Skip to main content

Hydrology and Biogeochemistry of Boreal Forests

  • Chapter
  • First Online:
Forest Hydrology and Biogeochemistry

Part of the book series: Ecological Studies ((ECOLSTUD,volume 216))

  • 4045 Accesses

Abstract

The boreal or taiga forest cover 16% of the terrestrial landarea and contains 27% of the biomass carbon in a circumpolar belt across Eurasia and North America (e.g., McGuire et al. 2002). It contains greater than 30% of the world’s soil C (>300 Pg, Dixon et al. 1994; Tarnocai et al. 2009). The soil types vary but a major part grows on nutrient poor, heavily podzolized Spodosols. The boreal forest is bordered by treeless tundra on the north and mixed forests on the south (in oceanic influenced climates) and arid steppe or semi-desert (in mid-continental climate regions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral JA, Knowles R (1997) Localization of methane consumption and nitrification activities in some boreal forest soils and the stability of methane consumption on storage and disturbance. J Geophys Res 102:29255–29260

    Article  Google Scholar 

  • Arain MA, Black TA, Barr AG et al (2003) Year-around observations of the energy and water vapour fluxes above a boreal black spruce forest. Hydrol Process 17:3581–3600

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9:479–492

    Article  Google Scholar 

  • Baldocchi DD, Vogel CA, Hall B (1997) Seasonal variation of energy and water vapour exchange above and below a boreal jack pine forest canopy. J Geophys Res 102:28939–28951

    Article  Google Scholar 

  • Baldocchi DD, Kelliher FM, Black TA et al (2000) Climate and vegetation controls on boreal zone energy exchange. Global Change Biol 6:69–83

    Article  Google Scholar 

  • Ball BC, Smith KA, Klemedtsson L et al (1997) The influence of soil gas transport properties on methane oxidation in a selection of northern European soils. J Geophys Res 102:23309–23317

    Article  Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320

    Article  Google Scholar 

  • Bernier PY, Bartlett P, Black TA (2006) Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands. Agric For Meteorol 140:64–78

    Article  Google Scholar 

  • Betts AK, Goulden M, Wofsy S (1999) Controls on evaporation in a boreal spruce forest. J Clim 12:1601–1618

    Article  Google Scholar 

  • Blanken PD, Black TA, Yang PC et al (1997) Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J Geophys Res 102:28915–28927

    Article  Google Scholar 

  • Blanken PD, Black TA, Neumann HH et al (2001) The seasonal water and energy exchange above and within a boreal aspen forest. J Hydrol 245:118–136

    Article  Google Scholar 

  • Born M, Dörr H, Levin I (1990) Methane consumption in aerated soils of the temperate zone. Tellus 42B:2–8

    Google Scholar 

  • Breckle S-W, Walter H, Lawlor G (2002) Walter’s vegetation of Earth: the ecological systems of the geo-biosphere. Springer, Berlin

    Google Scholar 

  • Bremner JM, Blackmer AM (1978) Nitrous oxide: Emission from soils during nitrification of fertilizer nitrogen. Science 199:295–296

    Article  Google Scholar 

  • Bubier JL, Moore TR, Bellisario L et al (1995) Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Glob Biogeochem Cycles 9:455–470

    Article  Google Scholar 

  • Chapin FS, Woodwell GM, Randerson JT et al (2006) Reconciling carbon-cycling concepts, terminology and methods. Ecosystems 9:1041–1050

    Article  Google Scholar 

  • Crill PM (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Glob Biogeochem Cycles 5:319–334

    Article  Google Scholar 

  • Crill PM, Bartlett KB, Harriss RC et al (1988) Methane flux from Minnesota peatlands. Global Biogeochem Cy 2:371–384

    Article  Google Scholar 

  • Crill PM, Martikainen PJ, Nykänen H et al (1994) Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biol Biochem 26:1331–1339

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA et al (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  Google Scholar 

  • Finlay K, Leavitt P, Wissel B et al (2009) Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the northern Great Plains. Limnol Oceanogr 54:2553–2564

    Article  Google Scholar 

  • Grelle A, Lundberg A, Lindroth A et al (1997) Evaporation components of a boreal forest: Variations during the growing season. J Hydrol 197:70–87

    Article  Google Scholar 

  • Grelle A, Lindroth A, Mölder M (1999) Seasonal variation of boreal forest surface conductance and evaporation. Agric For Meteorol 98–99:563–578

    Article  Google Scholar 

  • Hamada S, Ohta T, Hiyama T et al (2004) Hydrometeorological behaviour of pine and larch forests in eastern Siberia. Hydrol Process 18:23–39

    Article  Google Scholar 

  • Harden JW, O’Neill KP, Trumbore SE et al (1997) Moss and soil contributions to the annual net carbon flux of a maturing boreal forest. J Geophys Res 102:28805–28816

    Article  Google Scholar 

  • Harden JW, Trumbore SE, Stocks BJ et al (2000) The role of fire in the boreal carbon budget. Global Change Biol 6:174–184

    Article  Google Scholar 

  • Harding RJ, Pomeroy JW (1996) The energy balance of a winter boreal landscape. J Clim 9:2778–2787

    Article  Google Scholar 

  • Hedstrom NR, Pomeroy JW (1998) Measurements and modeling of snow interception in the boreal forest. Hydrol Process 12:1611–1625

    Article  Google Scholar 

  • Hollinger DY, Kelliher FM, Schulze E-D et al (1998) Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agric For Meteorol 90:291–306

    Article  Google Scholar 

  • Humphreys ER, Black TA, Ethier GJ et al (2003) Annual and seasonal variability of sensible and latent heat fluxes above a coastal Douglas-fir forest, British Columbia, Canada. Agric For Meteorol 115:109–125

    Article  Google Scholar 

  • Jarvis PG, Massheder JM, Hale SE et al (1997) Seasonal variation of carbon dioxide, water vapour, and energy exchange of a boreal black spruce forest. J Geophys Res 102:28953–28966

    Article  Google Scholar 

  • Kelliher FM, Hollinger DY, Schulze E-D et al (1997) Evaporation from an eastern Siberian larch forest. Agric For Meteorol 85:135–147

    Article  Google Scholar 

  • Kelliher FM, Lloyd J, Arneth A et al (1998) Evapotranspiration from a central Siberian pine forest. J Hydrol 205:279–296

    Article  Google Scholar 

  • Lagergren F, Lindroth A (2002) Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric For Meteorol 112:67–85

    Article  Google Scholar 

  • Lankreijer H, Lundberg A, Grelle A et al (1999) Evaporation and storage of intercepted rain analysed by comparing two models applied to a boreal forest. Agric For Meteorol 98–99:595–604

    Article  Google Scholar 

  • Leemans R, Cramer W (1991) The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid. Research Report RR-91-18, Nov 1991. International Institute of Applied Systems Analyses, Laxenburg

    Google Scholar 

  • Lida S, Ohta T, Matsumoto K et al (2009) Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest. Agric For Meteorol 149:1129–1139

    Article  Google Scholar 

  • Lundberg A, Halldin S (1994) Evaporation of intercepted snow: analyses of governing factors. Water Resour Res 30:2587–2598

    Article  Google Scholar 

  • Lundberg A, Halldin S (2001) Snow interception evaporation: Review of measurement techniques, processes, and models. Theor Appl Climatol 70:117–133

    Article  Google Scholar 

  • Luyssaert S, Inglima I, Jung M et al (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biol 13:2509–2537

    Article  Google Scholar 

  • Martikainen PJ, Nykänen H, Crill P et al (1993) Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366:51–53

    Article  Google Scholar 

  • Matsumoto K, Ohta T, Nakai T et al (2008) Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agric For Meteorol 148:1978–1989

    Article  Google Scholar 

  • McGuire AD, Wirth C, Apps M et al (2002) Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. J Veg Sci 13:301–314

    Article  Google Scholar 

  • McNaughton KG, Jarvis PG (1983) Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT (ed) Water deficits and plant growth, vol 5. Academic Press, New York, pp 1–47

    Google Scholar 

  • Mellilo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  Google Scholar 

  • Moosavi SC, Crill PM (1997) Controls on CH4 and CO2 emissions along two moisture gradients in the Canadian boreal zone. J Geophys Res 102:29261–29277

    Article  Google Scholar 

  • Moosavi SC, Crill PM, Pullman ER et al (1996) Control of CH4 flux from an Alaska boreal wetland. Glob Biogeochem Cycles 10:287–296

    Article  Google Scholar 

  • Nakai Y, Sakamoto T, Terajima T et al (1999) Energy balance above a boreal coniferous forest: a difference in turbulent fluxes between snow-covered and snow-free canopies. Hydrol Process 13:515–529

    Article  Google Scholar 

  • Ohta T, Hiyama T, Tanaka H et al (2001) Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia. Hydrol Process 15:1459–1476

    Article  Google Scholar 

  • Pejam MR, Arain MA, McCaughey JH (2006) Energy and water vapour exchanges over a mixedwood boreal forest in Ontario, Canada. Hydrol Process 20:3709–3724

    Article  Google Scholar 

  • Rannik Ü, Altimir N, Raittila J et al (2002) Fluxes of carbon dioxide and water vapour over a Scots pine forest and clearing. Agric For Meteorol 111:187–202

    Article  Google Scholar 

  • Repo ME, Susiluoto S, Lind SE et al (2009) Large N2O emissions from cryoturbated peat soil in tundra. Nat Geosci. doi:doi: 10.1038/NGEO434

    Google Scholar 

  • Roulet NT, Ash R, Moore TR (1992) Low boreal wetlands as a source of atmospheric methane. J Geophys Res 97:3739–3749

    Google Scholar 

  • Ryan MG (1991) The effect of climate change on plant respiration. Ecol Appl 1:157–167

    Article  Google Scholar 

  • Ryan MG, Lavigne MB, Gower ST (1997) Annual cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophys Res 102:28871–28883

    Article  Google Scholar 

  • Savage K, Moore TR, Crill PM (1997) Methane and carbon dioxide exchanges between the atmosphere and northern boreal forest soils. J Geophys Res 102:29279–29287

    Article  Google Scholar 

  • Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3:147–166

    Article  Google Scholar 

  • Schulze E-D, Lloyd J, Kelliher FM et al (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink – a synthesis. Global Change Biol 5:703–722

    Article  Google Scholar 

  • Simpson IJ, Edwards GC, Thurtell GW et al (1997) Micrometeorological measurements of methane and nitrous oxide exchange above a boreal forest. J Geophys Res 102:29331–29341

    Article  Google Scholar 

  • Smith KA, Dobbie KE, Ball BC et al (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biol 6:791–803

    Article  Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM (2007) A first pan-arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafrost Periglac Process 18:201–208

    Article  Google Scholar 

  • Stocks BJ (1991) The extent and impact of forest fires in northern circumpolar countries. In: Levine J (ed) Global biomass burning. MIT Press, Cambridge, pp 197–202

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023. doi:10.1029/2008GB003327

  • Tranvik LJ, Downing JA, Cotner JB et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  Google Scholar 

  • Wang K-Y, Kellomäki S, Zha T et al (2004) Seasonal variation in energy and water fluxes in a pine forest: an analysis based on eddy covariance and an integrated model. Ecol Model 179:259–279

    Article  Google Scholar 

  • Wofsy SC, Goulden ML, Munger JW et al (1993) Net exchange of CO2 in a mid latitude forest. Science 260:1314–1316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lindroth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lindroth, A., Crill, P. (2011). Hydrology and Biogeochemistry of Boreal Forests. In: Levia, D., Carlyle-Moses, D., Tanaka, T. (eds) Forest Hydrology and Biogeochemistry. Ecological Studies, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1363-5_15

Download citation

Publish with us

Policies and ethics