Skip to main content

Brain Tumors: Convection-Enhanced Delivery of Drugs (Method)

  • Chapter
  • First Online:
Tumors of the Central Nervous system, Volume 3

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 3))

  • 1702 Accesses

Abstract

Delivery of therapeutic agents into the brain has been an ongoing challenge for many years. The poor prognosis for patient with primary malignant brain tumors treated with conventional techniques (surgery, radiotherapy and chemotherapy) has motivated the development of new strategies to deliver drugs into the brain. Local intracranial delivery of antineoplastic agents has appeared to be the most effective drug delivery technique into the central nervous system by circumventing the limitations imposed by the blood brain barrier (BBB). Convection-enhanced delivery (CED) is an alternative strategy to directly infuse drugs into brain tissue. This approach is based on continuous injection of the therapeutic agent under positive pressure via a catheter implanted into the brain. Convective transport driven by pressure gradient allows a widespread distribution of small and large drugs within the brain. In vivo experiments in rodents, cats and primates proved the efficacy of CED to deliver drugs into a targeted zone. However, clinical trials have reported frequent leakage phenomenon leading to mixed results for this delivery technique. A better optimization of operational parameters including infusion rate, catheter design, catheter placement and drug pharmacological formulation should allow achieving accurate and efficient delivery. In conjunction with CED, the use of nanocarriers to enhance drug pharmacokinetic behavior may help to achieve higher therapeutic index against tumor cells over healthy tissues. Additionally, the development of computer simulation to predict drug distribution and the real-time imaging for immediate assessment of convection efficiency may contribute to the CED improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard E, Huynh NT, Vessières A, Pigeon P, Jaouen G, Benoit JP, Passirani C (2009) Dose effect activity of ferrocifen-loaded lipid nanocapsules on a 9L-glioma model. Int J Pharm 379(2):317–323

    Article  PubMed  CAS  Google Scholar 

  • Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30:2302–2318

    Article  PubMed  CAS  Google Scholar 

  • Bauman MA, Gillies GT, Raghavan R, Brady ML, Pedain C (2004) Physical characterization of neurocatheter performance in a brain phantom gelatin with nanoscale porosity: steady-state and oscillatory flows. Nanotechnology 15:92–97

    Article  CAS  Google Scholar 

  • Bidros DS, Vogelbaum MA (2009) Novel drug delivery strategies in neuro-oncology. J Am Soc Exp Neuroth 6:539–546

    CAS  Google Scholar 

  • Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91:2076–2080

    Article  PubMed  CAS  Google Scholar 

  • Debinski W, Tatter ST (2009) Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother 9:15719–1527

    Article  Google Scholar 

  • Fiandaca MS, Forsayeth JR, Dickinson PJ, Bankiewicz KS (2008) Image-guided convection-enhanced delivery platform on the treatment of neurological diseases. Neurotherapeutics 5:123–127

    Article  PubMed  Google Scholar 

  • Fung LK, Ewend MG, Sills A, Sipos EP, Thompson R, Watts M, Colvin OM, Brem H, Saltzman WM (1998) Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 58:672–684

    PubMed  CAS  Google Scholar 

  • Hadaczek P, Mirek H, Tamas L, Bohn MC, Noble C, Park JW, Bankiewicz K (2006) The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Therapy 14:69–71

    Article  CAS  Google Scholar 

  • Hamilton JF, Morrision PF, Chen MY, Harvey-White J, Pernaute RS, Phillips H, Oldfield E, Bankiewicz KS (2001) Heparin coinfusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin. Exp Neurol 168:155–161

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Yamashita Y, Nishihara M, Sugiyama S, Sonoda Y, Kumabe T, Yokoyama M, Tominaga T (2009) Therapeutic efficacy of a polymeric micellar doxorubicin infused by convection-enhanced delivery against intracranial 9L brain tumor models. Neuro-Oncology 11:151–157

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (1989) Delivery of novel therapeutic agent in tumors: physiological barriers and strategies. J Natl Cancer Inst 81:570–576

    Article  PubMed  CAS  Google Scholar 

  • Krauze MT, Saito R, Noble C, Bringas J, Forsayeth J, Mcknight TR, Park J, Bankiewicz KS (2005) Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp Neurol 196:104–111

    Article  PubMed  CAS  Google Scholar 

  • Kunwar S (2003) Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies. Acta Neurochir Suppl 88:105–111.

    PubMed  CAS  Google Scholar 

  • Kunwar S, Prados MD, Chang SM, Berger MS, Lang FF, Piepmeier JM, Sampson J, Ram Z, Gutin PH, Gibbons RD, Aldape KD, Croteau DJ, Sherman JW, Puri RK (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besutodox Intraparenchymal Study Group. J Clin Oncol 25:837–844

    Article  PubMed  CAS  Google Scholar 

  • Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 82:1021–1029

    Google Scholar 

  • MacKay JA, Deen DF, Szoka C Jr (2005) Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res 1035:139–153

    Article  PubMed  CAS  Google Scholar 

  • Mamot C, Nguyen JB, Pourdehnad M, Hadaczek P, Saito R, Bringas JR, Drummond DC, Hong K, Kirpotin DB, McKnight T, Berger MS, Park JW, Bankiewicz KS (2004) Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol 68:1–9

    Google Scholar 

  • Mardor Y, Rahav O, Zauberman Y, Lidar Z, Ocherashvilli A, Daniels D, Roth Y, Maier SR, Orenstein A, Ram Z (2005) Convection-enhanced drug delivery: increased efficacy and Magnetic Resonance Image Monitoring. Cancer Res 65:6858–6863

    Article  PubMed  CAS  Google Scholar 

  • Misra A, Ganesh s, Shahiwala A, Shah SP (2003) Drug Delivery to the central nervous system: a review. J Pharm Pharm Sci 6:252–273

    PubMed  CAS  Google Scholar 

  • Morrison PF, Chen MY, Chadwick RS, Lonser RR, Oldfield EH (1999) Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am J Physiol 277:1218–1229

    Google Scholar 

  • Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL (1994) High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Physiol 266:292–305

    Google Scholar 

  • Neeves KB, Sawyer AJ, Foley CP, Saltzman WM, Olbricht WL (2007) Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles. Bain Res 1180:121–132

    Article  CAS  Google Scholar 

  • Olson JJ, Zhang Z, Dillehay D, Stubbs J (2008) Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. J Neurooncol 89:159–168

    Article  PubMed  Google Scholar 

  • Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12:54–61

    Article  PubMed  CAS  Google Scholar 

  • Perlstein B, Ram Z, Daniels D, Ocherashvilli A, Roth Y, Margel S, Mardor Y (2008) Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro-Oncology 10(2):153–161

    Article  PubMed  CAS  Google Scholar 

  • Raghavan R, Brady ML, Rodríguez-Ponce MI, Hartlep A, Pedain C, Sampson JH (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20:E12

    Article  PubMed  Google Scholar 

  • Raza SM, Pradilla G, Legnani FG, Thai QA, Olivi A, Weingart JD, Brem H (2005) Local delivery of antineoplastic agents by controlled-release polymers for the treatment of malignant brain tumours. Expert Opin Biol Ther 5:477–494

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA, Kyner WT, Estrada E (1980) Bulk flow of brain interstitial fluid under normal und hyperosmolar conditions. Am J Physiol 238:42–49

    Google Scholar 

  • Saito R, Krauze MT, Noble CO, Drummond DC, Kirpotin DB, Berger MS, Park JW, Bankiewicz KS (2006) Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro-Oncology 8:205–214

    Article  PubMed  CAS  Google Scholar 

  • Sampson JH, Raghavan R, Brady ML, Provenzale JM, Herndon JE II, Croteau D, Friedman AH, Reardon DA, Coleman RE, Wong T, Bigner DD, Pastan I, Rodríguez-Ponce MI, Tanner P, Puri R, Pedain C (2007) Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro-Oncology 9:343–353

    Article  PubMed  CAS  Google Scholar 

  • Sawyer AJ, Piepmeier JM, Saltzman WM (2006) New methods for direct delivery of chemotherapy for treating brain tumors. Yale J Biol Med 79:141–152

    PubMed  CAS  Google Scholar 

  • Seunguk O, Odland R, Wilson SR, Kroeger KM, Liu C, Lowenstein PR, Castro MG, Hall WA, Ohlfest JR (2009) Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter. Neuro-Oncology 9:343–353

    Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphroorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Varenika V, Dickinson P, Bringas J, LeCouteur R, Higgins R, Park J, Fiandaca M, Berger M, Sampson J, Bankiewicz K (2008) Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery. J Neurosurg 109:874–880

    Article  PubMed  Google Scholar 

  • Yang W, Huo T, Barth RF, Gupta N, Weldon M, Grecula JC, Ross BD, Hoff BA, Chou TC, Rousseau J, Elleaume H (2011) Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors. J Neurooncol 101:379–390

    Google Scholar 

  • Yin D, Forsayeth J, Bankiewicz KS (2010) Optimized cannula design and placement for convection-enhanced delivery in rat striatum. J Neurosci Meth 187:46–51

    Article  Google Scholar 

  • Yokosawa M, Sonoda Y, Sugiyama S, Saito R, Yamashita Y, Nishihara M, Satoh T, Kumabe T, Yokoyama M, Tominaga T (2010) Convection-enhanced delivery of a synthetic retinoid Am80, loaded into polymeric micelles, prolongs the survival of rats bearing intracranial Glioblastoma xenografts. Tohoku J Exp Med 221:257–264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Passirani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laine, AL., Allard, E., Menei, P., Passirani, C. (2011). Brain Tumors: Convection-Enhanced Delivery of Drugs (Method). In: Hayat, M. (eds) Tumors of the Central Nervous system, Volume 3. Tumors of the Central Nervous System, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1399-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1399-4_21

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1398-7

  • Online ISBN: 978-94-007-1399-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics