Skip to main content

Hydrology and Biogeochemistry of Tropical Montane Cloud Forests

  • Chapter
  • First Online:
Forest Hydrology and Biogeochemistry

Part of the book series: Ecological Studies ((ECOLSTUD,volume 216))

Abstract

Tropical montane cloud forests (TMCFs) are differentiated from other forest types by their frequent immersion in fog. This characteristic implies that TMCFs are unique in their hydrological functioning, as they receive a substantial amount of water input via direct deposition of cloud droplets. Because it is generally associated with reduced solar radiation and increased humidity, frequent fog occurrence can lower evapotranspiration (ET). Many TMCFs also have certain characteristic structural and floristic features, which have further hydrological effects. Cloud water is often chemically different from rain water (Heath 2001; Liang et al. 2009); hence, fog deposition can alter inputs of nutrients and other chemicals into the ecosystem. The hydrological, biological, and chemical characteristics of cloud forests give rise to differences in biogeochemical processes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asbury CE, McDowell WH, Trinidad-Pizarro R et al (1994) Solute deposition from cloud water to the canopy of a Puerto Rican montane forest. Atmos Environ 28:1773–1780

    Article  Google Scholar 

  • Bach K (2004) Vegetationskundliche Untersuchungen zur Höhenzonierung tropischer Bergregenwälder in den Anden Boliviens. Diss, Marburg, 123

    Google Scholar 

  • Baldocchi D, Hicks B, Meyers T (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69:1331–1340

    Article  Google Scholar 

  • Beck E, Bendix J, Kottke I et al (2008) Gradients in a tropical mountain ecosystem of Ecuador, Ecol Stud 198. Springer, New York

    Book  Google Scholar 

  • Beiderwieden E, Schmidt A, Hsia YJ et al (2007) Nutrient input through occult and wet deposition into a subtropical montane cloud forest. Water Air Soil Pollut 186:273–288

    Article  Google Scholar 

  • Benner J, Vitousek PM, Ostertag R (2010) Nutrient cycling and nutrient limitation in tropical montane cloud forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 90–100

    Google Scholar 

  • Blocken B, Carmeliet J, Poesen J (2005) Numerical simulation of the wind-driven rainfall distribution over small-scale topography in space and time. J Hydrol 315:252–273

    Article  Google Scholar 

  • Boy J, Rollenbeck R, Valarezo C et al (2008a) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycles 22:1–16

    Google Scholar 

  • Boy J, Valarezo C, Wilcke W (2008b) Water flow paths in soil control element exports in an Andean tropical montane forest. Eur J Soil Sci 59:1209–1227

    Article  Google Scholar 

  • Brauman KA, Freyberg DL, Daily GC (2010) Forest structure influences on rainfall partitioning and cloud interception: a comparison of native forest sites in Kona, Hawai‘i. Agric For Meteorol 150:265–275

    Article  Google Scholar 

  • Bruijnzeel LA (2001) Hydrology of tropical montane cloud forests: a reassessment. Land Use Water Resour Res 1:1–18

    Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosys Environ 104:185–228

    Article  Google Scholar 

  • Bruijnzeel LA (2005) Tropical montane cloud forests: a unique hydrological case. In: Bonell M, Bruijnzeel LA (eds) Forests, water, and people in the humid tropics. Cambridge University Press, Cambridge, pp 462–483

    Chapter  Google Scholar 

  • Bruijnzeel LA, Proctor J (1995) Hydrology and biogeochemistry of TMCF: What do we really know? In: Hamilton LS, Juvik J, Scatena FN (eds) Tropical montane cloud forests. Ecological studies 110. Springer, New York, pp 38–78

    Google Scholar 

  • Bruijnzeel LA, Veneklaas EJ (1998) Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79:3–9

    Article  Google Scholar 

  • Bruijnzeel LA, Waterloo MJ, Proctor J et al (1993) Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. J Ecol 81:145–167

    Article  Google Scholar 

  • Bruijnzeel LA, Kappelle M, Mulligan M, Scatena FN (2010) Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 691–740

    Google Scholar 

  • Bubb P, May I, Miles L et al (2004) Cloud forest agenda. Cambridge, UK: UNEPWCMC. Online at: http://sea.unep-wcmc.org/forest/cloudforest/index.cfm

  • Bücker A, Crespo P, Frede HG et al (2010) Identifying controls on water chemistry of tropical cloud forest catchments: combining descriptive approaches and multivariate analysis. Aquat Geochem 16:127–149

    Article  Google Scholar 

  • Calvo JC (1986) An evaluation of Thornthwaite’s water balance technique in predicting stream runoff in Costa Rica. Hydrol Sci J 31:51–60

    Article  Google Scholar 

  • Cao G, Giambelluca TW, Stevens D et al (2007) Inversion variability in the Hawaiian trade wind regime. J Clim 20:1145–1160

    Article  Google Scholar 

  • Cavelier J, Jaramillo M, Solis D et al (1997) Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. J Hydrol 193:83–96

    Article  Google Scholar 

  • Chang SC, Yeh CF, Wu MJ et al (2010) Fog deposition and chemistry in a sub-tropical montane cloud forest in Taiwan. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 378–386

    Google Scholar 

  • Chen L, Liu WY, Wang GS (2010) Estimation of epiphytic biomass and nutrient pools in the subtropical montane cloud forest in the Ailao Mountains, south-western China. Ecol Res 25:315–325

    Article  Google Scholar 

  • Clark KL (1994) The role of epiphytic bryophytes in the net accumulation and cycling of nitrogen in a tropical montane cloud forest. PhD dissertation, University of Florida, Gainesville, FL, pp 271

    Google Scholar 

  • Clark KL, Nadkarni NM, Schaefers D et al (1998) Cloud water and precipitation chemistry in a tropical montane forest, Monteverde, Costa Rica. Atmos Environ 32:1595–1603

    Article  Google Scholar 

  • Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14:2903–2920

    Article  Google Scholar 

  • DeLay J (2005) Canopy water balance of an elfin cloud forest at Alakahi, Hawai‘i. Master’s thesis, Geography, University of Hawai‘i at Mānoa, Honolulu, USA

    Google Scholar 

  • Dietz J, Hölscher D, Leuschner C et al (2006) Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. For Ecol Manage 237:170–178

    Article  Google Scholar 

  • Edwards PJ (1982) Studies of mineral cycling in a montane rain forest in New Guinea. V. Rates of cycling in throughfall and litter fall. J Ecol 70:807–827

    Article  Google Scholar 

  • Edwards PJ, Grubb PJ (1977) Studies of mineral cycling in a montane rain forest in New Guinea. I. The distribution of organic matter in the vegetation and soil. J Ecol 65:943–969

    Article  Google Scholar 

  • Ekern PC (1964) Direct interception of cloud water on Lāna‘ihale, Hawai‘i. Soil Sci Soc Am Proc 28:419–421

    Article  Google Scholar 

  • Eugster W, Burkard R, Holwerda F et al (2006) Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agric For Meteorol 139:288–306

    Article  Google Scholar 

  • Fleischbein K, Wilcke W, Valarezo C et al (2006) Water budgets of three small catchments under montane forest in Ecuador: experimental and modeling approach. Hydrol Process 20:2491–2507

    Article  Google Scholar 

  • Frumau KFA, Burkard R, Schmid S et al (2010) Fog gauge performance under conditions of fog and wind-driven rain. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 293–301

    Google Scholar 

  • Gerold G (2008) Soil, climate and vegetation in tropical montane forests – a case study from the Yungas, Bolivia. In: Gradstein SR, Homeier J, Gansert D (eds) The tropical mountain forest. Biodiversity and ecology series 2. University Of Akron Press, Göttingen, pp 137–162

    Google Scholar 

  • Gerold G, Schawe M, Bach K (2008) Hydrometeorologic, pedologic and vegetation patterns along an elevational transect in the montane forest of the Bolivian Yungas. DIE ERDE 139:141–168

    Google Scholar 

  • Giambelluca TW, DeLay JK, Nullet MA, et al (2010a) Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai‘i. Hydrol Process 25:438–447

    Google Scholar 

  • Giambelluca TW, DeLay JK, Nullet MA et al (2010b) Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai‘i. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 342–351

    Google Scholar 

  • Gomez-Peralta D, Oberbauer SF, McClain ME et al (2008) Rainfall and cloudwater interception in tropical montane forests in the eastern Andes of Central Peru. For Ecol Manage 255:1315–1325

    Article  Google Scholar 

  • Häger A, Dohrenbusch A (2010) Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 208–216

    Google Scholar 

  • Hafkenscheid RLLJ (2000) Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. PhD Thesis, VU University Amsterdam, Amsterdam, The Netherlands. (http://dare.ubvu.vu.nl/bitstream/1871/12734/1/texst.pdf)

  • Heath JA (2001) Atmospheric nutrient deposition in Hawai‘i: methods, rates and sources. PhD Thesis, Oceanography, University of Hawai‘i at Mānoa, Honolulu, USA

    Google Scholar 

  • Herwitz SR, Slye RE (1992) Spatial variation in the interception of inclined rainfall by a tropical rainforest canopy. Selbyana 13:62–71

    Google Scholar 

  • Hietz P (2010) Ecology and ecophysiology of epiphytes in tropical montane cloud forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 67–76

    Google Scholar 

  • Hietz P, Wanek W, Wania R et al (2002) Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350–355

    Article  Google Scholar 

  • Hofstede RGM, Wolf J, Benzing DH (1993) Epiphytic biomasss and nutrient status of a Colombian upper montane rain forest. Selbyana 14:37–45

    Google Scholar 

  • Holder CD (2004) Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. For Ecol Manage 190:373–384

    Article  Google Scholar 

  • Hölscher D, Köhler L, Van Dijk AIJM et al (2004) The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. J Hydrol 292:308–322

    Article  Google Scholar 

  • Holwerda F, Bruijnzeel LA, Muñoz-Villers LE et al (2010a) Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. J Hydrol 384:84–96

    Article  Google Scholar 

  • Holwerda F, Bruijnzeel LA, Oord AL et al (2010b) Fog interception in a Puerto Rican elfin cloud forest: a wet-canopy water budget approach. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 282–292

    Google Scholar 

  • Hsu CC, Horng FE, Kuo CM (2002) Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. J Trop Ecol 18:659–670

    Article  Google Scholar 

  • Hutley LB, Doley D, Yate DJ et al (1997) Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog. Aust J Bot 45:311–329

    Article  Google Scholar 

  • Ingraham NL, Mark AF (2000) Isotopic assessment of the hydrologic importance of fog deposition on tall snow tussock grass on southern New Zealand uplands. Austral Ecol 25:402–408

    Article  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S et al (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    Article  Google Scholar 

  • Jarvis A, Mulligan M (2010) The climate of cloud forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 39–56

    Google Scholar 

  • Juvik JO, DeLay JK, Kinney KM, et al (2010) A 50th anniversary reassessment of the seminal “Lāna‘i fog drip study” in Hawai‘i. Hydrol Process 25:402–410

    Google Scholar 

  • Kappelle M (1995) Ecology of mature and recovering Talamancan montane Quercus forests, Costa Rica. PhD dissertation, University of Amsterdam, Amsterdam, The Netherlands

    Google Scholar 

  • Katata G, Nagai H, Kajino M et al (2010) Numerical study of fog deposition on vegetation for atmosphere–land interactions in semi-arid and arid regions. Agric For Meteorol 150:340–353

    Article  Google Scholar 

  • Kellner T (2006) Niederschlagsnährstoffeinträge im Bergregenwaldökosystem der Yungas (Bolivien). Diplomarbeit Göttingen

    Google Scholar 

  • Kitayama K, Majalap-Lee N, Aiba S (2000) Soil phosphorus fractionation and phosphorus use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia 123:342–349

    Article  Google Scholar 

  • Klemm O, Wrzesinsky T, Scheer C (2005) Fog water flux at a canopy top: direct measurement versus one-dimensional model. Atmos Environ 39:5375–5386

    Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  • Köhler L, Arnoud Frumau KF et al (2007) Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecol 193:171–184

    Article  Google Scholar 

  • Köhler L, Hölscher D, Bruijnzeel LA et al (2010) Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrologic significance. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 268–274

    Google Scholar 

  • Kumaran S (2008) Hydrometeorology of tropical montane rain forests of Gunung Brinchang, Pahang Darul Makmur, Malaysia. PhD dissertation, University Putra Malaysia, Serdang, Malaysia

    Google Scholar 

  • Küppers M, Motzer T, Schmitt D et al (2008) Stand structure, transpiration responses in trees and vines and stand transpiration of different forest types within the mountain rainforest. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies 198. Springer, Berlin, pp 243–258

    Chapter  Google Scholar 

  • Lawton RO, Nair US, Pielke RA Sr et al (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–587

    Google Scholar 

  • Letts MG, Mulligan M (2005) The impact of light quality and leaf wetness on photosynthesis in north-west Andean tropical montane cloud forest. J Trop Ecol 21:549–557

    Article  Google Scholar 

  • Leuschner C, Moser G, Bertsch C et al (2007) Large altitudinal increase in tree root/shoot ratio in tropical montain forests in Ecuador. Basic Appl Ecol 8:219–230

    Article  Google Scholar 

  • Liang YL, Lin TC, Hwong JL et al (2009) Fog and precipitation chemistry at a mid-land forest in central Taiwan. J Environ Qual 38:627–636

    Article  Google Scholar 

  • Liu WY, Li HM, Zhang YP et al (2010) Fog- and rain water chemistry in the seasonal tropical rain forest of Xishuangbanna, South-west China. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 387–392

    Google Scholar 

  • Lovett G (1984) Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmos Environ 18:361–371

    Article  Google Scholar 

  • Lundgren L, Lundgren B (1979) Rainfall, interception and evaporation in the Mazumbai forest reserve, West Usambara Mts., Tanzania and their importance in the assessment of land potential. Geogr Ann A 61:157–178

    Article  Google Scholar 

  • Mahowald NM, Artaxo P, Baker AR et al (2005) Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Glob Biogeochem Cycles 19(GB4030):S1–S15

    Google Scholar 

  • Marrs R, Proctor J, Heaney A et al (1988) Changes in soil nitrogen mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76:466–482

    Article  Google Scholar 

  • McJannet D, Wallace J, Reddell P (2007) Precipitation interception in Australian tropical rainforests: II. Altitudinal gradient of cloud interception, stemflow, throughfall and interception. Hydrol Process 21:1703–1718

    Article  Google Scholar 

  • McJannet D, Wallace J, Reddell P (2010) Comparative water budgets of a lower and an upper montane cloud forest in the wet tropics of northern Australia. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 479–490

    Google Scholar 

  • Meyer J-Y (2010) montane cloud forest in remote tropical islands of Oceania: the example of French Polynesia (South Pacific Ocean). In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 121–129

    Google Scholar 

  • Mudd R (2004) Significance of the epiphyte layer to stem water storage in native and invaded tropical montane cloud forests in Hawai‘i. Bachelor of Science thesis, Global Environmental Science Program, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i

    Google Scholar 

  • Mulligan M (2010) Modelling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 14–38

    Google Scholar 

  • Mulligan M, Burke SM (2005) FIESTA Fog Interception for the enhancement of streamflow in tropical areas. Final Technical Report for AMBIOTEK contribution to DfID FRP R7991

    Google Scholar 

  • Mulligan M, Jarvis A, González J et al (2010) Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves and branches in a sheltered Colombian cloud forest. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 249–260

    Google Scholar 

  • Nadkarni N (1984) Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249–256

    Article  Google Scholar 

  • Nadkarni NM, Matelson TJ (1992a) Biomass and nutrient dynamics of fine litter of terrestrially rooted material in a Neotropical montane forest, Costa Rica. Biotropica 24:113–120

    Article  Google Scholar 

  • Nadkarni NM, Matelson TJ (1992b) Biomass and nutrient dynamics of epiphytic litterfall in a neotropical montane forest, Costa Rica. Biotropica 24:24–30

    Article  Google Scholar 

  • Nadkarni NM, Schaefer D, Matelson TJ et al (2004) Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. For Ecol Manage 198:223–236

    Article  Google Scholar 

  • Northup R, Yu Z, Dahlgren RA et al (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    Article  Google Scholar 

  • Oesker M, Dalitz H, Günter S et al (2008) Spatial heterogeneity patterns – a comparison between gorges and ridges in the upper part of an evergreen lower montane forest. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador, Ecological studies, 198. Springer, Berlin, pp 267–274

    Chapter  Google Scholar 

  • Oesker M, Homeier J, Dalitz H et al (2010) Spatial heterogeneity of throughfall quantity and quality in tropical monatne forests in southern Ecuador. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 393–401

    Google Scholar 

  • Owiunji I, Pumptre A (2010) The importance of cloud forest sites in the conservation of endemic and threatened species of the Albertine Rift. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 164–171

    Google Scholar 

  • Pocs T (1980) The epiphytic biomass and its effect on the water balance of two rain forest types in the Uliguru Mountains (Tanzania, East Africa). Acta Bot Hung 26:143–167

    Google Scholar 

  • Proctor J (2005) Rainforest mineral nutrition: the “black box” and a glimpse inside it. In: Bonell M, Bruijnzeel LA (eds) Forests, water, and people in the humid tropics. Cambridge University Press, Cambridge, pp 422–446

    Chapter  Google Scholar 

  • Rao PSP, Momin GA, Safai PD et al (1995) Rain water and throughfall chemistry in the Silent Valley forest in South India. Atmos Environ 29:2025–2029

    Article  Google Scholar 

  • Rollenbeck R (2010) Global sources – local impacts: natural and anthropogenic matter deposition in the Andes of Ecuador. GEO-ÖKÖ 31:5–27

    Google Scholar 

  • Rollenbeck R, Fabian P, Bendix J (2006) Precipitation dynamics and chemical properties in tropical mountain forests of Ecuador. Adv Geosci 6:73–76

    Article  Google Scholar 

  • Rollenbeck R, Fabian P, Bendix J (2010) Temporal heterogeneities – matter deposition from remote areas. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies 198. Springer, Berlin, pp 303–310

    Google Scholar 

  • Roman L, Scatena FN, Bruijnzeel LA (2010) Global and local variations in tropical montane cloud forest soils. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 77–89

    Google Scholar 

  • Santiago L, Goldstein G, Meinzer F et al (2000) Transpiration and forest structure in relation to soil waterlogging in a Haiwaiian montane cloud forest. Tree Physiol 20:673–681

    Google Scholar 

  • Scatena FN, Bruijnzeel LA, Bubb P et al (2010) Setting the stage. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 3–13

    Google Scholar 

  • Schawe M (2005) Hypsometrischer Klima- und Bodenwandel in Bergregenwaldökosystemen Boliviens. Diss. Göttingen, 126

    Google Scholar 

  • Schawe M, Gerold G, Bach K et al (2010) Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 199–207

    Google Scholar 

  • Schmid S, Burkard R, Frumau KFA et al (2010) The wet-canopy water balance of a Costa Rican cloud forest during the dry season. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 302–308

    Google Scholar 

  • Scholl M, Gingerich SB, Tribble G (2002) The influence of microclimates and fog on stable isotope signatures used in the interpretation of regional hydrology: East Maui, Hawai‘i. J Hydrol 264:170–184

    Article  Google Scholar 

  • Scholl MA, Giambelluca TW, Gingerich SB et al (2007) Cloud water in windward and leeward mountain forests: the stable isotope signature of orographic cloud water. Water Resour Res 43:W12411. doi:10.1029/2007WR006011

    Article  Google Scholar 

  • Scholl M, Eugster W, Burkard R (2010) Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 228–241

    Google Scholar 

  • Schuur EAG, Matson PA (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–442

    Article  Google Scholar 

  • Sharon D (1980) The distribution of effective rainfall incident on sloping ground. J Hydrol 46:165–188

    Article  Google Scholar 

  • Silver WL, Lugo AE, Keller M (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–328

    Google Scholar 

  • Silver WL, Thompson AW, Herman DJ et al (2010) Is there evidence for limitations to nitrogen mineralization in upper montane tropical forests? In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 418–427

    Google Scholar 

  • Smith K, Gholz HL, Oliveira FA (1998) Litterfall and nitrogen-use efficiency of plantations and primary forest in eastern Brazilian Amazon. For Ecol Manage 109:209–220

    Article  Google Scholar 

  • Soethe N, Lehmann J, Engels C (2006) The Vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian montane forest. PlantSoil 286:S287–S299

    Google Scholar 

  • Soethe N, Lehmann J, Engels C (2008a) Nutrient availability at different altitudes in a tropical montane forest in Ecuador. J Trop Ecol 24:397–440

    Article  Google Scholar 

  • Soethe N, Wilcke W, Hohmeier J et al (2008b) Plant growth along the altitudinal gradient – Role of plant nutritional status, fine root activity, and soil properties. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies 198. Springer, Berlin, pp 259–266

    Chapter  Google Scholar 

  • Steinhardt U (1979) Untersuchungen über den Wasser- und Nährstoffhaushalt eines andinen Wolkenwaldes in Venezuela. Göttinger Bodenkundliche Berichte 56:1–185

    Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610

    Article  Google Scholar 

  • Takahashi M, Giambelluca TW, Mudd RG et al (2010) Rainfall partitioning and cloud water interception in native forest and invaded forest in Hawai‘i Volcanoes National Park. Hydrol Process 25:448–464

    Google Scholar 

  • Tanner EVJ (1977) Mineral cycling in montane rain forests in Jamaica. PhD thesis, University of Cambridge

    Google Scholar 

  • Tanner EVJ (1980) Litterfall in montane rain forests of Jamaica and its relation to climate. J Ecol 68:833–848

    Article  Google Scholar 

  • Tanner EVJ (1985) Jamaican montane forests: nutrient capital and cost of growth. J Ecol 73:553–568

    Article  Google Scholar 

  • Tobón C, Köhler L, Frumau KFA et al (2010) Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage and evaporation. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 261–267

    Google Scholar 

  • Veneklaas EJ (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forests, Colombia. J Ecol 78:974–992

    Article  Google Scholar 

  • Veneklaas EJ (1991) Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia. J Trop Ecol 7:319–336

    Article  Google Scholar 

  • Veneklaas EJ, Zagt RJ, van Leerdam A et al (1990) Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetation 89:183–192

    Article  Google Scholar 

  • Vis M (1986) Interception, drop size distributions and rainfall kinetic energy in four Colombian forest ecosystems. Earth Surf Proc Land 11:591–570

    Article  Google Scholar 

  • Walmsley JL, Schemenauer RS, Bridgman HA (1996) A method for estimating the hydrological input from fog in mountainous terrain. J Appl Meteorol 35:2237–2249

    Article  Google Scholar 

  • Weaver PL (1972) Cloud moisture interception in the Luquillo Mountains of Puerto Rico. Carribbean J Sci 12:129–144

    Google Scholar 

  • Wilcke W, Yasin S, Abramowski U et al (2001) Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry 55:45–72

    Article  Google Scholar 

  • Wilcke W, Yasin S, Abramowski U et al (2002) Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. Eur J Soil Sci 53:15–27

    Article  Google Scholar 

  • Wilcke E, Yasin S, Schmitt A et al (2008a) Soils along the altitudinal transect and in catchments. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies 198. Springer, Berlin, pp 75–85

    Chapter  Google Scholar 

  • Wilcke W, Yasin S, Fleischbein K et al (2008b) Nutrient status and fluxes at the field and catchment scale. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies 198. Springer, Berlin, pp 203–215

    Chapter  Google Scholar 

  • Wilcke W, Oelmann Y, Schmitt A et al (2008c) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171:220–230

    Article  Google Scholar 

  • Williams S, Bolitho E, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. P Roy Soc Lond B Biol Sci 270:1887–1893

    Article  Google Scholar 

  • Yasin S (2001) Water and nutrient dynamics in microcatchments under montane forest in the south Ecuadorian Andes. (Bayreuther Bodenkundliche Berichte 73) University of Bayreuth, Bayreuth

    Google Scholar 

  • Zadroga F (1981) The hydrological importance of a montane cloud forest area of Costa Rica. In: Lal R, Russell EW (eds) Tropical agricultural hydrology. Wiley, New York, pp 59–73

    Google Scholar 

  • Zimmermann A, Wilcke W, Elsenbeer H (2007) Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador. J Hydrol 343:80–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Giambelluca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Giambelluca, T.W., Gerold, G. (2011). Hydrology and Biogeochemistry of Tropical Montane Cloud Forests. In: Levia, D., Carlyle-Moses, D., Tanaka, T. (eds) Forest Hydrology and Biogeochemistry. Ecological Studies, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1363-5_11

Download citation

Publish with us

Policies and ethics