Skip to main content

Hydrology and Biogeochemistry of Terra Firme Lowland Tropical Forests

  • Chapter
  • First Online:
Forest Hydrology and Biogeochemistry

Part of the book series: Ecological Studies ((ECOLSTUD,volume 216))

Abstract

Tropical climates are characterized by high temperatures that do not fall below 18°C in the coolest month, according to the Köppen-Geiger climate classification system (Peel et al. 2007). This temperature regime strongly influences hydrology both at the global and local (10–102 km2) scales. Globally, irradiance from the sun affects the circulation of air masses and contributes to the formation of the Hadley cells and the associated convergence of trade winds from the intertropical convergence zone (ITCZ) (McGregor and Nieuwolt 1998). The uplift of hot and humid air at the ITCZ results in intense precipitation that, together with high temperatures, characterizes tropical regions. For example, in humid tropical Western Nigeria with convective thunderstorm-type precipitation, rain intensities vary approximately between 13 and 240 mm h−1, whereas in temperate Washington, DC, with predominantly frontal precipitation, intensities typically vary from 0.8 to 51 mm h−1 (Jackson 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araujo AC, Nobre AD, Kruijt B et al (2002) Dual tower long term study of carbon dioxide fluxes for a central Amazonian rain forest: the Manaus LBA site. J Geophy Res Atmos 107(D20):8090

    Article  Google Scholar 

  • Baker TR, Philips OL, Malhi Y et al (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol 10:545–562

    Article  Google Scholar 

  • Bonilla ALC (2005) Balanço de nitrogênio em microbacias pareadas (floresta vs pastagem) no estado de Rondônia. MSc Dissertation Universidade de São Paulo, São Paulo

    Google Scholar 

  • Brinkmann WLF (1983) Nutrient balance of a central Amazonian rainforest: comparison of natural and man-managed systems. IAHS Publ 140:153–163

    Google Scholar 

  • Brinkmann WLF (1985) Studies on the hydrobiogeochemistry of a tropical lowland forest system. GeoJournal 11:89–101

    Article  Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agr Ecosyst Environ 104:185–228

    Article  Google Scholar 

  • Chaves J, Neill C, Germer S, Neto SG, Krusche AV, Elsenbeer H (2008) Land management impacts on runoff sources in small Amazon watersheds. Hydrological Processes 22:1766–1775

    Google Scholar 

  • Cohen JCP, Silva Dias MAF, Nobre CA (1995) Environmental conditions associated with Amazonian squall lines: a case study. Mon Weather Rev 123:3163–3174

    Article  Google Scholar 

  • Cornu S, Ambrose JP, Lucas Y et al (1998) Origin and behaviour of dissolved chlorine and sodium in a Brazilian rainforest. Water Res 32:1151–1161

    Article  Google Scholar 

  • Cuartas LA, Tomasella J, Nobre AD et al (2007) Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: marked differences between normal and dry years. Agr Forest Meteorol 145:69–83

    Article  Google Scholar 

  • Davidson EA, Bustamante MMC, Pinto AS (2001) Emissions of nitrous oxide and nitric oxide from soils of native and exotic ecosystems of the Amazon and Cerrado regions of Brazil. In: Galloway J, Cowling E, Erisman J et al (eds) Optimizing nitrogen management in food and energy production and environmental protection: proceedings of the 2nd international nitrogen conference on science and policy. AA Balkema Publishers, Lisse, pp 312–319

    Google Scholar 

  • Davidson EA, Neill C, Krusche AV et al (2004) Loss of nutrients from terrestrial ecosystems to streams and the atmosphere following land use change in Amazonia. In: DeFries R et al (eds) Ecosystems and land use change. American Geophysical Union, Washington, Monograph Series 153, pp 147–158

    Google Scholar 

  • De Simone O, Muller E, Junk WJ et al (2002) Adaptations of central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Plant Biol 4:515–522

    Article  Google Scholar 

  • Elsenbeer H (2001) Hydrologic flowpaths in tropical rainforest soilscapes – a review. Hydrol Process 15:1751–1759

    Article  Google Scholar 

  • Elsenbeer H, Lack A (1996) Hydrometric and hydrochemical evidence for fast flowpaths at La Cuenca, Western Amazonia. J Hydrol 180:237–250

    Article  Google Scholar 

  • Elsenbeer H, Cassel DK, Zuniga L (1994) Throughfall in terra firme forest of western Amazonia. J Hydrol (NZ) 32:30–44

    Google Scholar 

  • Ferreira SJF, Luizão FJ, Dallarosa RLG (2005) Precipitação interna e interceptação da chuva em floresta de terra firme submetida à extração seletiva de madeira na Amazônia central. Acta Amazonica 35:55–62

    Article  Google Scholar 

  • Figueroa NP, Nobre CA (1990) Precipitation distribution over central and western tropical South America. Climanalise 5:36–40

    Google Scholar 

  • Filoso S, Williams MR, Melack JM (1999) Composition and deposition of throughfall in a flooded forest archipelago (Negro River, Brazil). Biogeochemistry 45:169–195

    Google Scholar 

  • Franken W, Leopoldo PR, Matsui E, Ribeiro MNG (1992) Estudo da interceptação da água da chuva em cobertura florestal Amazônica do tipo terra firme. Acta Amazonica 12(2):327–331

    Google Scholar 

  • Franken W, Leopoldo PR, Matsui E et al (1992b) Interceptações das precipitações em floresta Amazônica de terra firme. Acta Amazonica 12(Suppl):15–22

    Google Scholar 

  • Garreaud R, Wallace JM (1997) The diurnal march of convective cloudiness over the Americas. Mon Weather Rev 125:3157–3171

    Article  Google Scholar 

  • Germer SH, Elsenbeer H, Moraes JM (2006) Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest south-western Amazonia (Rondonia, Brazil). Hydrol Earth Syst Sci 10:383–393

    Article  Google Scholar 

  • Germer SH, Neill C, Krusche AV et al (2007) Seasonal and within-event dynamics of rainfall and throughfall chemistry in an open tropical rainforest in Rondonia, Brazil. Biogeochemistry 86:155–174

    Article  Google Scholar 

  • Germer SH, Neill C, Vetter T et al (2009) Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. J Hydrol 364:349–363

    Article  Google Scholar 

  • Gouveia Neto S (2006) Concentrações e balanços de carbono orgânico dissolvido em duas bacias do estado de Rondônia: uma comparação entre floresta e pastagem. MSc Dissertation, Universidade de São Paulo, São Paulo

    Google Scholar 

  • Grace J, Lloyd J, McIntyre J et al (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in Southwestern Amazonia, 1992–1993. Science 270:778–780

    Article  Google Scholar 

  • Hamilton LS, Juvik JO, Scatena FN (1995) Tropical montane cloud forests. Springer, New York

    Google Scholar 

  • Herwitz SR (1991) Aboveground adventitious roots and stemflow chemistry of Ceratopetalum virchowii in an Australian montane tropical rain forest. Biotropica 23:210–218

    Article  Google Scholar 

  • Horn HS (1971) The adaptive geometry of trees. Princeton University Press, Princeton

    Google Scholar 

  • Houghton RA, Lawrence KT, Hackler JL (2001) The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biol 7:731–746

    Article  Google Scholar 

  • Jackson IJ (1989) Climate, water and agriculture in the tropics, 2nd edn. Longman, Essex

    Google Scholar 

  • Johnson MS, Lehmann J, Selva EC et al (2006) Organic carbon fluxes and stream water exports from headwater catchments in the Southern Amazon. Hydrol Process 20:2599–2614

    Article  Google Scholar 

  • Koren I, Kaufman YJ, Washington R et al (2006) The Bodele depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environ Res Lett 1:Art No. 014005

    Google Scholar 

  • Leopoldo PR, Franken W, Salati E et al (1987) Toward A water balance in the central Amazonian region. Experientia 43:222–233

    Article  Google Scholar 

  • Lesack LFW, Melack JM (1996) Mass balance of major solutes in a rainforest catchment in the Central Amazon: implications for nutrient budgets in tropical rainforests. Biogeochemistry 32:115–146

    Article  Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274:1–29

    Article  Google Scholar 

  • Lloyd CR, Marques AO (1988) Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agr Forest Meteorol 42:63–73

    Article  Google Scholar 

  • Luizão RCC, Luizão FJ, Paiva RQ et al (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biol 10:592–600

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033

    Article  Google Scholar 

  • Malhi Y, Nobre AD, Grace J et al (1998) Carbon dioxide transfer over a central Amazonian rain forest. J Geophys Res Atmos 103:31593–31612

    Article  Google Scholar 

  • Malhi Y, Baker T, Philips OL et al (2004) The above-ground wood productivity and net primary production of 100 neotropical forest plots. Global Change Biol 10:563–591

    Article  Google Scholar 

  • Marengo JA (1992) Interannual variability of surface climate in the Amazon basin. Int J Climatol 12:853–863

    Article  Google Scholar 

  • Marengo JA (2006) On the hydrological cycle of the Amazon basin: a historical review and current state-of-the-art. Rev Bras Meteorol 21:1–19

    Google Scholar 

  • Marengo JA, Nobre CA (2001) General characteristics an variability of climate in the Amazon basin and its links to global climate system. In: McClain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, New York, pp 17–41

    Google Scholar 

  • Markewitz D, Davidson E, Moutinho P et al (2004) Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol Appl 14:S177–S199

    Article  Google Scholar 

  • Mayorga E, Logsdon MG, Ballester MVR et al (2005a) Estimating cell-to-cell land surface drainage paths from digital channel networks, with an application to the Amazon basin. J Hydrol 315:167–182

    Article  Google Scholar 

  • Mayorga E, Aufdenkampe AK, Masiello CA et al (2005b) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541

    Article  Google Scholar 

  • McGregor GR, Nieuwolt S (1998) Tropical climatology. Wiley, Chichester

    Google Scholar 

  • Melillo JM, Steudler PA, Feigl BJ et al (2001) Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J Geophys Res 106:34,179–34,188

    Article  Google Scholar 

  • Moraes JM, Schuler A, Dunne T et al (2006) Water storage and runoff processes in linthic soils under forest and pasture in eastern Amazon. Hydrol Process 20:2509–2526

    Article  Google Scholar 

  • Muzylo A, Llorens P, Valente F et al (2009) A review of rainfall interception modeling. J Hydrol 370:191–2006

    Article  Google Scholar 

  • Neill C, Piccolo MC, Steudler A et al (1995) Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin. Soil Biol Biochem 27:1167–1175

    Article  Google Scholar 

  • Neill C, Deegan LA, Thomas SM et al (2001) Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecol Appl 11:1817–1828

    Article  Google Scholar 

  • Neill C, Deegan LA, Thomas SM et al (2006) Deforestation alters the hydraulic and biogeochemical characteristics of small lowland Amazonian streams. Hydrol Process 20:2563–2580

    Article  Google Scholar 

  • Neu V (2009) O ciclo do carbono na bacia do Alto Xingu: interações entre ambientes terrestre, aquático e atmosférico. PhD Thesis, Universidade de São Paulo, São Paulo

    Google Scholar 

  • Nortcliff S, Thornes JB (1989) Variations in soil nutrients in relation to soil moisture status in a tropical forested ecosystem. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell, Oxford, pp 43–54

    Google Scholar 

  • Oliveira LL, Costa RF, Souza FA et al (2008) Precipitação efetiva e interceptação em Caxiuanã, na Amazônia Oriental. Acta Amazonica 38:723–732

    Article  Google Scholar 

  • Ometto JPHB, Nobre AD, Rocha HR et al (2005) Amazonia and the modern carbon cycle: lessons learned. Oecologia 143:483–500

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK et al (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  Google Scholar 

  • Roberts J (2000) The influence of physical and physiological characteristics of vegetation on their hydrological response. Hydrol Process 14:2885–2901

    Article  Google Scholar 

  • Sabine C, Heimann M, Artaxo P et al (2004) Current status and past trends on the global carbon cycle. SCOPE 62. Island Press, Washington, pp 17–44

    Google Scholar 

  • Saleska SR, Miller SD, Matross DM et al (2003) Carbon in the Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Article  Google Scholar 

  • Sanford RL Jr (1987) Apogeotropic roots in an Amazon rain forest. Science 235:1062–1064

    Article  Google Scholar 

  • Saugier B, Roy J, Mooney HA (2001) Estimations of global terrestrial productivity: converging toward a single number? In: Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, pp 543–557

    Chapter  Google Scholar 

  • Sheil D, Murdiyarso D (2009) How forests attract rain: an examination of a new hypothesis. Bioscience 59:341–347

    Article  Google Scholar 

  • Shuttleworth WJ (1988) Evaporation from Amazonian rainforest. P Roy Soc B Biol Sci B233:321–346

    Article  Google Scholar 

  • Tobón Marin C, Bouten W, Sevink J (2000) Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystem in western Amazonia. J Hydrol 237:40–57

    Article  Google Scholar 

  • Tobón Marin C, Sevink J, Verstraten JM (2004) Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia. Biogeochemistry 70:1–25

    Article  Google Scholar 

  • Tomasella J, Neill C, Figueiredo R, Nobre AD (2009) Water and chemical budgets at the catchment scale including nutrient exports from intact forests and disturbed landscapes. In Keller et al (eds) Amazonia and Climate Change. AGU Geophysical Monograph 186, pp 505–524

    Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431

    Article  Google Scholar 

  • Ubarana VN (1996) Observation and modelling of rainfall interception at two experimental sites in Amazônia. In: Gash JHC, Nobre CA, Roberts JM et al (eds) Amazônian deforestation and climate. Wiley, Chichester, pp 151–162

    Google Scholar 

  • Verchot LV, Davidson EA, Cattãnio JH, Ackerman IL, Erickson HE, Keller M (1999) Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Glob Biogeochem Cycles 13:31–46

    Article  Google Scholar 

  • Victoria DC (2004) Estimativa da evapotranspiração da bacia do Ji-Paraná (RO) através de técnicas de sensoriamento remoto e geoprocessamento. PhD Thesis, University of São Paulo, São Paulo

    Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298

    Article  Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forests. Ann Rev Ecol Syst 17:137–168

    Article  Google Scholar 

  • Waterloo MJ, Oliveira SM, Drucker DP et al (2006) Export of organic carbon in runoff from an Amazonian rainforest blackwater catchment. Hydrol Process 20:2581–2598

    Article  Google Scholar 

  • Williams MR, Fisher TR, Melack JM (1997) Chemical composition and deposition of rain in the central Amazon, Brazil. Atmos Environ 31:207–217

    Article  Google Scholar 

  • Verchot LV, Davidson EA, Cattãnio JH, Ackerman IL, Erickson HE, Keller M (1999) Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochemical Cycles 13:31–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex V. Krusche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Krusche, A.V., Ballester, M.V.R., Leite, N.K. (2011). Hydrology and Biogeochemistry of Terra Firme Lowland Tropical Forests. In: Levia, D., Carlyle-Moses, D., Tanaka, T. (eds) Forest Hydrology and Biogeochemistry. Ecological Studies, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1363-5_9

Download citation

Publish with us

Policies and ethics