Skip to main content

Cellular Immortality in Brain Tumors: An Overview

  • Chapter
  • First Online:
Tumors of the Central Nervous system, Volume 3

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 3))

  • 1657 Accesses

Abstract

Brain tumors are a diverse group of neoplasms that continue to present a formidable challenge in our attempt to achieve cures and a reduction in morbidity. Our conceptual framework of human brain cancer has been redrawn in the current decade. There is a growing acceptance that brain tumour formation is a phenotypic outcome of dysregulated neurogenesis, with tumors viewed as abnormally differentiated neural tissue. In relation, there is accumulating evidence that brain tumors, similar to leukaemia and many solid tumors, are organized as a developmental hierarchy which is maintained by a small fraction of cells endowed with many shared properties of tissue stem cells. Proof that neurogenesis persists throughout adult life, compliments this concept. Although the cancer cell of origin is unclear, the proliferative zones that harbour stem cells in the embryonic, post-natal and adult brain are attractive candidates within which tumour-initiation may ensue. Dysregulated, unlimited proliferation and an ability to bypass senescence are acquired capabilities of cancerous cells. These abilities in part require the establishment of a telomere maintenance mechanism for counteracting the shortening of chromosomal termini. A strategy based upon the synthesis of telomeric repeat sequences by the ribonucleoprotein telomerase, is prevalent in ~90% of human tumors studied, including the majority of brain tumors. This review will provide a developmental perspective with respect to normal (neurogenesis) and aberrant (tumourigenesis) cellular turnover, differentiation and function. Within this context our current knowledge of brain tumour telomere/telomerase biology will be discussed with respect to both its developmental and therapeutic relevance to the hierarchical model of brain tumourigenesis presented by the cancer stem cell paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumour angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848

    Article  PubMed  CAS  Google Scholar 

  • Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumors in adults. Lancet 361:323–331

    Article  PubMed  Google Scholar 

  • Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  PubMed  CAS  Google Scholar 

  • Bonfanti L, Peretto P (2007) Radial glial origin of the adult neural stem cells in the subventricular zone. Prog Neurobiol 83:24–36

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:7307

    Article  Google Scholar 

  • Cheng A, Shin-ya K, Wan R, Tang SC, Miura T, Tang H, Khatri R, Gleichman M, Ouyang X, Liu D (2007) Telomere protection mechanisms change during neurogenesis and neuronal maturation: newly generated neurons are hypersensitive to telomere and DNA damage. J Neurosci 27:3722–3733

    Article  PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337

    Article  PubMed  CAS  Google Scholar 

  • Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73

    Article  PubMed  CAS  Google Scholar 

  • Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA, Russell TL, Ellenbogen RG, Bernstein ID, Beachy PA (2004) The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64:7794–7800

    Article  PubMed  CAS  Google Scholar 

  • Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  • Klapper W, Shin T, Mattson MP (2001) Differential regulation of telomerase activity and TERT expression during brain development in mice. J Neurosci Res 64:252–260

    Article  PubMed  CAS  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  • Mori, T, Buffo, A, and Gotz, M. (2005) The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top Dev Biol 69:67–99

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2007) Neural stem and progenitor cells in cortical development. Novartis Found Symp 288:59–73; discussion 73–78, 96–98

    Article  PubMed  CAS  Google Scholar 

  • Packer RJ (2008) Childhood brain tumors: accomplishments and ongoing challenges. J Child Neurol 23:1122–1127

    Article  PubMed  Google Scholar 

  • Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132:335–344

    Article  PubMed  CAS  Google Scholar 

  • Rahman R, Osteso-Ibanez T, Hirst R, Levesley J, Quinn S, O’Callaghan C, Coyle B, Grundy R (2010) Histone deacetylase inhibition attenuates cell growth with associated telomerase inhibition in high grade paediatric brain tumour cells. Mol Canc Therapeut 9:2568–2581

    Article  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A, Prestegarden L, Rosland G, Thorsen F, Stuhr L (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768

    Article  PubMed  CAS  Google Scholar 

  • Wright LS, Prowse KR, Wallace K, Linskens MH, Svendsen CN (2006) Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res 312:2107–2120

    Article  PubMed  CAS  Google Scholar 

  • Wu SX, Goebbels S, Nakamura K, Kometani K, Minato N, Kaneko T, Nave KA, Tamamaki N (2005) Pyramidal neurons of upper cortical layers generated by NEX positive progenitor cells in the subventricular zone. Proc Natl Acad Sci USA 102:17172–17177

    Article  PubMed  CAS  Google Scholar 

  • Zhao CS, Overstreet-Wadiche L (2008) Integration of adult generated neurons during epileptogenesis. Epilepsia 49(Suppl 5):3–12

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruman Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rahman, R., Grundy, R.G. (2011). Cellular Immortality in Brain Tumors: An Overview. In: Hayat, M. (eds) Tumors of the Central Nervous system, Volume 3. Tumors of the Central Nervous System, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1399-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1399-4_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1398-7

  • Online ISBN: 978-94-007-1399-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics