Skip to main content

Potential of Arbuscular Mycorrhizal Technology in Date Palm Production

  • Chapter
  • First Online:
Date Palm Biotechnology

Abstract

Arbuscular mycorrhizal symbiosis is a mutualistic relationship between the roots of higher plants and a wide variety of fungi belonging to the phylum Glomeromycota. Arbuscular mycorrhizal fungi are a ubiquitous and widespread component of agro-ecosystems. They have the potential to promote plant growth as well as to increase salinity and drought tolerance of plants. Date palm is one of the most important fruit crops in the world, which is usually grown under harsh climatic conditions, often on marginal soils, restricted water-availability and high salinity. Mycorrhizae occur naturally under saline and water-deficient environments, and they can help date palms alleviate stress associated with salinity and drought through various physiological and biochemical mechanisms. There is, therefore, a clear rationale for utilizing mycorrhizal technology in date palm production systems, particularly at the nursery stage. Inoculated palms grow better under low fertility and saline field conditions, clearly demonstrating that mycorrhizae can enhance the fertilizer and water-use efficiency of the palms, which ultimately leads to a more sustainable production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham VA, Al-Shuaibi MA, Aleiro JRF et al (1998) An integrated management approach for red date palm weevil, Rhynchophorus ferrugineus Oliv., a key pest of date palm in the Middle East. Sult Qaboos Univ J Sci Res Agric Sci 3:77–84

    Google Scholar 

  • Abrol JP (1986) Fuel and forage production from salt affected wasteland in India. Recl Reveg Res 5:65–74

    Google Scholar 

  • Adiku G, Renger M, Wessolek G et al (2001) Simulation of dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agric Water Manage 47:55–68

    Article  Google Scholar 

  • Al-Garni SMS (2006) Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. Am Euras J Agric Environ Sci 1:119–126

    Google Scholar 

  • Alguacil MM, Hernandez JA, Caravaca F et al (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118:562–570

    Article  CAS  Google Scholar 

  • Aliasgharzadeh N, Saleh RN, Towfighi H et al (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hort 109:1–7

    Article  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effect of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263–276

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Othman Y, Al-Ajmi A (2007) Effects of mycorrhizal fungi inoculation on landscape turf establishment under Arabian Gulf region conditions. Arab Gulf J Sci Res 25(3):147–152

    Google Scholar 

  • Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236

    Article  Google Scholar 

  • Allen MF, Clouse SD, Weinbaum BS et al (1992) Mycorrhiza and the integration of scales: from molecules to ecosystems. In: Allen MF (ed) Mycorrhizal functioning, 1st edn. Chapman & Hall, New York, pp 488–515

    Google Scholar 

  • Al-Whaibi MH, Khaliel AS (1994) The effect of Mg on Ca, K and P content of date palm seedlings under mycorrhizal and non-mycorrhizal conditions. Mycoscience 35:213–217

    Article  CAS  Google Scholar 

  • Al-Yahya M (2008) Arbuscular mycorrhizal fungal communities associated with date palms in a traditional and a modern experimental plantation and with desert plants in the adjacent natural habitats in Southern Arabia. PhD thesis, University of Basel, Switzerland

    Google Scholar 

  • Amaya-Carpio L, Davies FT Jr, Fox T et al (2009) Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea subsp. fistulosa. Photosynthetica 47:1–10

    Article  CAS  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 8:2029–2041

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:207–216

    Article  CAS  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Auge RM, Sylvia DM, Park SJ et al (2004) Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and root components. Can J Bot 82:503–514

    Article  Google Scholar 

  • Awad MA (2008) Promotive effects of a 5-aminolevulinic acid-based fertilizer on growth of tissue culture-derived date palm plants (Phoenix dactylifera L.) during acclimatization. Sci Hort 118:48–52

    Article  CAS  Google Scholar 

  • Bacha M, Abo-Hassan AA (1983) Effects of soil fertilization on yield, fruit quality and mineral content of Khudairi date palm variety. In: Proceedings first symposium on the date palm in Saudi Arabia, pp 174–179

    Google Scholar 

  • Barreveld WH (1993) Date palm products. Agricultural services Bull 101. FAO, Rome

    Google Scholar 

  • Barrow JR, Havstad KM, McCaslin BD (1997) Fungal root endophytes in four wing saltbrush, Atriplex canescens on arid rangeland of southwestern USA. Arid Soil Res Rehabil 11:177–185

    Google Scholar 

  • Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183

    Article  CAS  Google Scholar 

  • Bhaskaran C, Selvaraj T (1997) Seasonal incidence and distribution of VAM fungi in native saline soils. J Environ Biol 18:209–212

    Google Scholar 

  • Blal B, Gianinazzi-Pearson V (1990) Interest of endomycorrhizae for the production of micropropagated oil palm clones. Agric Ecosyst Environ 29:39–43

    Article  Google Scholar 

  • Blal B, Morel C, Gianinazzi-Pearson V et al (1990) Influence of vesicular-arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropagated oil palm (Elaeis guineensis Jacq.). Biol Fert Soil 9:43–48

    Article  CAS  Google Scholar 

  • Boomsma C, Vyn T (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crop Res 108:14–31

    Article  Google Scholar 

  • Bouamri R, Dalpe Y, Serrhini MN et al (2006) Arbuscular mycorrhizal fungi species associated with rhizosphere of Phoenix dactylifera L. (date palm) in Morocco. Afr J Biotechnol 5:510–516

    Google Scholar 

  • Bouhired L, Gianinazzi S, Gianinazzi-Pearson V (1992) Influence of endomycorrhizal inoculation on the growth of Phoenix dactylifera. In: Micropropagation, root regeneration and mycorrhizae. Joint meeting between Cost 87 and Cost 8.10. Dijon, France 53

    Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Ann Rev Phytopathol 12:181–197

    Article  CAS  Google Scholar 

  • Brown AM, Bledsoe C (1996) Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84:703–715

    Article  Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. In: Begon M, Fitter AH, Macfadyen A (eds.) Advances in ecological research, vol 21. Academic Press Limited, London, pp 171–313

    Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Carpenter AT, Allen MF (1988) Responses of Hedysarum boreale Nutt. to mycorrhizas and Rhizobium: plant and soil nutrient changes in a disturbed shrub-steppe. New Phytol 109:125–132

    Article  Google Scholar 

  • Carvalho LM, Correia PH, Martins-Loucao A (2001) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170

    Article  Google Scholar 

  • Chao CT, Krueger RR (2007) The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. Hort Sci 42:1077–1082

    Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M et al (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fert Soil 44:501–509

    Article  CAS  Google Scholar 

  • Copeman RH, Martin CA, Stutz JC (1996) Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils. Hort Sci 31:341–344

    Google Scholar 

  • Cramer GR, Lauchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells: a primary response to salt stress? Plant Physiol 79:207–277

    Article  PubMed  CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Can J Bot 76:238–244

    Google Scholar 

  • Daei G, Ardekani M, Rejali F et al (2009) Alleviation of salinity stress on wheat yield, yield components and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:217–225

    Article  CAS  Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean, and soybean plants. Soil Biol Biochem 26:371–376

    Article  CAS  Google Scholar 

  • Dixon RK, Garg VK, Rao MV (1993) Inoculation of Leucaena and Prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedlings growth. Arid Soil Res Rehabil 7:133–144

    Google Scholar 

  • Downer J (2004) Palm tree management. Part I: Selecting the right palms. Landsc Note 18(4):4

    Google Scholar 

  • Dransfield J, Uhl NW, Asmussen CB et al (2008) Genera palmarum: the evolution and classification of palms. Kew Publishing, Kew

    Google Scholar 

  • Duke ER, Johnson CR, Koch KE (1986) Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590

    Article  PubMed  CAS  Google Scholar 

  • Eissa MFM, El-Sharief MA, Abdel-Gawad MM et al (1998) Histological response of susceptible and resistant date-palm cultivars to Meloidogyne incognita infection. Pak J Nematol 16:103–109

    Google Scholar 

  • Elsen AD, Gervacio R, Swennen D et al (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Luna AA, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscissic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Estaun MV (1989) Effect of sodium chloride and mannitol on germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Agric Ecosyst Environ 29:123–129

    Article  PubMed  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Ezawa T, Yamamoto K, Yoshida S (2000) Species composition and spore density of indigenous vesicular-arbuscular mycorrhizal fungi under different conditions of P-fertility as revealed by soybean trap culture. Soil Sci Plant Nutr 46:291–297

    Google Scholar 

  • FAO (2002, 2003, 2007) Agro-Statistics Database

    Google Scholar 

  • Feng G, Zhang FS, Xl L et al (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Munoz CJ (1999) Effects of salinity on tomato. Sci Hort 78:83–125

    Google Scholar 

  • Founoune H, Duponnis R, Ba AM et al (2002) Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. ex G. Don) in glasshouse conditions. Annu For Sci 59:93–98

    Article  Google Scholar 

  • Frank AB (1885) Über die auf Würzelsymbiose beruhende Ehrnährung gewisser Bäum durch unterirdische Pilze. Ber Deut Botan Ges 3:128–145

    Google Scholar 

  • Fries LLM, Pacovsky RS, Safir GR et al (1998) Phosphorus effect on phosphatase activity in endomycorrhizal maize. Physiol Plant 103:162–171

    Article  CAS  Google Scholar 

  • Fuzy A, Biro B, Toth T et al (2008) Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol 165:1181–1192

    Article  PubMed  CAS  Google Scholar 

  • Fuzy A, Biro B, Toth T (2010). Short communication. Effect of saline soil parameters on endomycorrhizal colonisation of dominant halophytes in four Hungarian sites. Span J Agr Res 8: (Sp. Iss. 1) S144–S148

    Google Scholar 

  • Gallagher JK (1985) Halophytic crops for cultivation at seawater salinity. Plant Soil 89:323–336

    Article  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeon pea). J Plant Growth Regul 27:115–124

    Article  CAS  Google Scholar 

  • Gavito ME, Miller M (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185–192

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fert Soils 38:170–175

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  PubMed  CAS  Google Scholar 

  • Glenn EP, O’Leary JW (1985) Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran desert. J Arid Environ 9:81–91

    Google Scholar 

  • Graham JH, Syversten JP (1984) Influence of vesicular arbuscular mycorrhiza on the hydraulic conductivity of roots of two Citrus rootstocks. New Phytol 97:277–284

    Article  Google Scholar 

  • Harisnaut P, Poonsopa D, Roengmongkol K et al (2003) Salinity effects on antioxidant enzymes in mulberry cultivar. Sci Asia 29:109–113

    Article  Google Scholar 

  • Harrison MJ (1997) The arbuscular mycorrhizal symbiosis. In: Stancey G, Keen NT (eds.) Plant-microbe interactions Vol 3. Chapman & Hall, New York, pp 1–34

    Chapter  Google Scholar 

  • Hartmond U, Schaesberg NV, Graham JH, Syversten JP (1987) Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings. Plant Soil 104:37–43

    Article  PubMed  CAS  Google Scholar 

  • Hejiden JN, Klironomos M, Ursic P et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129–133

    PubMed  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  PubMed  CAS  Google Scholar 

  • Hilderbrandt U, Janetta K, Ouziad F et al (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  Google Scholar 

  • Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular-arbuscular mycorrhiza in the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56:2813–2817

    Article  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–665

    Article  PubMed  CAS  Google Scholar 

  • Hirrel MC (1981) The effect of sodium and chloride salts on the germination of Gigaspora margarita. Mycologia 73:610–617

    Article  PubMed  CAS  Google Scholar 

  • Ho I (1987) Vesicular-arbuscular mycorrhizae of halophytic grasses in the Alvord desert of Oregon. Northwest Sci 61:148–151

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Hoefnagels MH, Broome SW, Shafer SR (1993) Vesicular-arbuscular mycorrhizae in salt marshes in North Carolina. Estua 16:851–858

    Article  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R et al (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jain M, Mathur G, Koul S et al (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep 20:463–468

    Article  CAS  Google Scholar 

  • Jaiti FA, Meddich A, El Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera) against bayoud disease. Physiol Mol Plant Pathol 71:166–173

    Article  CAS  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Jasper DA (1994) Management of mycorrhiza in revegetation. In: Robson AD, Abbot LK, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer Academic, Dordrecht, pp 211–219

