipour A, de Boer B, Blom PW (2008) Organic tandem and multi-junction solar cells. Adv Funct Mater 18(2):169–181

    Google Scholar 

  245. Bhargava AK, Garg HP, Agarwall RK (1991) Study of a hybrid solar system–solar air heater combined with solar cells. Energy Convers Manage 31(5):471–479

    Google Scholar 

  246. Odeh N, Grassie T, Henderson D, Muneer T (2006) Modeling of flow rate in a photovoltaic-driven roof slate-based solar ventilation air preheating system. Energy Convers Manage 47(7–8):909–925

    Google Scholar 

  247. Vorobiev Y, Gonzalez-Hernandez J, Vorobiev P, Bulat L (2006) Thermal–photovoltaic solar hybrid system for efficient solar energy conversion. Sol Energy 80(2):170–176

    Google Scholar 

  248. Hegazy AA (2000) Comparative study of the performance of four photovoltaic/thermal solar air collectors. Energy Convers Manage 41(8):861–881

    Google Scholar 

  249. Tripanagnostopoulos Y, Nousia TH, Souliotis M, Yianoulis P (2002) Hybrid photovoltaic/thermal solar system. Sol Energy 72(3):217–234

    Google Scholar 

  250. Tiwari A, Sodha MS (2006) Performance evaluation of a solar PV/T system: an experimental validation. Sol Energy 80(7):751–759

    Google Scholar 

  251. Sandnes B, Rekstad J (2002) A photovoltaic/thermal (PV/T) collector with a polymer absorber plate: experimental study and analytic model. Sol Energy 72(1):63–73

    Google Scholar 

  252. He W, Chow TT, Ji J, Lu J, Pie G, Chan L (2006) Hybrid photovoltaic and thermal solar collector designed for natural circulation of water. Appl Energy 83:199–210

    Google Scholar 

  253. Othman MYH, Yatim B, Sopian K, Bakar MNA (2005) Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins. Renew Energy 30:2005–2017

    Google Scholar 

  254. Garg HP, Adhikari RS (1999) System performance studies on a photovoltaic/thermal (PV/T) air heating collector. Renew Energy 16:725–730

    Google Scholar 

  255. Chow TT, He W, Ji J (2007) An experimental study of faade-integrated photovoltaic/ water-heating system. Appl Therm Eng 27:37–45

    Google Scholar 

  256. Ji J, Chow TT, He W (2003) Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong. Build Environ 38:1327–1334

    Google Scholar 

  257. Ji J, Chow TT, He W, Pei G (2007) A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Appl Energy 84:222–237

    Google Scholar 

  258. Kumar S, Tiwari A (2008) An experimental study of hybrid photovoltaic thermal (PV/T)-active solar still. Int J Energy Res 32(9):847–858

    Google Scholar 

  259. Fujisawa T, Tani T (1997) Annual energy evaluation on photovoltaic-thermal hybrid collector. Sol Energy Mater Sol Cells 47:135–148

    Google Scholar 

  260. Saitoh H, Hamada Y, Kubota H, Nakamura M, Ochifuji K, Yokoyama S (2003) Field experiments and analyses on a hybrid solar collector. Appl Therm Eng 23:2089–2105

    Google Scholar 

  261. Green MA, Emery K, Hishikawa Y, Warta W (2010) Solar cell efficiency tables (version 35). Prog Photovoltaics Res Appl 18(2):144–150

    Google Scholar 

  262. Manna TK, Mahajan SM (2007) Nanotechnology in the development of photovoltaic cells. In: 2007 ICCEP ’07 International Conference on clean electrical power, pp 379–386

    Google Scholar 

  263. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    Google Scholar 

  264. Gledhill SE, Scott B, Gregg BA (2005) Organic and nano-structured composite photovoltaics: an overview. J Mater Res 20(12):3167–3179

    Google Scholar 

  265. Goh RGS, Waclawik ER, Bell JM, Motta N (2007) Organic-nano photovoltaic devices. Mater Aust 40:40–42

    Google Scholar 

  266. Fritz KP, Guenes S, Luther J, Kumar S, Sariciftci NS, Scholes GD (2008) IV–VI nanocrystal-polymer solar cells. J Photochem Photobiol, A 195:39–46

