Skip to main content

Classical Breeding in Diatoms: Scientific Background and Practical Perspectives

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 19))

Abstract

Diatoms are becoming increasingly attractive for scientists and important for various industrial applications. Diatoms are diploid sexual organisms and it is generally accepted that controlled genetic manipulations via sexual reproduction are instrumental for basic diatom research. For more practical aims, e.g., selection and “improvement” of economically relevant diatom strains, the classical breeding approach still remains entirely unexplored. Here, we discuss the potential of this approach for both scientific and practical goals. Our analysis is largely comparative and builds on the knowledge of plant reproductive systems, with emphasis on the experience of manipulating them for applied purposes (plant breeding). We believe this comparison is relevant because of the striking similarity between flowering plants and diatoms in some important biological characteristics including sexuality. The main topics chosen for the evaluation and the comparative analysis are mating systems, breeding procedures, methods of strain selection, potential genetic resources, and consequences of inbreeding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allard, R.W. (1999) Principles of Plant Breeding. Wiley, New York.

    Google Scholar 

  • Apt, K.E., Kroth-Pancic, P.G. and Grossman, A.R. (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genet. 252: 572–579.

    PubMed  CAS  Google Scholar 

  • Armbrust, E.V. (2009) The life of diatoms in the world’s oceans. Nature 459: 185–192.

    PubMed  CAS  Google Scholar 

  • Armbrust, E.V., Berges, J.A., Bowler, C. et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86.

    PubMed  CAS  Google Scholar 

  • Baker, H.G. (1959) Reproductive methods as factors in speciation in flowering plants. Cold Spring Harbor Symp. Quant. Biol. 24: 177–191.

    PubMed  CAS  Google Scholar 

  • Barrett, S.C.H. (1998) The evolution of mating strategies in flowering plants. Trends Plant Sci. 3: 335–341.

    Google Scholar 

  • Barrett, S.C.H. (2002) The evolution of plant sexual diversity. Nat. Rev. Genet. 3: 274–284.

    PubMed  CAS  Google Scholar 

  • Barrett, S.C.H. (2003) Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philos. Trans. R. Soc. Lond. B 358: 991–1004.

    Google Scholar 

  • Barrett, S.C.H. and Harder, L.D. (1996) Ecology and evolution of plant mating. Trend. Ecol. Evol. 11: 73–79.

    CAS  Google Scholar 

  • Behnke, A., Friedl, T., Chepurnov, V.A. and Mann, D.G. (2004) Reproductive compatibility and rDNA sequences analyses in the Sellaphora pupula species complex (Bacillariophyta). J. Phycol. 40: 193–208.

    CAS  Google Scholar 

  • Benemann, J. (2003) Technology Roadmap – Biofixation of CO2 and Greenhouse Gas Abatement with Microalgae. Final Report to the U.S. Dept. of Energy, National Energy Technology Laboratory, Morgantown-Pittsburgh, 14 January 2003.

    Google Scholar 

  • Beszteri, B., Ács, É. and Medlin, L.K. (2005) Ribosomal DNA sequence variation among sympatric strains of the Cyclotella meneghiniana complex (Bacillariophyceae) reveals cryptic diversity. Protist 156: 317–333.

    PubMed  CAS  Google Scholar 

  • Bliss, F.A. (2007) Education and preparation of plant breeders for careers in global crop improvement. Crop Sci. 47: 250–261.

    Google Scholar 

  • Bowler, C., Allen, A.E., Badger, J.H. et al. (2008) The Phaeodactylum reveals the evolutionary history of diatom genomes. Nature 456: 239–244.

    PubMed  CAS  Google Scholar 

  • Bozarth, A., Maier, U.-G. and Zauner, S. (2009) Diatoms in biotechnology: modern tools and applications. Appl. Microbiol. Biotechnol. 82: 195–201.

    PubMed  CAS  Google Scholar 

  • Bradford, K.J., Van Deynze, A., Gutterson, N., Parrott, W. and Strauss, S.H. (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat. Biotechnol. 23: 439–444.

    PubMed  CAS  Google Scholar 

  • Carr, D.E. and Dudash, M.R. (2003) Recent approaches into the genetic basis of inbreeding depression in plants. Philos. Trans. R. Soc. Lond. B 358: 1071–1084.

    CAS  Google Scholar 

  • Casteleyn, G., Chepurnov, V.A., Leliaert, F., Mann, D.G., Bates, S.S., Lundholm, N., Rhodes, L., Sabbe, K. and Vyverman, W. (2008) Pseudo-nitzschia pungens (Bacillariophyceae): a cosmopolitan diatom species? Harmful Algae 7: 241–257.

    CAS  Google Scholar 

  • Charlesworth, D. (2006) Evolution of plant breeding systems. Curr. Biol. 16: R726–R735.

    PubMed  CAS  Google Scholar 

  • Charlesworth, D. and Charlesworth, B. (1978) Population genetics of partial male-sterility and the evolution of monoecy and dioecy. Heredity 41: 137–153.

    Google Scholar 

  • Charlesworth, B. and Charlesworth, D. (1999) The genetic basis of inbreeding depression. Genet. Res. 74: 329–340.

    PubMed  CAS  Google Scholar 

  • Charnov, E. (1982) The Theory of Sex Allocation. Princeton University Press, Princeton.

    Google Scholar 

  • Chaturvedi, R. and Fujita, Y. (2006) Isolation of enhanced eicosapentaenoic acid producing mutants of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level. Phycol. Res. 54: 208–219.

    CAS  Google Scholar 

  • Chepurnov, V.A. and Mann, D.G. (1999) Variation in the sexual behaviour of natural clones of Achnanthes longipes (Bacillariophyta). II. Inbred monoecious lineage. Eur. J. Phycol. 34: 1–11.

    Google Scholar 

  • Chepurnov, V.A. and Mann, D.G. (2000) Variation in the sexual behaviour of Achnanthes longipes (Bacillariophyta). III. Progeny of crosses between monoecious and unisexual clones. Eur. J. Phycol. 35: 213–223.

    Google Scholar 

  • Chepurnov, V.A. and Roshchin, A.M. (1995) Inbreeding influence on sexual reproduction of Achnanthes longipes Ag. (Bacillariophyta). Diatom Res. 10: 21–29.

    Google Scholar 

  • Chepurnov, V.A., Mann, D.G., Vyverman, W., Sabbe, K. and Danielidis, D.B. (2002) Sexual reproduction, mating system and protoplast dynamics of Seminavis (Bacillariophyceae). J. Phycol. 38: 1004–1019.

    Google Scholar 

  • Chepurnov, V.A., Mann, D.G., Sabbe, K. and Vyverman, W. (2004) Experimental studies on sexual reproduction in diatoms. Int. Rev. Cytol. 237: 91–154.

    PubMed  CAS  Google Scholar 

  • Chepurnov, V.A., Mann, D.G., Sabbe, K., Vannerum, K., Casteleyn, G., Verleyen, E., Peperzak, L. and Vyverman, W. (2005) Sexual reproduction, mating system, chloroplast dynamics and abrupt cell size reduction in Pseudo-nitzschia pungens from the North Sea (Bacillariophyceae). Eur. J. Phycol. 40: 379–395.

    Google Scholar 

  • Chepurnov, V.A., Mann, D.G., von Dassow, P., Vanormelingen, P., Gillard, J., Inzé, D., Sabbe, K. and Vyverman, W. (2008) In search of new tractable diatoms for experimental biology. BioEssays 30: 692–702.

    PubMed  Google Scholar 

  • Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306.

    PubMed  CAS  Google Scholar 

  • Chisti, Y. (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26: 126–131.

    PubMed  CAS  Google Scholar 

  • Collard, B.C.Y. and Mackill, D.J. (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B 363: 557–572.

    CAS  Google Scholar 

  • Crawford, R.M. (1981) Some considerations of size reduction in diatom cell walls, In: R. Ross (ed.) Proceedings of 6th International Symposium on Living and Fossil Diatoms. Koeltz Scientific Books, Koenigstein, pp. 253–265.

    Google Scholar 

  • Crnokrak, P. and Barrett, S.C.H. (2002) Purging the genetic load: a review of the experimental evidence. Evolution 56: 2347–2358.

    PubMed  Google Scholar 

  • Damania, A.B. (2008) History, achievements, and current status of genetic resources conservation. Agron. J. 100: 9–21.

    Google Scholar 

  • Davidovich, N.A., Kaczmarska, I. and Ehrman, J.M. (2004) The sexual structure of a natural population of the diatom Nitzschia longissima (Bréb.) Ralfs, In: A. Witkowski (ed.) Proceedings of the 18th International Diatom Symposium. Biopress, UK, pp. 26–40.

    Google Scholar 

  • Dorken, M.E. and Barrett, S.C.H. (2004) Sex determination and the evolution of dioecy from monoecy in Sagittaria latifolia (Alismataceae). Proc. R. Soc. B 271: 213–219.

    PubMed  Google Scholar 

  • Drebes, G. (1977) Sexuality, In: D. Werner (ed.) The Biology of Diatoms. Botanical Monographs, Vol. 13. Blackwell Scientific, Oxford, pp. 250–283.

    Google Scholar 

  • Evans, K. M., Kühn, S.F. and Hayes, P.K. (2005) High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo-nitzschia pungens (Bacillariophyceae) populations. J. Phycol. 41: 506–514.

    CAS  Google Scholar 

  • Evans, K.M., Wortley, A.H., Simpson, G.E., Chepurnov, V.A. and Mann, D.G. (2008) A phylogeny of the model diatom species complex, Sellaphora pupula agg., based on nuclear (SSU) and chloroplast (rbcL) sequences. J. Phycol. 44: 215–231.

    CAS  Google Scholar 

  • Evans, K.M., Chepurnov, V.A., Sluiman, H.J., Thomas, S.J., Spears, B.M. and Mann, D.G. (2009) Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. Protist 160: 386–396.

    PubMed  Google Scholar 

  • Falciatore, A. and Bowler, C. (2002) Revealing the molecular secrets of marine diatoms. Annu. Rev. Plant Biol. 53: 109–130.

    PubMed  CAS  Google Scholar 

  • Forbes, J.C. and Watson, R.D. (1992) Plants in Agriculture. Cambridge University Press, Cambridge.

    Google Scholar 

  • Furnas, M.J. (1991) Net in situ growth rates of phytoplankton in an oligotrophic, tropical shelf ecosystem. Limnol. Oceanogr. 36: 13–29.

    Google Scholar 

  • Geitler, L. (1932) Der Formwechsel der pennaten Diatomeen. Arch. Protistenk. 78: 1–226.

    Google Scholar 

  • Gepts, P. (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci. 42: 1780–1790.

    Google Scholar 

  • Gepts, P. and Hancock, J. (2006) The future of plant breeding. Crop Sci. 46: 1630–1634.

    Google Scholar 

  • Glémin, S., Bazin, E. and Charlesworth, D. (2006) Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc. R. Soc. Lond. B 273: 3011–3019.

    Google Scholar 

  • Goodman, M.M. (2004) Plant breeding requirements for applied molecular biology. Crop Sci. 44: 1913–1914.

    Google Scholar 

  • Grossman, A.R. (2005) Paths toward algal genomics. Plant Physiol. 137: 410–427.

    PubMed  CAS  Google Scholar 

  • Grossman, A.R. (2007) In the grip of algal genomics. Adv. Exp. Med. Biol. 616: 54–76.

    PubMed  Google Scholar 

  • Gurian-Sherman, D. (2009) Failure to Yield, Evaluating the Performance of Genetically Engineered Crops. Union of Concerned Scientists, UCS Publications, Cambridge [http://www.ucsusa.org.].

  • Håkansson, H. and Chepurnov, V.A. (1999) A study of variation in valve morphology of the diatom Cyclotella meneghiniana in monoclonal cultures: effect of auxospore formation and different salinity conditions. Diatom Res. 14: 251–272.

    Google Scholar 

  • Hallmann, A. (2007) Algal transgenics and biotechnology. Transgenic Plant J. 1: 8198.

    Google Scholar 

  • Holbrook, C.C. and Stalker, H.T. (2003) Peanut breeding and genetic resources, In: J. Janick (ed.) Plant Breeding Reviews, vol. 22. Wiley, Oxford, pp. 297–356.

    Google Scholar 

  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54: 621–639.

    PubMed  CAS  Google Scholar 

  • Huesemann, M.H., Hausmann, T.S., Bartha, R., Aksoy, M., Weissman, J.C. and Benemann, J.R. (2009) Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl. Biochem. Biotechnol. 157: 507–526.

    PubMed  CAS  Google Scholar 

  • Iyengar, M.O.P. and Subrahmanyan, R. (1944) On reduction division and auxospore formation in Cyclotella meneghiniana. J. Indian Bot. Soc. 23: 125–152.

    Google Scholar 

  • Knight, J. (2003) Crop improvement: a dying breed. Nature 421: 568–570.

    PubMed  CAS  Google Scholar 

  • Kroth, P. (2007) Molecular biology and the biotechnological potential of diatoms. Adv. Exp. Med. Biol. 616: 23–33.

    PubMed  Google Scholar 

  • Lebeau, T. and Robert, J.-M. (2003) Diatom cultivation and biotechnologically relevant products. Appl. Microbiol. Biotech. 60: 612–632.

    CAS  Google Scholar 

  • Lemaux, P.G. (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues (part I). Annu. Rev. Plant Biol. 59: 771–812.

    PubMed  CAS  Google Scholar 

  • León-Bañares, R., González-Ballester, D., Galván, A. and Fernández, E. (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol. 22: 45–52.

    PubMed  Google Scholar 

  • Lewis, W.M. (1984) The diatom sex clock and its evolutionary significance. Am. Nat. 123: 73–80.

    Google Scholar 

  • Lopez Alonso, D. and Segura del Castillo, C.I. (1999) Genetic improvement of the EPA content in microalgae, In: Z. Cohen (ed.) Chemicals from Microalgae. Taylor & Francis, London, pp. 93–107.

    Google Scholar 

  • Lopez, P.J., Descles, J., Allen, A.E. and Bowler, C. (2005) Prospects in diatom research. Curr. Opin. Biotechnol. 16: 180–186.

    PubMed  CAS  Google Scholar 

  • Mann, D.G. (1993) Patterns of sexual reproduction in diatoms. Hydrobiologia 269/270: 11–20.

    Google Scholar 

  • Mann, D.G. (1999) The species concept in diatoms (Phycological Reviews 18). Phycologia 38: 437–495.

    Google Scholar 

  • Mann, D.G. and Chepurnov, V.A. (2004) What have the Romans ever done for us? The past and future contribution of culture studies to diatom systematics. Nova Hedwig. 79: 237–291.

    Google Scholar 

  • Mann, D.G. and Chepurnov, V.A. (2005) Auxosporulation, mating system, and reproductive isolation in Neidium (Bacillariophyta). Phycologia 44: 335–350.

    Google Scholar 

  • Mann, D.G., Chepurnov, V.A. and Droop, S.J.M. (1999) Sexuality, incompatibility, size variation and preferential polyandry in natural populations and clones of Sellaphora pupula (Bacillariophyta). J. Phycol. 35: 152170.

    Google Scholar 

  • Mann, D.G., Evans, K.M., Chepurnov, V.A. and Nagai, S. (2009) Morphology and formal description of Sellaphora bisexualis, sp. nov. (Bacillariophyta). Fottea 9: 199–209.

    Google Scholar 

  • Mascarelli, A.L. (2009) Gold rush for algae. Nature 461: 460–461.

    PubMed  CAS  Google Scholar 

  • Maurissen, J.P., Gilbert, S.G., Sander, M., Beauchamp, T.L., Johnson, S., Schwetz, B.A., Goozner, M. and Barrow, C.S. (2005) Workshop proceedings: managing conflict of interest in science. A little consensus and a lot of controversy. Toxicol. Sci. 87: 11–14.

    PubMed  CAS  Google Scholar 

  • Mizuno, M. (1977) Sexual reproduction of Melosira sp. from Oshoro Bay. Hokkaido. Bull. Jap. Soc. Phycol. 25: 149–157.

    Google Scholar 

  • Murphy, D. (2007) Plant Breeding and Biotechnology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Nass, L.L. and Paterniani, E. (2000) Pre-breeding: a link between genetic resources and maize breeding. Sci. Agric. 57: 581–587.

    Google Scholar 

  • Neal, P.R. and Anderson, G.J. (2005) Are ‘mating systems’ ‘breeding systems’ of inconsistent and confusing terminology in plant reproductive biology? Or is it the other way around? Plant Syst. Evol. 250: 173–185.

    Google Scholar 

  • Pickett-Heaps, J., Schmid, A-M.M. and Edgar, L.A. (1990) The cell biology of diatom valve formation. Progr. Phycol. Res. 7: 1–168.

    CAS  Google Scholar 

  • Poulsen, N., Chesley, P.M. and Kröger, N. (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 42: 1059–1065.

    Google Scholar 

  • Pulz, O. and Gross, W. (2004) Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65: 635–648.

    PubMed  CAS  Google Scholar 

  • Ramachandra, T.V., Mahapatra, D.M., Karthick, B. and Gordon, R. (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind. Eng. Chem. Res. 48: 8769–8788.

    CAS  Google Scholar 

  • Rao, V.N.R. (1970) Studies on Cyclotella meneghiniana Kütz. I. Sexual reproduction and auxospore formation. Proc. Indian Acad. Sci. 72: 285–287.

    Google Scholar 

  • Rao, V.N.R. (1971) Studies on Cyclotella meneghiniana Kütz., II: induction of auxospore formation. Phykos 10: 84–98.

    Google Scholar 

  • Rao, V.N.R. (1996) Size dependent reproductive behaviour in Cyclotella meneghiniana (Bacillariophyta). Nova Hedwig. 112: 235–238.

    Google Scholar 

  • Richards, A.J. (1997) Plant Breeding Systems. Chapman & Hall, London.

    Google Scholar 

  • Roll-Hansen, N. (2000) Theory and practice: the impact of mendelism on agriculture. C.R. Acad. Sci. Paris, Science de la vie/Life Sci. 323: 1107–1116.

    CAS  Google Scholar 

  • Rosenberg, J.N., Oyler, G.A., Wilkinson, L. and Betenbaugh, M.J. (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19: 430–436.

    PubMed  CAS  Google Scholar 

  • Roshchin, A.M. (1994) Zhiznennye Tsikly Diatomovykh Vodoroslej [Diatom Life Cycles]. Naukova Dumka, Kiev.

    Google Scholar 

  • Round, F.E. (1972) The problem of reduction of cell size during diatom cell division. Nova Hedwig. 23: 291–303.

    Google Scholar 

  • Rynearson, T.A. and Armbrust, E.V. (2005) Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Mol. Ecol. 14: 1631–1640.

    PubMed  Google Scholar 

  • Rynearson, T.A., Newton, J.A. and Armbrust, E.V. (2006) Spring bloom development, genetic variation, and population succession in the planktonic diatom Ditylum brightwellii. Limnol. Oceanogr. 51: 1249–1261.

    CAS  Google Scholar 

  • Sachs, M.M. (2009) Cereal germplasm resources. Plant Physiol. 149: 148–151.

    PubMed  CAS  Google Scholar 

  • Sadivan, Y., Carman, J.G. and Dresselhaus, T. (eds.) (2001) The Flowering of Apomixis: from Mechanisms to Genetic Engineering. CIMMYT, IRD, European Commission DG VI (FAIR), Mexico.

    Google Scholar 

  • Sasaki, T. (2009) Bridging the gap between genomics and breeding. Breed. Sci. 59: 1.

    Google Scholar 

  • Schultz, M.E. and Trainor, F.R. (1968) Production of male gametes and auxospores in the centric diatoms Cyclotella meneghiniana and C. cryptica. J. Phycol. 4: 85–88.

    Google Scholar 

  • Sharma, K.K., Bhatnagar-Mathur, P. and Thorpe, T.A. (2005) Genetic transformation technology: status and problems. In Vitro Cell. Dev. Biol. Plant 41: 102–112.

    CAS  Google Scholar 

  • Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998) A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. TP-580-24190, National Renewable Energy Laboratory, Golden.

    Google Scholar 

  • Sleper, D.A. and Poehlman, J.M. (2006) Breeding Field Crops, 5th edn. Blackwell, Iowa.

    Google Scholar 

  • Snape, J.W. (2004) Challenges of integrating conventional breeding and biotechnology: a personal view! In: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 Sept–1 Oct 2004. [http://www.cropscience.org.au/icsc2004/.].

  • Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006) Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87–96.

    PubMed  CAS  Google Scholar 

  • Trobajo, R., Mann, D.G., Chepurnov, V.A., Clavero, E. and Cox, E.J. (2006) Taxonomy, life cycle and auxosporulation of Nitzschia fonticola (Bacillariophyta). J. Phycol. 42: 1353–1372.

    CAS  Google Scholar 

  • Trobajo, R., Clavero, E., Chepurnov, V.A., Sabbe, K., Mann, D.G., Ishihara, S. and Cox, E.J. (2009) Morphological, genetic, and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia 48: 443–459.

    Google Scholar 

  • Ulukan, H. (2009) The evolution of cultivated plant species: classical plant breeding versus genetic engineering. Plant Syst. Evol. 280: 133–142.

    Google Scholar 

  • von Stosch, H.A. (1954) Die Oogamie von Biddulphia mobiliensis und die bisher bekannten Auxosporenbildungen bei den Centrales. VIIIème Congrès Internationale de Botanique Paris, Rap. Com. Sect. 17: 58–68.

    Google Scholar 

  • von Stosch, H.A. (1956) Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen II. Geschlechtszellenreifung, Befruchtung und Auxosporenbildung einiger grundbewohnender Biddulphiaceen der Nordsee. Arch. Mikrobiol. 23: 327–365.

    Google Scholar 

  • von Stosch, H.A. (1965) Manipulierung der Zellgrösse von Diatomeen im Experiment. Phycologia 5: 21–44.

    Google Scholar 

  • von Stosch, H.A. (1982). On auxospore envelopes in diatoms. Bacillaria 5: 127–156.

    Google Scholar 

  • von Stosch, H.A., Theil, G. and Kowallik, K. (1973) Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen V. Bau und Lebenszyklus von Chaetoceros didymum, mit Beobachtungen über einige anderen Arten der Gattung. Helgol. wiss. Meeresunters. 25: 384–445.

    Google Scholar 

  • Walker, T.L., Collet, C. and Purton, S. (2005) Algal transgenics in the genomic era. J. Phycol. 41: 1077–1093.

    Google Scholar 

  • Wiese, L. (1969) Algae, In: C.B. Metz and A. Monroy (eds.) Fertilization, Comparative Morphology, Biochemistry and Immunology, vol. II. Academic Press, London, pp. 135–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Chepurnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Chepurnov, V.A., Chaerle, P., Roef, L., Van Meirhaeghe, A., Vanhoutte, K. (2011). Classical Breeding in Diatoms: Scientific Background and Practical Perspectives. In: Seckbach, J., Kociolek, P. (eds) The Diatom World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1327-7_7

Download citation

Publish with us

Policies and ethics