    Google Scholar 

  • Jasper DA, Abbot LK, Robson AD (1991) The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118:471–476

    Article  Google Scholar 

  • Jeffries P, Barea JM (1994) Biogeochemical cycling and arbuscular mycorrhizas in the sustainability of plant-soil systems. In: Gianinazzi S, Schüpp SH (eds.) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkha¨user Verlag, Basel, pp 101–115

    Google Scholar 

  • Jindal V, Atwal A, Sekhon BS et al (1993) Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol Biochem 3:475–481

    Google Scholar 

  • Johnson-Green P, Kenkel NC, Booth T (2001) Soil salinity and arbuscular mycorrhizal colonization of Puccinellia nuttalliana. Mycol Res 105:1094–1110

    Article  Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  PubMed  CAS  Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hort 116:227–239

    Article  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O et al (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hort 121:1–6

    Article  CAS  Google Scholar 

  • Khaliel AS, Abou-Hailah AN (1985) Formation of vesicular-arbuscular mycorrhiza in Phoenix dactylifera L. cultivated in Qassim region, Saudi Arabia. Pak J Bot 17:267–270

    Google Scholar 

  • Khan AG (1974) The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes of endogone spores in adjacent soils. J Gen Microbiol 81:7–14

    Google Scholar 

  • Khudairi AK (1969) Mycorrhiza in desert soils. BioScience 19:598–599

    Article  Google Scholar 

  • Kim CK, Weber DJ (1985) Distribution of VA mycorrhiza on halophytes on inland sea playas. Plant Soil 83:207–214

    Article  CAS  Google Scholar 

  • Klironomos JN, Hart MM (2001) Animal nitrogen swap for plant carbon. Nature 410:651–652

    Article  PubMed  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1997) Water relations of plants and soils. Academic, San Diego

    Google Scholar 

  • Landwehr M, Hilderbrandt U, Wilde P et al (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  PubMed  CAS  Google Scholar 

  • Levy Y, Dodd J, Krikun J (1983) Effect of irrigation water salinity and rootstock on the vertical distribution of vesicular-arbuscular mycorrhiza in citrus roots. New Phytol 95:397–403

    Article  Google Scholar 

  • Lindermann RG (1994) Role of VAM in biocontrol. In: Pfleger FL, Linderman RG (eds.) Mycorrhizae and plant health. American Phytopathological Society, St. Paul, pp 1–26

    Google Scholar 

  • Linnee (1734) cited in Keaney TH (1906) Date varieties and date culture in Tunis. Bureau of Plant Industry, Bulletin No. 92, Washington, USDA.

    Google Scholar 

  • Ludwig-Muller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mason E (1928) Note on the presence of mycorrhizae in the roots of saltmarsh plants. New Phytol 27:193–195

    Article  Google Scholar 

  • Matamoros MA, Baird LM, Escuredo PR et al (1999) Stress-induced legume root nodule senescence: physiological, biochemical and structural alterations. Plant Physiol 121:97–111

    Article  PubMed  CAS  Google Scholar 

  • Mathur N, Singh J, Bohra S et al (2007) Arbuscular mycorrhizal status of medicinal halophytes in saline areas of Indian Thar Desert. Int J Soil Sci 2:119–127

    Article  Google Scholar 

  • McGee P (1989) Variation in propagule numbers of vesicular-arbuscular mycorrhizal fungi in a semi-arid soil. New Phytol 92:28–33

    Google Scholar 

  • McMillen B, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Menconi M, Sgherri CLM, Pinzino C, Navari-izzo F (1995) Activated oxygen species production and detoxification in wheat plants subjected to a water deficit programme. J Exp Bot 46:1123–1130

    Article  PubMed  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F et al (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F et al (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA et al (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA et al (2009b) Effects of arbuscular mycorrhiza, soil sterilization and soil compaction on wheat (Triticum aestivum L.) nutrient uptake. Soil Till Res 104:48–55

    Article  Google Scholar 

  • Mohammad MJ, Hamad SR, Malkani HI (2003) Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. J Arid Environ 53:409–417

    Article  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol 33:299–319

    Article  Google Scholar 

  • Mouk BO, Ishii T (2006) Effect of arbuscular mycorrhizal fungi on tree growth and nutrient uptake of Sclerocarya birrea under water stress, salt stress and flooding. J Jpn Soc Hort Sci 75:26–31

    Article  Google Scholar 

  • Mozafar A, Anken T, Ruh R et al (2000) Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat and canola. Agron J 92:1117–1124

    Article  CAS  Google Scholar 

  • Munier P (1973) Le palmier-dattier – techniques agricoles et productions tropicales. Maison Neuve et Larose, Paris

    Google Scholar 

  • Muralev E, Nazarenko PI, Poplavskij VM et al (1997) Seawater desalination. In: Nuclear desalinization of seawater. Proceedings of a symposium in Taejon, Republic of Korea. International Atomic Energy Agency, Vienna, Austria, pp 355–366

    Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hort Sci 33:70–76

    Google Scholar 

  • Oehl F, Sieverding E (2004) Pacispora, a new vesicular arbuscular mycorrhizal fungal genus in the Glomeromycetes. J Appl Bot 78:72–82

    Google Scholar 

  • Oihabi A (1991) Effect of vesicular arbuscular mycorrhizae on bayoud disease and date palm nutrition. PhD thesis, University Marrakech

    Google Scholar 

  • Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259

    Article  PubMed  CAS  Google Scholar 

  • Palenzuela J, Ferrol N, Boller T et al (2008) Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrubland in Sierra de Baza National Park (Granada, Spain). Mycologia 100:296–305

    Article  PubMed  CAS  Google Scholar 

  • Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a tree mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45:28–36

    Article  CAS  Google Scholar 

  • Patreze CM, Cordeiro L (2004) Nitrogen fixing and vesicular arbuscular mycorrhizal symbioses in some tropical legume trees of tribe Mimosaceae. For Ecol Manage 196:275–285

    Article  Google Scholar 

  • Pearson JN, Schweiger P (1993) Scutellospora calospora (Nicol. and Gerd.) Walker and Sanders associated with subterranean clover: dynamics of colonization, sporulation and soluble carbohydrates. New Phytol 124:215–219

    Article  Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. National Research Council Research Press, Washington DC

    Google Scholar 

  • Plenchette C, Duponnis R (2005) Growth response of the salt brush Atriplex numularia L. to inoculation with the arbuscular mycorrhizal fungus Glomus intraradices. J Arid Environ 61:535–540

    Article  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I Mycorrhizal dependency field conditions. Plant Soil 110:199–209

    Article  Google Scholar 

  • Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline sites. Mycologia 76:74–84

    Article  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  PubMed  CAS  Google Scholar 

  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A et al (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol. doi:10.1016/j.jplph.2009.02.010

    PubMed  Google Scholar 

  • Poss JA, Pond EC, Menge JA, Jarrell WM (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88:307–319

    Article  PubMed  CAS  Google Scholar 

  • Quarles W (1999) Plant disease biocontrol and VAM fungi. IPM Pract 21:1–9

    Google Scholar 

  • Rabie GH (2005) Influence of VA-mycorrhizal fungi and kinetin on the response of mung bean plants to irrigation with seawater. Mycorrhiza 15:225–230

    Article  PubMed  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Remy W, Taylor TN, Hass H et al (1994) 4 hundred million year old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    Article  PubMed  CAS  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. US Department of Agriculture, Handbook 60. Washington, DC

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Env Exp Bot 31:313–318

    Article  Google Scholar 

  • Rozema J, Arp W, Van Diggelen J et al (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl 35:457–467

    Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM et al (2001) Arbuscular mycorrhizal symbiosis can alleviate drought induced nodule senescence in soybean plants. Plant Physiol 82:346–350

    Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? New Phytol 171:693–698

    Article  PubMed  CAS  Google Scholar 

  • Saint-Etienne L, Paul S, Imbert D et al (2006) Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient. For Ecol Manage 232:86–89

    Article  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopori SK et al (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  PubMed  CAS  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Albetro EO et al (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradies. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Echeverria M, Albertó EO et al (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    Article  PubMed  CAS  Google Scholar 

  • Schultz C (2001) Effect of (vesicular) arbuscular mycorrhiza on survival and post vitro development of micropropagated oil palms (Elaeis guineensis Jacq.). PhD thesis. Universität Göttingen, Germany

    Google Scholar 

  • Schüßler A (2002) Molecular phylogeny, taxonomy and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75–83

    Article  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sengupta A, Chaudhuri S (1990) Vesicular arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges river delta in West Bengal (India). Plant Soil 122:111–113

    Article  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Tang M, Chan H et al (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  PubMed  CAS  Google Scholar 

  • Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrium plants under salinity stress. J Agron 8:79–83

    Article  CAS  Google Scholar 

  • Sieverding E (2008) Mycorrhizae and water management in crops, lawn and turf. Lands 8:14–16

    Google Scholar 

  • Sieverding E, Oehl F (2006) Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes. J Appl Bot Food Qual 80:69–81

    Google Scholar 

  • Simon L, Bousquet J, Lévesque RC et al (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Smith SE, Read DJ (1995) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Amsterdam

    Google Scholar 

  • Spain JL, Sieverding E, Oehl F (2006) Appendicispora: a new genus in the arbuscular mycorrhiza-forming Glomeromycetes with a discussion of the genus Archaeospora. Mycotaxon 97:163–182

    Google Scholar 

  • Stewart CR, Lee JA (1974) The rate of proline accumulation in halophytes. Planta 120:279–289

    Article  CAS  Google Scholar 

  • Subramanian K, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hort 107:245–253

    Article  Google Scholar 

  • Suzanne WS, David AP, Melanie DJ et al (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Sylvia DM (1990) Inoculation of native woody plants with vesicular-arbuscular mycorrhizal fungi for phosphate mine land reclamation. Agric Ecosyst Environ 31:253–261

    Article  Google Scholar 

  • Tang W, Peng X, Newton RJ (2005) Enhanced salt tolerance in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1- phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43:139–146

    Article  PubMed  CAS  Google Scholar 

  • Tawaraya L, Saito M (1994) Effect of vesicular-arbuscular mycorrhizal infection on amino acid composition in roots of onion and white clover. Soil Sci Plant Nutr 40:339–343

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Tian CY, Feng G, Li XL et al (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Tressner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213

    Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514

    Article  Google Scholar 

  • Walker C, Schüßler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol Res 108:979–982

    Article  Google Scholar 

  • Walker C, Vestberg M, Demircik F et al (2007a) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–13

    Article  PubMed  Google Scholar 

  • Walker C, Vestberg M, Schüßler A (2007b) Nomenclatural clarifications in Glomeromycota. Mycol Res 111:253–255

    Article  Google Scholar 

  • Wang L (2001) Fungi kill insects and feed host plants. Sci News Apr 17, 2002. BNET.com

    Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: toward genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang FY, Liu RJ, Lin XG et al (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    Article  PubMed  Google Scholar 

  • Wei-Feng XU, Wei-Ming SHI, Ueda A et al (2008) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosph 4:486–495

    Google Scholar 

  • Wilde P, Manal A, Stodden M et al (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    Article  PubMed  Google Scholar 

  • Wu YY, Chen QJ, Chen M et al (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefasciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci 169:65–73

    Article  CAS  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348

    Article  Google Scholar 

  • Zaid A, de Wet PF (1999) Date palm propagation. In: Zaid A (ed.) Date palm cultivation. FAO Rome, pp 74–106

    Google Scholar 

  • Zaid A, de Wet PF, Djerbi M et al (2002) Diseases and pests of date palms. In: Zaid A (ed) Date palm cultivation, rev. edn. FAO, Rome, pp 227–281

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  • Zhong Qun H, Chao Xing H, Zhibin Z et al (2007) Changes in antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Coll Surf B Biointerfaces 59:128–133

    Article  CAS  Google Scholar 

  • Zuccarini P (2007) Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ 53:283–289

    CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Shabbir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shabbir, G., Dakheel, A.J., Brown, G.M., Rillig, M.C. (2011). Potential of Arbuscular Mycorrhizal Technology in Date Palm Production. In: Jain, S., Al-Khayri, J., Johnson, D. (eds) Date Palm Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1318-5_22

Download citation

Publish with us

Policies and ethics