    Google Scholar 

  267. Conibeer G, Green M, Corkish R et al (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511–512:654–662

    Google Scholar 

  268. Kalyanasundaram K, Gratzel M (1999) Efficient photovoltaic solar cells based on dye sensitization of nanocrystalline oxide films. In: Max Roundhill D, Fackler JP (eds) Optoelectronic properties of inorganic compounds. Plenum Press, New York, pp 169–194

    Google Scholar 

  269. Kang Y, Kim D (2006) Well-aligned CdS nanorod/conjugated polymer solar cells. Sol Energy Mater Sol Cells 90:166–174

    Google Scholar 

  270. Kannan B, Castelino K, Majumdar A (2003) Design of nanostructured heterojunction polymer photovoltaic devices. Nano Lett 3:1729–1733

    Google Scholar 

  271. Landi BJ, Raffaelle RP, Castro SL, Bailey SG (2005) Single-wall carbon nanotube-polymer solar cells. Prog Photovoltaics 13:165–172

    Google Scholar 

  272. Nanu M, Schoonman J, Goossens A (2005) Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Lett 5:1716–1719

    Google Scholar 

  273. Nozik AJ (2002) Quantum dot solar cells. Phys E: Low Dimensional Systems Nanostructures 14(1–2):115–120

    Google Scholar 

  274. Robel I, Subramanian V, Kuno M, Kamat PV (2006) Quantum dot solar cells. Harvesting light energy with cdse nanocrystals molecularly linked to mesoscopic tio2 films. J Am Chem Soc 128(7):2385–2393

    Google Scholar 

  275. Klimov VI (2008) Carrier multiplication in nanocrystal quantum dots and solar energy conversion. Lasers and Electro-Optics, 2008 conference on quantum electronics and laser science. CLEO/QELS 2008, pp 1–2

    Google Scholar 

  276. Lewis NS (2007) Toward cost-effective solar energy use. Science 315(5813):798–801

    Google Scholar 

  277. Kennedy M, McCormack SJ, Doran J, Norton B (2009) Improving the optical efficiency and concentration of a single-plate quantum dot solar concentrator using near infra-red emitting quantum dots. Sol Energy 83(7):978–981

    Google Scholar 

  278. Hanna MC, Beard MC, Johnson JC, Murphy J, Ellingson RJ, Nozik, AJ (2005) Quantum dot solar cells with multiple exciton generation. 2005 DOE Solar Energy Technologies program review meeting Denver, Colorado, 7–10 Nov 2005. NREL/CP-590-38992

    Google Scholar 

  279. Schuler A, Python M, Valle del Olmo M, de Chambrier (2007) Quantum dot containing nanocomposite thin films for photoluminescent solar concentrators. Solar Energy 81(9): 1159–1165

    Google Scholar 

  280. Aroutiounian V, Petrosyan S, Khachatryan A, Touryan K (2001) Quantum dot solar cells. J Appl Phys 89:2268–2271

    Google Scholar 

  281. Kamat PV (2008) Quantum dot solar cells semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Google Scholar 

  282. Laghumavarapu RB, Moscho A, Khoshakhlagh A, El-Emawy M, Lester LF, Huffaker DL (2007) GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response. Appl Phys Lett 90:173125

    Google Scholar 

  283. Plass R, Pelet S, Krueger J, Gratzel M, Bach U (2002) Quantum dot sensitization of organic; inorganic hybrid solar cells. J Phys Chem B 106:7578–7580

    Google Scholar 

  284. Sholin V, Olson JD, Carter SA (2007) Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting. J Appl Phys 101:123114

    Google Scholar 

  285. Avi S (2008) Photovoltaics literature survey (No. 66). Prog Photovoltaics Res Appl 16: 725–730

    Google Scholar 

  286. Dixon R (2001) Renewable energy, natural gas, and other hybrid systems: activities within EERE office of power technologies. Morgantown, WV

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar K. Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ghosh, T.K., Prelas, M.A. (2011). Solar Energy. In: Energy Resources and Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1402-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1402-1_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1401-4

  • Online ISBN: 978-94-007-1402-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics