Skip to main content

Enhanced Mass Sensitivity of Carbon Nanotube Multilayer Measured by QCM-Based Gas Sensors

  • Conference paper
  • First Online:
  • 1335 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 91))

Abstract

A Quartz Crystal Microbalance (QCM) gas sensor coated with carbon nanotubes (CNTs) layered films as chemically interactive nanomaterial is described. A QCM resonator integrated on AT-cut quartz substrate has been functionally characterized as oscillator at the resonant frequency of 10 MHz. The CNTs have been grown by chemical vapor deposition (CVD) system onto alumina substrates, coated with 2.5 nm thick Fe catalyst, at a temperature of 750°C in H2/C2H2 gaseous ambient as active materials for gas sensors. CNTs multilayers, with and without buffer layer of cadmium arachidate (CdA), have been prepared by the Langmuir–Blodgett (LB) technique to coat at the double-side the QCM sensors for organic vapor detection, at room temperature. It was demonstrated that the highest mass sensitivity has been achieved for CNTs multilayer onto CdA buffer material due to the greatest gas adsorbed mass. The sensing properties of the CNTs-sensors at enhanced mass sensitivity have been investigated for three different vapors of ethylacetate, acetone and m-xylene in the range of gas concentration from 10 to 800 ppm. The CNTs-based QCM-sensors exhibit high sensitivity (e.g., 5.55 Hz/ppm to m-xylene of the CNTs-multilayer) at room temperature, fast response, linearity, reversibility, repeatability, low drift of the baseline frequency, potential sub-ppm range detection limit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye GC, Wohltjen H (1997) Acoustic wave sensors. Academic Press, San Diego

    Google Scholar 

  2. Rabe J, Buttgenbach S, Schroder J, Hauptmann P (2003) Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids. IEEE Sens J 3(4):361–368

    Article  Google Scholar 

  3. Penza M, Tagliente MA, Aversa P, Cassano G, Capodieci L (2006) Single-walled carbon nanotubes nanocomposite microacoustic organic vapor sensors. Mater Sci Eng C 26:1165–1170

    Article  Google Scholar 

  4. Penza M, Tagliente MA, Aversa P, Cassano G (2005) Organic vapor detection using carbon nanotube composites microacoustic sensors. Chem Phys Lett 409:349–354

    Article  Google Scholar 

  5. Penza M, Tagliente MA, Aversa P, Re M, Cassano G (2007) The effect of purification of single-walled carbon nanotube bundles on the alcohol sensitivity of nanocomposite Langmuir-Blodgett films for SAW sensing applications. Nanotechnology 18:185502

    Article  Google Scholar 

  6. Penza M, Aversa P, Cassano G, Wlodarski W, Kalantar-zadeh K (2007) Layered SAW gas sensor with single-walled carbon nanotube based nanocomposite coating. Sensor Actuat B 127:168–178

    Article  Google Scholar 

  7. Chen H-W, Wu R-J, Chan K-H, Sun Y-L, Su P-G (2005) The application of CNT/nafion composite material humidity sensing measurement. Sensor Actuat B 104:80–84

    Article  Google Scholar 

  8. Consales M, Campopiano S, Cutolo A, Penza M, Aversa P, Cassano G, Giordano M, Cusano A (2006) Sensing properties of buffered and not buffered carbon nanotubes by fiber optic and acoustic sensors. Meas Sci Technol 17:1220–1228

    Article  Google Scholar 

  9. Su P-G, Tsai J-F (2009) Low-humidity sensing properties of carbon nanotubes measured by a quartz crystal microbalance. Sensor Actuat B 135:506–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Penza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Penza, M. et al. (2011). Enhanced Mass Sensitivity of Carbon Nanotube Multilayer Measured by QCM-Based Gas Sensors. In: Neri, G., Donato, N., d'Amico, A., Di Natale, C. (eds) Sensors and Microsystems. Lecture Notes in Electrical Engineering, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1324-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1324-6_42

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1323-9

  • Online ISBN: 978-94-007-1324-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics